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Twisted bilayer transition metal dichalcogenides are ideal platforms to study flat-band phenomena. In this
paper, we investigate flat-band plasmons in the hole-doped twisted bilayer MoS2 (tb-MoS2) by employing a full
tight-binding model and the random phase approximation. When considering lattice relaxations in tb-MoS2, the
flat band is not separated from remote valence bands, which makes the contribution of interband transitions in
transforming the plasmon dispersion and energy significantly different. In particular, low-damped and quasiflat
plasmons emerge if we only consider intraband transitions in the doped flat band, whereas a

√
q plasmon

dispersion emerges if we also take into account interband transitions between the flat band and remote bands.
Furthermore, the plasmon energies are tunable with twist angles and doping levels. However, in a rigid sample
that suffers no lattice relaxations, lower-energy quasiflat plasmons and higher-energy interband plasmons can
coexist. For rigid tb-MoS2 with a high doping level, strongly enhanced interband transitions quench the quasiflat
plasmons. Based on the lattice relaxation and doping effects, we conclude that two conditions, the isolated
flat band and a proper hole-doping level, are essential for observing the low-damped and quasiflat plasmon
mode in twisted bilayer transition metal dichalcogenides. We hope that our study on flat-band plasmons can be
instructive for studying the possibility of plasmon-mediated superconductivity in twisted bilayer transition metal
dichalcogenides in the future.

DOI: 10.1103/PhysRevB.105.245415

I. INTRODUCTION

Twisted bilayer graphene (TBG) with flat bands has opened
an avenue to explore abundant phenomena, for instance,
localized and correlated states [1–3], unconventional super-
conductivity [4,5], and electronic collective excitations [6–8].
Collective excited modes arising from quasilocalized states
of flat bands, named as flat-band plasmons, feature intrin-
sically undamped behaviors and constant energy dispersion
[7,8], giving insight into the unconventional superconductiv-
ity [9–11] and linear resistivity experimentally observed in
TBG [12]. Recently, ultraflat bands have been detected in
twisted bilayer transition metal dichalcogenides (tb-TMDs)
with a wide range of angles [13–18], making tb-TMDs ideal
platforms to extensively investigate many-body states [19–25]
and optical excitons [26–28]. For example, zero-resistance
pockets are observed on doping away from half filling of
the flat band in twisted bilayer WSe2, which indicates a
possible transition to a superconducting state [23]. Theo-
retical studies establish that heterobilayer transition metal
dichalcogenides are unique platforms to realize chiral su-
perconductivity [29,30]. Potential superconducting parings
arising from magnon and spin-valley fluctuations are pro-
posed in tb-TMDs [29,31].
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Previous studies show that plasmon properties play a role
in the pairing interaction responsible for superconductivity
in TBG [9–11]. The plasmon-mediated superconductivity is
determined by a ratio of the plasmon energy to the flat-
band bandwidth. That is, with the flat-band plasmon energy
scale comparable to the flat-band bandwidth [7,8], a super-
conducting state can be realized in TBG [9,10]. Then, we
wonder whether plasmons in flat-band tb-TMDs possess sim-
ilar properties to those in TBG and could contribute to parings
in tb-TMDs. Up to now, plasmonic properties of flat-band
tb-TMDs are still not clear, which hinders us from further
studying the plasmon-mediated superconductivity. The pres-
ence of flat bands in tb-MoS2 may result in different plasmon
properties from those surveyed in monolayer [32–37], two-
layer [38], few-layer [39,40], and one-sheet MoS2 systems
[41,42], since the unique flat-band plasmons detected in TBG
are distinct from those discovered in monolayer and bilayer
graphene [43,44]. In practice, such a unique flat-band plasmon
with undamped and quasiflat characteristics can also lead to
special applications such as the photon-based quantum in-
formation processing toolbox and perfect lens [7,45]. All in
all, the property of plasmons in flat-band tb-TMDs deserves
further investigation.

In this paper, we mainly focus on flat-band plasmons in
twisted bilayer MoS2 (tb-MoS2). Previous studies show that
the tb-MoS2 systems are semiconductors with ultraflat bands
in the valence band maximum (VBM). The flat bands have
been discovered in tb-MoS2 with a wide range of twist angles
and have narrower bandwidth at a smaller angle [13,16,46].
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FIG. 1. (a) Top view of the atomic structure of 3.5◦ tb-MoS2.
(b) The first BZ with high symmetry points for the hexagonal lattice
of tb-MoS2.

After introducing hole doping in the VBM, we employ a full
tight-binding (TB) model to investigate low-energy plasmons
in tb-MoS2. It is known that the bandwidth of a flat band
obviously modulates plasmon properties in TBG [8,45]. By
changing the twist angle of tb-MoS2, we can also study how
flatness of the flat band modifies the collective excitations.
Moreover, the lattice relaxation significantly changes the elec-
tronic properties of tb-TMDs with small twist angles [14].
With lattice relaxation considered in tb-MoS2, the band gap
between the flat VBM and other valence bands disappears
at large twist angles [13,16]. Will the absence of the band
gap affect the flat-band plasmon? In principle, the polariza-
tion function can be calculated via the Lindhard function
[47]. With this method, we can investigate the effect of band
cutoffs on the flat-band plasmon. For example, we can per-
form a one-band calculation where only flat-band intraband
transitions contribute to the flat-band plasmon. Meanwhile, a
full-band calculation can also be realized via a combination
of the Kubo formula and tight-binding propagation method
(TBPM) [48,49]. In the full-band calculation, both intraband
and interband polarizations are taken into account. Therefore,
interband transition effects on plasmons in tb-MoS2 are inves-
tigated by comparing the modes obtained from the one-band
and full-band calculations. Our work could be an example to
study flat-band plasmons in other twisted 2D semiconductors.

This paper is organized as follows. In Sec. II, the tight-
binding model and computational methods are introduced. In
Secs. III and IV, flat-band plasmons are explicitly studied in
both relaxed (consider the atomic relaxation) and rigid (with-
out the atomic relaxation) tb-MoS2, respectively. In Sec. V,
we pay attention to the effects of band cutoffs and chemical
potentials on plasmons. Finally, we give a summary and dis-
cussion of our work.

II. NUMERICAL METHODS

A. Tight-binding model

We construct atomic structures of tb-MoS2 with a commen-
surate approach used in building TBG structures [50,51]. The
twisted structures are generated by starting from a 2H stacking
(θ = 0◦), which has the Mo (S) atom in the top layer directly
above the S (Mo) in the bottom layer, and then rotating layers
with the origin at an atom site [17]. The atomic structure of a
moiré pattern of tb-MoS2 with θ = 3.5◦ is shown in Fig. 1(a),
which contains 1626 atoms. In this paper, we mainly focus on
plasmonic properties of tb-MoS2 with θ = 3.5◦ and θ = 5.1◦.
The fully atomic relaxations are simulated via the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS)
[52] with the intralayer Stilliner-Weber potential [53] and
the interlayer Lennard-Jones potential [54]. The relaxation
effects on flat bands of tb-MoS2 are investigated in previous
works [13,14,16]. Here, we employ an accurate multiorbital
TB model to investigate the plasmons of tb-MoS2. In this TB
model, one unit cell of monolayer transition metal dichalco-
genides comprises 11 orbitals, 5 d orbitals from one Mo atom
and 6 p orbitals from two S atoms [55]. The total Hamiltonian
of twisted bilayer MoS2 can be written as

Ĥ = Ĥ (1L)
1 + Ĥ (1L)

2 + Ĥ (2L)
int , (1)

where Ĥ (1L)
1(2) is the eleven-orbital single layer Hamiltonian,

which contains the on-site energy, the hopping terms between
orbitals of the same type at first-neighbor positions, and the
hopping terms between orbitals of different type at first- and
second-neighbor positions. The term Ĥ (2L)

int is the interlayer
interaction expressed as

Ĥ2L
int =

∑
p′

i,r2,p j ,r1

φ̂
†
2,p′

i
(r2)t (LL)

p′
i,p j

(r2 − r1)φ̂1,p j (r1) + H.c., (2)

where φ̂i,p j is the p j orbital basis of ith monolayer. The
interlayer hoppings in the Slater-Koster (SK) relation are ex-
pressed with distance and angle as [56]

t (LL)
p′

i,p j
(r) = [Vpp,σ (r) − Vpp,π (r)]

rir j

r2
+ Vpp,π (r)δi, j, (3)

where r = |r| and the distance-dependent SK parameter is

Vpp,b = νbe[−(r/Rb)ηb ], (4)

where b = σ, π , νb, Rb, and ηb are constant values taken
from the Ref. [55]. In this paper, the interlayer interactions
in twisted bilayer MoS2 are included in the TB Hamiltonian
by adding hoppings between p orbitals of S atoms in the top
and bottom layers with a distance smaller than 5 Å. The recent
study shows that such a first-neighbor interlayer hopping ap-
proximation is appropriately enough [46]. When we relax the
system, atoms move away from their equilibrium position in
both in-plane and out-of-plane directions. As a consequence,
we also need to change the intralayer hopping in Eq. (1). The
intralayer hoppings in relaxed samples are modified with the
form [57]

t intra
i j,μν (ri j ) = t intra

i j,μν

(
r0

i j

)(
1 − 	i j,μν

∣∣ri j − r0
i j

∣∣∣∣r0
i j

∣∣
)

, (5)

where t intra
i j,μν is the intralayer hopping between the μ orbital

of the i atom and ν orbital of the j atom, r0
i j and ri j are the

distance between the i and j atoms in the equilibrium and
relaxed cases, and 	i j,μν is the dimensionless bond-resolved
local electron-phonon coupling. We assume that 	i j,μν =
3, 4, 5 for the S-S pp, S-Mo pd , and Mo-Mo dd hybridiza-
tions, respectively [57]. Note that a large Hamiltonian matrix
describing a rigid or relaxed tb-MoS2 supercell will be gener-
ated. For example, the items in the Hamiltonian matrix of 3.5◦
MoS2 are more than five thousand. Consequently, it is tough
to diagonalize such a large matrix. Next, we will introduce
the numerical methods of exploring plasmon properties in the
hole-doped tb-MoS2.
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B. Plasmon

Polarization functions can be obtained from the Kubo for-
mula [58]


K (q, ω) = −2

S

∫ ∞

0
dt eiωt Im〈ϕ|nF (H )eiHt

× ρ(q)e−iHt [1 − nF (H )]ρ(−q)|ϕ〉, (6)

where nF (H ) = 1
eβ(H−μ)+1 is the Fermi-Dirac distribution oper-

ator, β = 1
kBT being T the temperature, kB the Boltzmann con-

stant, and μ the chemical potential. ρ(q) = ∑
i c†

i ci exp(iq ·
ri ) is the density operator, ri is the position of the i orbital,
and S is the area of a unit cell. As we mentioned before, each
unit cell of tb-TMDs contains thousands of orbitals, which
makes the diagonalization of the Hamiltonian very challeng-
ing. In this paper, we calculate the polarization function by
combining the Kubo formula with a TBPM method. The
TBPM is based on the numerical solution of time-dependent
Schrödinger equation and requires no diagonalization pro-
cesses [48]. By using the TBPM method, it is possible to
obtain the electronic properties of large-scale systems, for
instance, the density of states (DOS) of TBG with rotation
angle θ down to 0.48◦ [59] and of dodecagonal graphene
quasicrystals [60,61]. The key idea in TBPM is to perform
an average over initial states |ϕ〉, a random superposition of
all basis states [48,61],

|ϕ〉 =
∑

i

ai|i〉, (7)

where |i〉 are all basis states in real space and ai are random
complex numbers normalized as

∑
i |ai|2 = 1. By introducing

the time evolution of two wave functions,

|ϕ1(q, t )〉 = e−iHt [1 − nF (H )]ρ(−q)|ϕ〉,
|ϕ2(t )〉 = e−iHt nF (H )|ϕ〉. (8)

Then the real and imaginary parts of the dynamical polariza-
tion are

Re 
(q, ω) = −2

S

∫ ∞

0
dt cos(ωt )Im〈ϕ2(t )|ρ(q)|ϕ1(t )〉,

Im 
(q, ω) = −2

S

∫ ∞

0
dt sin(ωt )Im〈ϕ2(t )|ρ(q)|ϕ1(t )〉. (9)

The dynamical polarization function can be obtained from the
Lindhard function as well [47],


(q, ω) = gs

(2π )2

∫
BZ

d2k
∑
l,l ′

nF(Ek′l ′ ) − nF(Ekl )

Ek′l ′−Ekl − ω − iδ

× |〈k′l ′|eiq·r|kl〉|2, (10)

where |kl〉 and Ekl are eigenstates and eigenvalues of the TB
Hamiltonian in Eq. (1), respectively, with l and l ′ being band
indices, k′ = k + q, δ → 0+. Generally, the integral is taken
over the whole first Brillouin zone (BZ) shown in Fig. 1(b). It
is convenient to analyze the contribution of band transitions to
the polarization function as Eq. (10) can be written as the sum
of two parts,


(q, ω) = 
intra (q, ω) + 
inter (q, ω), (11)

where 
intra (q, ω) and 
inter (q, ω) denote intraband and in-
terband contributions corresponding to l = l ′ and l 	= l ′ in
Eq. (10), respectively. It is hard to sum over all bands obtained
by diagonalizing the TB Hamiltonian in Eq. (1) of a supercell
that contains thousands of atoms. Therefore, we use Eq. (9)
to do full-band calculations. The validity of Eq. (9) has been
verified by comparing the polarization function obtained from
Eq. (9) and from a full-band calculation with Eq. (10) [8,49].

With the polarization function acquired from either the
Kubo formula in Eq. (9) or Lindhard function in Eq. (10),
the dielectric function that describes the electronic response
to extrinsic electric perturbation can be written within the
random phase approximation (RPA) as

ε(q, ω) = 1 − V (q)
(q, ω), (12)

in which V (q) = 2πe2/(εBq) is the Fourier component of
the two-dimensional Coulomb interaction, with εB being the
background dielectric constant. In our calculations, we set
εB = 3.03 to represent the bulk dielectric constant of hexag-
onal boron nitride (hBN) [62]. The electron energy loss (EL)
function can be expressed as

S(q, ω) = −Im[1/ε(q, ω)], (13)

which is an experimentally observable quantity to reflect the
electronic response intensity. We can obtain the intraband EL
function [Sintra (q, ω)] or interband EL function [Sinter (q, ω)]
by only taking 
intra (q, ω) or 
inter (q, ω) into account in
Eq. (11). In this way, we can analyze intraband and inter-
band transition contributions to the EL function by comparing
Sintra (q, ω) and Sinter (q, ω) to S(q, ω), respectively. A plasmon
mode with frequency ωp and wave vector q is well defined
when a peak exists in the EL function at ωp.

C. Density of states

The density of states is calculated with TBPM as [48,61]

D(E ) = lim
N→∞

1

2πN

N∑
p=1

∫ ∞

−∞
eiEt 〈ϕp|e−iHt |ϕp〉dt, (14)

where N is the total number of initial states. In our cal-
culations, the convergence of electronic properties can be
guaranteed by utilizing a large enough system with more than
10 million atoms [48].

III. FLAT-BAND PLASMONS IN RELAXED TB-MoS2

WITH DIFFERENT TWIST ANGLES

In this section, we focus on flat-band plasmons in the
relaxed hole-doped tb-MoS2. A flat band (blue line) appears
in the VBM at both 5.1◦ and 3.5◦, as shown in Figs. 2(d) and
2(h). The bandwidth W of the flat band (an energy difference
between the � and K points of BZ) in 3.5◦ (W = 5.9 meV)
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FIG. 2. EL function S(q, ω) intensity plots of relaxed tb-MoS2 with (a)–(c) θ = 5.1◦ and (e)–(g) θ = 3.5◦ under different band cutoff
calculations. Particle-hole (p-h) continuum region is marked with “p-h continuum” and boundaries with green solid lines. Band structures
and DOS for (d) 5.1◦ and (h) 3.5◦ are shown over a small energy range. The dashed lines crossing the flat bands in (d) and (h) denote
chemical potentials μ = −10.0 meV and μ = −2.4 meV, respectively. Here, the Fermi energy zero is set as the valence band maximum
(VBM). In (a) and (e), the “1b-cut” calculation means only the single doped flat band (blue line) is included with l = l ′ = 1 in Eq. (10),
while the “20b-cut” calculation sums over 40 bands near zero energy (20 conduction bands and 20 valence bands) in (b) and (f). “Full-band”
calculations are performed via Eq. (9) to consider all the bands in (c) and (g). The maximum value for q (a.u.) = 1 represents the length from
� to M point denoted in Fig. 1 and the minimum value of q is 0.0625|�M|. Temperature is set to 1 K.

is much smaller than the one in 5.1◦ (W = 16.2 meV). The
density of states shows high peaks, the van Hove singularities,
at flat-band energies. The doping levels with μ = −10.0 meV
and −2.4 meV in Figs. 2(d) and 2(h) correspond to the near
half filling of flat bands, respectively. In the EL function
[S(q, ω)] spectra, particle-hole continuum [Im 
(q, ω) < 0]
regions are labeled by “p-h continuum” with boundaries
[Im 
(q, ω) = 0] illustrated by green solid lines (details in
Appendix B). The first and second rows in Fig. 2 show the
results of tb-MoS2 with 5.1◦ and 3.5◦, respectively. The re-
sults in Figs. 2(a)–2(b) and 2(e)–2(f) are obtained from the
Lindhard function in Eq. (10). Full-band calculation results
in Figs. 2(c) and 2(g) are performed via the Kubo formula in
Eq. (9). The spectra with notation “1b-cut” are calculated by
only considering the single doped flat band, and the spectra
with notation “20b-cut” are obtained by summing over 40
bands near zero energy [20 conduction bands (CBs) and 20
valence bands (VBs)] in Eq. (10).

In the 1b-cut calculation, only intraband transitions with
possible transition energies ω (0 < ω < W ) are taken into
account, whereas interband transitions between the doped flat
band and other bands are neglected in Eq. (11). In this case,
as shown in Figs. 2(a) and 2(e), the plasmons show quasiflat
dispersions, and are free from damping into electron-hole
pairs as the plasmons locate above the p-h continuum re-
gion. Such unique dispersion can be well understood via a
finite-bandwidth two-dimensional electron gas model (FBW-
2DEG) (details in Appendix C). In the long-wavelength limit
q < 0.25|�M| and q < 0.45|�M| in Figs. 2(a) and 2(e),

respectively, the plasmon dispersion can be well fitted with
an ideal 2DEG model [63]

ωpl =
√

2πne2q

mεB
, (15)

where n is the charge density related to a chemical potential
μ. The effective mass m of the flat band at μ is obtained
by fitting the band from � to M as a parabolic band. Then
we obtain m/me ≈ −3.24 at μ = −10.0 meV and m/me ≈
−4.17 at μ = −2.4 meV. The dashed curves (ωpl = a

√
q)

with the coefficients a1b
5.1 = 92.1 meV in Figs. 2(a)–2(b) and

a1b
3.5 = 33.4 meV in Figs. 2(e)–2(f) are obtained via Eq. (15).

When q > 0.25|�M| and q > 0.45|�M| in Figs. 2(a) and
2(e) plasmons deviate from the

√
q relation and show slightly

negative dispersions. The reason is that the flat bands in Fig. 2
are not infinite parabolic bands but have finite bandwidths.
The slightly negative dispersion can be well fitted by an ana-
lytical plasmon energy expression in the FBW-2DEG model
[63]

ωp =
√

μ(2Ec − μ)

exp(q/qTF) − 1
+ E2

c , (16)

with |Ec| as an effective finite bandwidth of the flat band and
qTF, the two-dimensional Thomas-Fermi vector, given as

qTF = 2πe2

εB
D(μ), (17)
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where D(μ) is the DOS value at μ. The calculated qTF =
14.71 nm−1 with μ = −10.0 meV at 5.1◦ is very close to
the value 14.77 nm−1 with μ = −2.4 meV at 3.5◦. The two
curves (dot-dashed lines) in Figs. 2(a) and 2(e) are obtained
by setting Ec = μ = −10.0 meV at 5.1◦ and Ec = EM =
−3.9 meV at 3.5◦(EM is the flat-band energy at M point),
respectively. Here, plasmon modes in the 1b-cut calculations
are governed simply by intraband transitions inside the flat
band, verifying that the single flat band guarantees undamped
quasiflat plasmons in the highly simplified one-band model.
Moreover, the quasiflat plasmon energy in Fig. 2(e) is lower
than that in Fig. 2(a) due to the decrease of the flat-band width
with reduced twist angles.

As seen from the band structure in Figs. 2(d) and 2(h),
it is obvious that the doped flat bands are not completely
separated from other VBs. In principle, both the transitions
within flat bands and the effects of interband transitions on the
flat-band plasmons should be considered. When 40 bands are
considered in the polarization function (20b-cut calculation),
plasmons with energy ω20b

p exhibit a20b√q dispersion (black
solid lines) in Figs. 2(b) and 2(f), and are away from the
Landau damping regions. The coefficients a20b

5.1 = 98.3 meV
and a20b

3.5 = 38.4 meV slightly exceed those in the 2DEG mode
(dashed lines). Comparing the plasmon modes in Figs. 2(b)
and 2(f) to those in Figs. 2(a) and 2(e), respectively, the effect
of interband transitions on the doped flat-band plasmons is
significant. That is, the inclusion of the interband transitions
changes the quasiflat dispersion of plasmon modes into

√
q

dispersion and dramatically enhances the energy of plasmons
with a larger q.

Previous works show that screening of high-energy inter-
band transitions will decrease plasmon energies in monolayer
and bilayer TMDs [64–66]. In order to figure out how in-
terband transitions will modulate flat-band plasmons, in the
20b-cut calculation we compare EL functions S (red lines)
with intraband EL functions Sintra (blue lines), and interband
EL functions Sinter (black lines) at sampled momenta q for
relaxed 3.5◦ tb-MoS2 in Fig. 3(a). The plasmon modes ex-
tracted from S, Sintra, and Sinter are named as p, pintra, and pinter,
respectively. For a small q = 0.0625|�M|, the plasmon mode
p is overlapped with the intraband plasmon mode pintra, which
means that the EL function S is solely dominated by intraband
transitions. For a large q = 1.0|�M|, the EL function S has a
similar shape to Sinter, implying that p is mainly contributed
by the interband plasmon mode pinter. For q from 0.25|�M|
to 0.75|�M|, plasmon modes p originate from both intraband
and interband transitions and are affected by the interplay
between pintra and pinter. For example, when q = 0.5|�M|, the
nonzero parts of Sintra and Sinter are overlapped in an energy
range (0 < ω < 50 meV). The interplay of pinter and pintra

yields a mode with larger energy (blue and black arrows) in
Fig. 3(a). This kind of interplay in relaxed tb-MoS2 is due to
the fact that the flat band is not separated from other VBs,
so the intraband transition energy can be overlapped with
the interband transition energy in an energy range 0 < ω <

W − |μ|.
We further investigate how interband transitions from

much higher energy bands to the doped flat band will affect
the plasmonic properties. As seen in Figs. 2(c) and 2(g), the
plasmon modes have lower energy with fitted

√
q relation

FIG. 3. EL functions S (red solid lines), intraband EL functions
Sintra (blue solid lines), and interband EL functions Sinter (black solid
lines) at five sampled momenta q for (a) relaxed and (b) rigid tb-
MoS2 with θ = 3.5◦ under 20b-cut calculation. S are contributed by
both intraband and interband transitions, while Sintra and Sinter are
calculated by only taking intraband and interband transitions into
account, respectively. Intraband and interband plasmon modes are
marked by pintra (blue dashed lines) and pinter (black dashed lines),
respectively. The notations p, p1, and p2 (red dashed line) represent
the plasmon mode extracted from EL functions S. EL functions are
shifted vertically for clarity and their zeros are denoted by gray
dashed lines.

(solid lines) and tend to decay into p-h pairs at large mo-
menta. The plasmon modes marked by black lines tend to be
a linear dispersion with a larger q. Such tendency is caused
by the screening effect of high-energy interband transitions
on plasmons as mentioned in previous works [7,64–66]. Next,
we qualitatively explain these phenomena via an expression
for plasmon energy [7]

ω2
p ≈ B(q)

1 + A(q)
, (18)

where B(q) contains the contribution of band transitions
with the transition energy satisfying |Ek′l ′ − Ekl | < ωp, while
A(q) is contributed by band transitions with relatively higher
energies |Ek′l ′ − Ekl | > ωp [details of A(q) and B(q) in Ap-
pendix C]. As shown in Fig. 2, the plasmon modes in 20b-cut
calculations have higher energies than that in the 1b-cut cal-
culation. In the 20b-cut case, apart from a contribution of
intraband transitions, the term B(q) has an extra contribu-
tion from the interband transitions with energies smaller than
ωp, which results in an increment of the plasmon mode en-
ergy. Then, in the full-band calculation, the plasmon mode
energy becomes smaller again because states from higher-
energy bands (beyond the 40 bands) satisfy the condition
|Ek′l ′ − Ekl | > ωp and contribute to the term A(q). In full-
band calculations, the plasmon energy becomes smaller when
the twist angle decreases from 5.1◦ to 3.5◦. The twist angle
effect on plasmon energy and flat-band width are similar (see
Fig. 8 in Appendix A). Therefore, the flat-band plasmon can
be a clue to detect the flat band.

In this part, we have analyzed the intraband and interband
contributions to the plasmonic properties via the three kinds of
calculations with different band cutoffs. The quasiflat plasmon
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remote VBs.

only appears in the one-band calculation, induced only by
intraband transitions in the doped flat band. After that, if we
consider more band effects, the plasmonic features are notably
affected by the interband transitions. The effects of multiband
transitions on the flat-band plasmons in tb-MoS2 are different
from those in TBG [7]. Here, the lower-energy quasiflat plas-
mon dispersion in the simplified one-band calculation changes
to higher-energy

√
q relation in both multiband and full-band

calculations. However, for magic-angle TBG, the plasmon
dispersion changes in a contrary way after considering more
bands. That is, the classical plasmons with the

√
q relation

in a simplified toy model (only including two flat bands)
change to the lower-energy quasiflat plasmons obtained from
a multiband continuum model or full-band TB model [7,8].
The different band cutoff effects on flat-band plasmons of
TBG and tb-MoS2 could originate from the different features
of the flat bands in the two twisted systems. The flat bands
in relaxed TBG are entirely separated from other bands with
gaps at least two times larger than the bandwidth [8], while the
flat band in relaxed tb-MoS2 only detaches from conduction
bands above zero energy but touches its adjacent VB at the
K point, as shown in Figs. 2(d) and 2(h). So extra interband
transitions in the multiband calculation contribute to A(q) in
magic-angle TBG [7] but to the B(q) term in relaxed flat-band
tb-MoS2.

IV. FLAT-BAND PLASMONS IN RIGID
TB-MoS2 WITH θ = 3.5◦

We further study the effect of lattice relaxation on plas-
mons in tb-MoS2. For tb-MoS2 with θ = 3.5◦ without
relaxation (rigid tb-MoS2), the flat band (blue line) with
bandwidth W = 4.3 meV is completely separated from other
bands, as shown in Fig. 4(d). The band gap � between the
flat band and other VBs [the shaded region in Fig. 4(d)]
is 15.8 meV, three times larger than the bandwidth W . The
plasmon spectra obtained via 1b-cut, 20b-cut, and full-band
calculations are shown in Figs. 4(a)–4(c) with chemical po-
tential μ = −2.0 meV (dashed line) near half filling of the
flat band. In this case, a quasiflat plasmon dispersion with
the energy around 20 meV appears in the 1b-cut calculation.
Interestingly, such a plasmon dispersion with nearly constant
energy also emerges in both 20b-cut and full-band calcula-

tions with low energies even though it tends to vanish at
a larger q. Besides, higher-energy interband plasmons also
appear when q > 0.25|�M| in both 20b-cut and full-band
calculations. When q near 0.5|�M|, the two plasmon dis-
persions (one from the intraband transitions and the other
from interband transitions) are separated and can coexist in
the spectra. In 20b-cut and full-band calculations, the p-h
continuum regions are separated into two parts due to the
presence of the band gap � [see Fig. 10(b) in Appendix B].
The quasiflat plasmon modes are low-damped as they reside
at the gap between the two p-h continuum regions.

To gain insights into the distinct plasmon features in re-
laxed and rigid cases, we compare the contribution of band
transitions to EL functions under the 20b-cut calculation. In
Fig. 3(b), a significant difference is the existence of two plas-
mon branches compared to Fig. 3(a). The plasmon modes p1

and p2 correspond to the lower-energy quasiflat and higher-
energy plasmons in Fig. 4(b), respectively, and p2 is enhanced
while p1 is weakened with larger momenta. The two peaks
p1 and p2 are contributed from intraband plasmon pintra and
interband plasmon pinter [arrows in Fig. 3(b)], respectively.
For q = 0.5|�M|, unlike the relaxed case where intraband and
interband transitions can be superimposed in an energy range,
the plasmons pinter and pintra always separate in the rigid case.

The profound explanation to the two plasmon modes is
that due to the band gap � emerging in the rigid 3.5◦ tb-
MoS2, interband transition energies ω > � + W − |μ| no
longer overlap with intraband transition energies W > ω > 0.
As a result, pintra (pinter) are softened (hardened) to p1 (p2)
by the extra higher-energy interband transitions (lower-energy
intraband transitions) contributing to A(q) [B(q)], as shown
with arrows in Fig. 3(b). We can also find that the interband
transitions play an important role in generating different plas-
mon features in relaxed and rigid tb-MoS2 from Fig. 3, and
the interband plasmons pinter gradually dominate plasmons
with larger momenta, which could owe to the enhancement
of the interband coherence factor in Eq. (10) (see Fig. 13 in
Appendix E).

In brief, the flat band can lead to quasiflat and low-damped
plasmons in the rigid sample. The intraband plasmons can
coexist with the higher-energy interband plasmons at some
momenta in both multiband and full-band calculations. The
presence of the band gap � ensures that the two plasmon
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FIG. 5. Band cutoff effect on plasmon energy versus q for re-
laxed tb-MoS2 (a) with θ = 5.1◦ and μ = −10 meV and (c) θ = 3.5◦

and μ = −2.4 meV. The doping effect on plasmon energy versus q
for relaxed tb-MoS2 with (b) 5.1◦ and (d) 3.5◦ under the 20b-cut
calculation. 1b-cut (black square), 20b-cut (red circle), 40b-cut (blue
triangle), and 80b-cut (green triangle) in (a) and (c) stand for the
1 band (the doped flat VB), 40 bands (20 CBs above and 20 VBs
below zero energy), 80 bands (40 CBs above and 40 VBs below
zero energy), and 160 bands (80 CBs above and 80 VBs below zero
energy) cutoff calculations via Eq. (10) with l and l ′ summing over
1 band, 40 bands, 80 bands, and 160 bands, respectively. Plasmon
energy changes with three different chemical potentials in (b) and
(d) with 20b-cut calculations via Eq. (10).

branches appear simultaneously in the EL spectra. On the
contrary, in the relaxed sample, due to the absence of the band
gap between the flat band and its adjacent VBs, interband
transitions start to contribute in a very tiny energy. As a
result, the single plasmon mode has both contributions from
the interband and intraband transitions. However, we detect a
quasiflat plasmon in relaxed tb-MoS2 with an angle smaller
than 3.5◦ [see Fig. 9(a) in Appendix A], at which a band gap
� also appears. As a conclusion, the separation of the flat
band from other bands in tb-MoS2 plays a crucial role in the
exploration of quasiflat and low-damped plasmons since the
band gap affects the interband contribution to plasmons.

V. BAND CUTOFF AND DOPING EFFECTS

In this part, we move forward to investigating the band
cutoffs and doping effects on plasmons in the relaxed tb-
MoS2 with 5.1◦ and 3.5◦ in Fig. 5. First, we compare the
plasmons calculated with different band cutoffs in Fig. 5(a) for
5.1◦ and Fig. 5(c) for 3.5◦. The plasmon energy significantly
increases from the 1b-cut calculation (black squares) to 20b-
cut calculation (red dots) with a momentum q getting larger.
Then, after taking more bands (blue and green triangles) into
account, the plasmon energy decreases when q > 0.25|�M|
and q > 0.56|�M| in Figs. 5(a) and 5(c), respectively. In
40b-cut and 80b-cut calculations, other higher-energy inter-
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FIG. 6. EL functions S (red solid lines), intraband EL functions
Sintra (blue solid lines), and interband EL functions Sinter (black solid
lines) at different chemical potentials μ, for (a) relaxed and (b) rigid
tb-MoS2 with 3.5◦ under 20b-cut calculations. Intraband and inter-
band plasmon modes are marked by pintra (blue dashed lines) and
pinter (black dashed lines), respectively. The notations p, p1, and p2

(red dashed line) represent the plasmon mode extracted from EL
functions S. EL functions are shifted vertically for clarity and their
zeros are denoted by gray dashed lines.

band transitions contribute to A(q), and decrease the plasmon
energy. For q < 0.25|�M| in 5.1◦ and q < 0.56|�M| in 3.5◦,
the plasmon energy converges even in the 20b-cut calculation.
Therefore, only for limited small wave numbers, it is accurate
enough to model the flat-band plasmon with an appropriate
band cutoff calculation. This also implies that if the plasmon
in relaxed tb-MoS2 is studied via a low-energy continuum
model [21,67,68], the plasmon energy will be overestimated
at a larger twist angle and momentum. The low-energy contin-
uum model only accurately describes a finite number of bands
near the Fermi energy, which neglects the effects of interband
polarization of higher electron bands. Such an overestimation
of the plasmon energy could affect the prediction of plasmon-
mediated superconductivity [9,10].

Next, we show that modulating chemical potential μ is an-
other way to change the contribution of interband transitions
to plasmons dramatically. In the relaxed tb-MoS2 with 5.1◦ in
Fig. 5(b) and with 3.5◦ in Fig. 5(d), plasmon energies ω20b

p
(circles) with different μ are obtained via 20b-cut calcula-
tions. The results are also fitted with

√
q curves (solid black

lines). On the one hand, decreasing the magnitude of chemical
potential μ leads to smaller plasmon energy. The plasmon
energy tends to be constant at large momenta when the dop-
ing level closes to 0, as shown in Fig. 5(d) with blue dots.
With a larger hole doping introduced, interband transitions are
enhanced via modulating the Fermi-Dirac factor in Eq. (10)
(see Fig. 14 in Appendix E), which results in larger plasmon
energies at higher hole-doping levels (black and red circles) in
Figs. 5(b) and 5(d). This can be further verified by investigat-
ing how intraband plasmon pintra and interband plasmon pinter

will contribute to plasmon p in EL functions at different dop-
ing levels with a sampled q = 0.5|�M|, as seen in Fig. 6(a).
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The interband plasmon modes pinter monotonically increase
with |μ|, while the intraband plasmon mode pintra has the max-
imum energy near half filling of the flat band. Furthermore, as
shown in Fig. 6(a), the plasmon mode p is almost completely
contributed by pintra at μ = −0.4 meV, then generated by both
pintra and pinter when μ = −2.4 meV, and mainly attributed
by pinter at μ = −4.4 meV with the flat band almost fully
hole-doped. In fact, the low-energy intraband plasmons pintra

dominate the plasmons p for most of the momenta (except for
q near |�M|) at μ = −0.4 meV, whereas the plasmons p are
mainly contributed by higher-energy interband plasmons pinter

for all of q (even for q near 0) at μ = −4.4 meV (see Fig. 11
in Appendix D). Therefore, we can conclude that the stronger
and higher-energy interband plasmons at larger hole-doping
levels play key roles in enhancing the plasmon energies in
Figs. 5(b) and 5(d). There is still only one plasmon peak
appearing in EL functions S by tuning hole-doping levels. As a
result, the quasiflat plasmon mode is not observed in high and
low hole-doping levels in relaxed tb-MoS2 with 3.5◦. Thus,
the separation of the flat band from other bands in tb-MoS2 is
still the key to exploring quasiflat and low-damped plasmon
modes.

Based on the fact that plasmon dispersion is obviously
altered by μ in relaxed cases, we turn to study how the
quasiflat plasmons appearing in the rigid case are influenced
by chemical potentials. When the isolated flat band is slightly
doped with μ = −0.5 meV, both quasiflat plasmons and
higher-energy interband plasmons still exist in Fig. 7(b). The
quasiflat plasmons are still low-damped, whereas the inter-
band plasmons are overdamped. Once tuning μ to −4.0 meV
with the flat band nearly fully filled, only one undamped plas-
mon dispersion appears in Fig. 7(a). To unveil how quasiflat
plasmons are affected by doping levels, we study the intraband
and interband contribution to plasmons at the three hole-
doping levels with a fixed q = 0.5|�M| in Fig. 6(b). First,
the interband plasmons pinter are enhanced with larger hole-
doping levels. From μ = −0.5 to −2.0 meV, the enhancement
of pinter at μ = −2.0 meV weakens p1, despite the stronger
pintra with larger energy compared to μ = −0.5 meV. The
quasiflat plasmon spectra weights in Fig. 4(b) thus become
weaker compared to Fig. 7(b). Besides, such an enhanced
pinter with higher energy also causes the disappearance of

the quasiflat plasmons p1 and the only existence of higher-
energy plasmons at μ = −4.0 meV in Fig. 7(a). In fact, the
plasmon mode p1 arising from pintra is visible only for q =
0.0625|�M| [see Fig. 12(b) in Appendix D]. The emergence
of p1 is because much weaker higher-energy interband tran-
sitions at the smallest q do not completely quench intraband
plasmon pintra via the term A(q) in Eq. (18), as discussed in
Fig. 3(b). We can also see that the single plasmon dispersion
with μ = −4.0 meV is almost completely contributed by the
interband plasmons pinter except for q = 0.0625|�M| [shown
in Fig. 12(b) in Appendix D]. Besides, the relatively weaker
and higher-energy interband plasmons pinter at μ = −0.5 meV
[see Fig. 12(a) in Appendix D] ensure that the intraband
and interband plasmon modes coexist with q > 0.5|�M| in
Fig. 7(b). The chemical potential is essential for observing the
coexistence of the two plasmon modes in the rigid case.

All in all, plasmonic properties in relaxed and rigid tb-
MoS2 can be notably affected by interband transitions at
different hole-doping levels. The quasiflat plasmons can be
killed with a large hole-doping level since the intraband plas-
mons are strongly weakened by the enhanced higher-energy
interband transitions at a larger |μ|, which simultaneously
contribute to the stronger and higher-energy interband plas-
mons. This also implies that a slighter hole-doping level
is more conducive to observing the quasiflat plasmons in
rigid tb-MoS2. Besides, the isolated flat band cannot always
promise the existence of quasiflat plasmons because of the
doping effect on interband contributions.

VI. SUMMARY AND DISCUSSION

In summary, we investigated flat-band plasmons in the
hole-doped tb-MoS2 with and without lattice relaxations,
and analyzed the intraband and interband contribution to
plasmons. Different band cutoffs are considered in the po-
larization function to tune interband transitions between the
single flat band and other bands. In relaxed cases, the flat band
is not separated from other valence bands so that the interband
and intraband transitions can interfere with each other in the
low-energy range. When interband transitions are introduced
in multiband calculations, the quasiflat plasmons emerging
in the one-band calculation are transformed into classical
plasmons of 2DEG with

√
q dispersion. The full-band calcula-

tion, including higher-energy interband transitions, decreases
plasmonic energies of the classical plasmons observed in
the multiband calculation. We also compared plasmons in
the relaxed tb-MoS2 with 5.1◦ to those with 3.5◦. The plas-
mon energy becomes smaller when the twist angle decreases
since a smaller angle gives rise to a flatter band. In the
rigid tb-MoS2 with 3.5◦, the flat band is separated from va-
lence bands with a gap three times larger than its bandwidth.
As a consequence, the interband and intraband transitions
occur in different energy ranges. We observe two plasmon
branches in the rigid tb-MoS2. One is a lower-energy quasiflat
plasmon (intraband plasmon), and the other is a higher-
energy plasmon (interband plasmon). Moreover, the quasiflat
plasmons can be observed in one-band, multiband, and full-
band calculations. For other tb-TMDs, for example, twisted
bilayer MoSe2, twisted bilayer WS2, and twisted bilayer
WSe2, such a band gap also disappears in relaxed cases [16].
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Therefore, similar plasmon properties could be observed in
these tb-TMDs.

Besides, different band cutoffs in multiband calculations
can change the plasmon energy at a large q in the relaxed tb-
MoS2. Tuning hole-doping levels can notably change plasmon
energy in relaxed tb-MoS2 and affect the coexistence of two
plasmon branches in rigid tb-MoS2, as interband contributions
to plasmons can be significantly tuned by the doping of the
flat band. Plasmons are gradually dominated by the enhanced
interband transitions with more holes filled in the flat band.
When the flat band is almost fully filled with holes, only
one interband plasmon dispersion is observed in both rigid
and relaxed cases, and the quasiflat plasmons disappear in the
rigid tb-MoS2. In the future, flat-band systems remain poten-
tial platforms to explore undamped, low-energy dispersionless
plasmons and their applications such as plasmonic supercon-
ductivity. Based on the analysis of band cutoff calculations,
we also need to think about the validity of low-energy models
for studying flat-band plasmons in twisted two-dimensional
semiconductors, especially when the interband transitions
play a dominant role.
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APPENDIX A: TWIST ANGLE EFFECT
IN RELAXED TB-MoS2

The twist angle effect on plasmonic properties has been
discussed by comparing plasmons at 5.1◦ and 3.5◦. To further
unveil the relation between plasmon energy and twist angle,
we obtain the plasmon energies in Fig. 8(a) under the full-
band calculation for angles ranging from 3.2◦ to 7.3◦. At each
angle, the flat band does not separate from other VBs as the
one in 3.5◦ and 5.1◦. Only one plasmon mode appears in the
EL functions at these angles, as seen in Fig. 8(b). The energy
of the plasmon mode with a fixed q = 0.5|�M| decreases as
the twist angle reduces. In an experiment, the detected plas-
mon energies at different angles could thus reflect the distinct
bandwidth of tb-MoS2, as discussed in TBG [8]. However, the
single plasmon mode transforms into two separated plasmon
modes when the flat bands are separated from the valence
band with a gap � as in a rigid case [16]. For example, there
are two isolated flat bands (VB1 and VB2) near zero energy
in the relaxed tb-MoS2 with θ = 1.6◦ in Fig. 9(b). We obtain
the plasmon spectrum under the full-band calculation in this
case after making the flat-band VB1 near half filling, with
the doping level μ = −0.3 meV [the dashed line Fig. 9(b)].
There are two kinds of plasmon modes in Fig. 9(a); one is
the quasiflat plasmon with the energy around 3 meV, which is
contributed by the band transitions in the two flat bands, while

FIG. 8. (a) Plasmon energy and bandwidth of the flat band versus
twist angles θ from 3.2◦ to 7.3◦ in relaxed tb-MoS2. (b) EL functions
of relaxed tb-MoS2 at different angles under full-band calculation
with q = 0.5|�M| and T = 1 K. The chemical potential makes half
filling of the flat band at each twist angle. Plasmon energies in (a) are
extracted from the peaks of EL function in (b).

another is the interband plasmon arising from the interband
transitions between the doped flat band and remote valence
bands. Here, the plasmon spectra feature in the relaxed tb-
MoS2 with θ = 1.6◦ is similar to rigid tb-MoS2 at θ = 3.5◦
in Fig. 4(c), but the flat-band plasmon modes are damped for
entering the p-h continuum for q > 0.25|�M|.

APPENDIX B: PARTICLE-HOLE CONTINUUM
SPECTRA IN TB-MoS2 WITH θ = 3.5◦

The main text shows the p-h continuum region and its
boundaries in EL function spectra to see whether plasmons
are subject to Landau damping. Those regions and bound-
aries are obtained from p-h continuum spectra by calculating
Im 
(q, ω). Here we show two p-h continuum spectra for
relaxed and rigid tb-MoS2 with 3.5◦ in Figs. 10(a) and 10(b),
respectively, obtained from full-band calculations via Eq. (9).
The continuum spectrum in the rigid case has an energy gap,
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also shown in Fig. 4(a). The continuum region below the gap
is the intraband p-h continuum, and the one above the gap is
the interband p-h continuum.

APPENDIX C: ANALYSIS OF THE POLARIZATION
FUNCTION

In order to better understand the plasmon behaviors, we
display some analytical expressions of the polarization func-
tion in this part. The analytical expressions of the polarization
function in a finite-bandwidth two-dimensional electron gas
(FBW-2DEG) were studied before in Ref. [63], in which an
electronic energy dispersion is assumed to have the form
Ek = h̄2k2/2m for k � kc, and Ek = Ec otherwise. In the
long-wavelength limit, q → 0, the real part of the polarization
function in FBW-2DEG is


(q, ω) ≈ nq2

mω2
, (C1)

where n is the charge density and m is the effective mass of
charge. By substituting Eq. (C1) into Eq. (12) and letting the
dielectric function equal zero, we obtain the plasmon disper-
sion as

ωp =
√

2πne2q

mεB
. (C2)

The plasmon modes show a square root of q relation. The
Eq. (C2) is used to figure out the plasmon behavior when
q → 0 in the 1b-cut calculation in Sec. III.

When q � kc + kF , the real part of the polarization func-
tion is independent of q [63],

Re 
(q, ω) = m

π h̄2 ln

[
E2

c − ω2

(Ec − EF )2 − ω2

]
, (C3)

where EF is the Fermi energy. By inserting Eq. (C3) into
Eq. (12), the plasmon energy dispersion can be derived as

ωp =
√

EF (2Ec − EF )

exp(q/qTF) − 1
+ E2

c , (C4)

where qTF is the Thomas-Fermi vector. This analytical relation
can be used to fit the quasiflat plasmons in Sec. III, with |Ec|
as an effective bandwidth of the flat band.

Next, we will display the expression of B(q) and A(q) in
Eq. (18). The polarization function can be divided into two
parts in terms of the difference between band transition energy
|Ek′l ′ − Ekl | and ω [7]. After considering a k → −k time-
reversal symmetry replacement in Eq. (10), the polarization
function is [7]


(q, ω) =2
gs

(2π )2

∫
BZ

d2k
∑
l,l ′

nF(Ekl )F l ′l
k′,k(Ekl − Ek′l ′ )

(Ek′l ′ − Ekl )2 − (ω + i0)2
,

(C5)
where F l ′l

k′,k is the band coherence factor |〈k′l ′|eiq·r|kl〉|2
in Eq. (10). The real part of the polarization function
Eq. (C5) corresponding to those relative high-energy transi-
tions |Ek′l ′ − Ekl | > ω gives


A(q) ≈ −2gs

(2π )2

∫
BZ

d2k
∑
l,l ′

′F l ′l
k′,k

nF(Ekl )

Ek′l ′ − Ekl
, (C6)

and the low-energy transition part |Ek′l ′ − Ekl | < ω is


B(q, ω) ≈ 2gs

(2π )2ω2

∫
BZ

d2k
∑
l,l ′

′′F l ′l
k′,knF(Ekl )(Ek′l ′−Ekl ).

(C7)
Note that the summations

∑
l,l ′

′ and
∑

l,l ′
′′ run over the band

indices satisfying |Ek′l ′ − Ekl | > ω and |Ek′l ′ − Ekl | < ω, re-
spectively. Then we can get an approximate dielectric function

ε(q, ω) ≈ 1 + A(q) − B(q)

ω2
, (C8)

by replacing 
(q, ω) ≈ 
A(q, ω) + 
B(q, ω) in Eq. (12),
where A(q) and B(q) are defined as A(q) = −V (q)
A(q)
and B(q) = ω2V (q)
B(q, ω). As a consequence, the plasmon
energy expression can be written as

ω2
p ≈ B(q)

1 + A(q)
. (C9)

It is obvious that the plasmon energy ωp can be further af-
fected by extra band transitions included in A(q) or B(q),
which leads to ωp getting lower or higher, as explained in
Sec. III and Ref. [7].

APPENDIX D: ENERGY LOSS FUNCTIONS FOR
RELAXED AND RIGID TB-MoS2 WITH 3.5◦

We complement EL functions, intraband EL functions, and
interband EL functions in Figs. 11 and 12 for relaxed and rigid
tb-MoS2 with 3.5◦. The EL functions in Fig. 11(a) with μ =
−0.4 meV and Fig. 11(b) with μ = −4.4 meV correspond to
those plasmon energies in Fig. 5(d). For the low hole-doping
level in Fig. 11(a), the intraband plasmon mode pintra gives the
dominant contribution to the plasmon p when q < 1.0|�M|,
due to the weak interband transitions for most of q. For
q = 1.0|�M|, the plasmon mode p is contributed by both
intraband and interband plasmons, for enhanced interband
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FIG. 11. EL functions S (red lines), intraband EL functions
Sintra (blue lines), and interband EL functions Sinter (black lines) at
five sampled momenta q with unit |�M| for 3.5◦ relaxed tb-MoS2

when (a) μ = −0.4 meV and (b) μ = −4.4 meV under 20b-cut
calculations.

transitions at the largest q. However, for the high hole-doping
level in Fig. 11(b), the plasmon mode p is mainly contributed
by pinter, with an obvious overlap between Sinter and S even
when q = 0.0625|�M|. The slightly larger plasmon energy
of p than pinter arises from the enhanced B(q) term by extra
low energy intraband transitions. Comparing the interband
EL function Sinter at μ = −0.4 meV to μ = −4.4 meV, we
can verify that interband transitions are enhanced with a deep
doping, as shown in Fig. 6(a) with q = 0.5|�M|.

In the rigid tb-MoS2, when the flat band is slightly filled
(μ = −0.5 meV) in Fig. 12(a), the quasiflat plasmons p1

contributed by the intraband plasmons pintra are stronger than
p2 from q = 0.0625|�M| to q = 0.5|�M| and then gradu-
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FIG. 12. EL functions S (red lines), intraband EL functions
Sintra (blue lines), and interband EL functions Sinter (black lines) at
five sampled momenta q with unit |�M|, for 3.5◦ rigid tb-MoS2

when (a) μ = −0.5 meV and (b) μ = −4.0 meV, under 20b-cut
calculations. There are two plasmon modes p1 and p2 when q =
0.0625|�M| in (b).

ally weakened by the higher-energy interband transitions. The
higher-energy plasmons p2 appear from q = 0.5|�M| and are
gradually strengthened with q. When the flat band is almost
fully filled (μ = −4.0 meV) in Fig. 12(b), we observe the two
plasmon modes p1 and p2 only for the sampled smallest q =
0.0625|�M|. For other momenta, there is only one plasmon
mode p dominated by higher-energy interband plasmon pinter

as strong interband transitions thoroughly screen the pintra.
Comparing intraband EL functions Sintra at μ = −4.0 meV
with μ = −0.5 meV, Sintra have similar intensity in the two
cases, and pintra always exist at μ = −4.0 meV. Therefore,
we can verify that the vanishing of the quasiflat plasmons in
Fig. 7(a) is caused by the enhanced higher-energy interband
transitions.

APPENDIX E: INTERBAND COHERENCE AND
FERMI-DIRAC FACTOR IN POLARIZATION FUNCTION

In this part, we will analyze the interband contribution
to plasmons at different momenta q and chemical potentials
μ in relaxed and rigid tb-MoS2. The interband contribu-
tion can be affected by the band coherence factor F l ′l

k′,k =
|〈k′l ′|eiq·r|kl〉|2 with different momenta and the Fermi-Dirac
factor f l ′l

k′,k = nF(Ek′l ′ ) − nF(Ekl ) with various chemical po-
tentials in Eq. (10). Here, we focus on the interband coherence
factor and Fermi-Dirac factor between the doped flat band
and its nearest-neighbor VB, the band indices of which are
denoted by l = 20 and l ′ = 19, respectively, in the 20b-cut
calculation. The band coherence factor F 19,20

k′,k can imply the

interband correlation weighted by f 19,20
k′,k . The spectra of F 19,20

k′,k
at the three sampled q are displayed in Figs. 13(a) and 13(b)
for relaxed and rigid 3.5◦ tb-MoS2, respectively. The region
of nonzero F 19,20

k′,k in relaxed 3.5◦ tb-MoS2 changes a lot with
q, compared to much smaller variation of the nonzero area
in the rigid case. A broader area of nonzeros will give more
interband contribution to Eq. (10), and thus enhance interband
EL functions with a larger q, as shown in Figs. 3(a) and 11.

FIG. 13. Intensity plots of interband coherence factor F 19,20
k′,k be-

tween the doped flat band and its nearest-neighbor valence band,
for (a) relaxed and (b) rigid tb-MoS2 with 3.5◦. Upper, middle, and
bottom panels in (a) and (b) represent different length of momenta
with q = 0.0625|�M|, q = 0.5|�M|, and q = 1.0|�M|, respectively.
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FIG. 14. Intensity plots of Fermi-Dirac factor f 19,20
k′,k between

the doped flat band and its nearest-neighbor valence band, for
(a) relaxed and (b) rigid tb-MoS2 with θ = 3.5◦ and q = 0.5|�M|.
Upper, middle, and bottom panels represent the intensity of plots at
μ = −0.4 meV, μ = −2.4 meV, and μ = −4.4 meV in (a), and at
μ = −0.5 meV, μ = −2.0 meV, and μ = −4.0 meV in (b).

For the rigid case, the intensity of F 19,20
k′,k increases a lot with a

larger q. For example, the maximum of F 19,20
k′,k for q at 0.5|�M|

is hundreds of times larger than the one at q = 0.0625|�M|,
although the change of the nonzero zone is not so significant
as the relaxed case from q = 0.0625|�M| to 0.5|�M|. As
a result, the interband EL functions shown in Fig. 2(b) and
Fig. 12 can be mainly enhanced by more significant intensity
of F l ′l

k′,k. We remark that the enhanced interband coherence
factor and its more nonzero terms in momenta space could
increase the interband contribution to polarization function,
which leads to the enhanced interband plasmons with a higher
energy.

We have displayed that tuning chemical potentials μ also
changes the interband EL functions a lot, seen in Fig. 6,
through affecting Fermi-Dirac factors f l ′l

k′,k in Eq. (10). The

intensity plots of f 19,20
k′,k at three chemical potentials are shown

in Figs. 14(a) and 14(b) for relaxed and rigid 3.5◦ tb-MoS2, re-
spectively, with q = 0.5|�M|. In both cases, The nonzero area
of f 19,20

k′,k broadens with larger doping levels, showing more
interband transitions over the BZ can contribute to the polar-
ization function and thus enhance the interband EL functions
and interband plasmons in Fig. 6. The enhanced interband
transitions can be easily understood as more holes occupied in
the flat band at a large |μ| leading to more possible electron-
hole interband transitions. The nonzero terms are determined
by the hole-occupied part of the flat band over the BZ. The
boundaries of nonzero f 19,20

k′,k are denoted by the white and
bright spectrum weight (intensity around 0.5) in Figs. 14(a)
and 14(b).
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17037 (2021).

[28] G. Scuri, T. I. Andersen, Y. Zhou, D. S. Wild, J. Sung, R. J.
Gelly, D. Berube, H. Heo, L. Shao, A. Y. Joe, A. M. Mier
Valdivia, T. Taniguchi, K. Watanabe, M. Loncar, P. Kim, M. D.
Lukin, and H. Park, Phys. Rev. Lett. 124, 217403 (2020).

[29] C. Schrade and L. Fu, arXiv:2110.10172.
[30] M. M. Scherer, D. M. Kennes, and L. Classen,

arXiv:2108.11406.
[31] M. Biderang, M.-H. Zare, and J. Sirker, Phys. Rev. B 105,

064504 (2022).
[32] A. Scholz, T. Stauber, and J. Schliemann, Phys. Rev. B 88,

035135 (2013).
[33] K. Kechedzhi and D. S. L. Abergel, Phys. Rev. B 89, 235420

(2014).
[34] R. E. Groenewald, M. Rösner, G. Schönhoff, S. Haas, and T. O.

Wehling, Phys. Rev. B 93, 205145 (2016).
[35] Y. M. Xiao, W. Xu, F. M. Peeters, and B. Van Duppen,

Phys. Rev. B 96, 085405 (2017).
[36] R. Petersen, T. G. Pedersen, and F. J. García de Abajo,

Phys. Rev. B 96, 205430 (2017).
[37] U. Celano and N. MacCaferri, Nano Lett. 19, 7549 (2019).
[38] Z. Torbatian and R. Asgari, J. Phys.: Condens. Matter 29,

465701 (2017).
[39] H. C. Nerl, K. T. Winther, F. S. Hage, K. S. Thygesen, L.

Houben, C. Backes, J. N. Coleman, Q. M. Ramasse, and V.
Nicolosi, npj 2D Mater. Appl. 1, 2 (2017).

[40] E. Moynihan, S. Rost, E. O’Connell, Q. Ramasse, C. Friedrich,
and U. Bangert, J. Microsc. 279, 256 (2020).

[41] K. Andersen, K. W. Jacobsen, and K. S. Thygesen, Phys. Rev.
B 90, 161410(R) (2014).

[42] F. Karimi, S. Soleimanikahnoj, and I. Knezevic, Phys. Rev. B
103, L161401 (2021).

[43] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418
(2007).

[44] T. Low, F. Guinea, H. Yan, F. Xia, and P. Avouris, Phys. Rev.
Lett. 112, 116801 (2014).

[45] T. Stauber and H. Kohler, Nano Lett. 16, 6844 (2016).

[46] S. Venkateswarlu, A. Honecker, and G. T. de Laissardière,
Phys. Rev. B 102, 081103(R) (2020).

[47] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, 2005).

[48] S. Yuan, H. De Raedt, and M. I. Katsnelson, Phys. Rev. B 82,
115448 (2010).

[49] S. Yuan, R. Roldán, and M. I. Katsnelson, Phys. Rev. B 84,
035439 (2011).

[50] A. Artaud, L. Magaud, T. Le Quang, V. Guisset, P. David, C.
Chapelier, and J. Coraux, Sci. Rep. 6, 25670 (2016).

[51] L. Huder, A. Artaud, T. Le Quang, G. T. de Laissardiere,
A. G. M. Jansen, G. Lapertot, C. Chapelier, and V. T. Renard,
Phys. Rev. Lett. 120, 156405 (2018).

[52] S. Plimpton, Comput. Mater. Sci. 4, 361 (1995).
[53] J.-W. Jiang, Nanotechnology 26, 315706 (2015).
[54] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and

W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).
[55] S. Fang, R. Kuate Defo, S. N. Shirodkar, S. Lieu, G. A. Tritsaris,

and E. Kaxiras, Phys. Rev. B 92, 205108 (2015).
[56] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498

(1954).
[57] H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F. Guinea,

Phys. Rev. B 92, 195402 (2015).
[58] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[59] H. Shi, Z. Zhan, Z. Qi, K. Huang, E. van Veen, J. Á. Silva-

Guillén, R. Zhang, P. Li, K. Xie, H. Ji et al., Nat. Commun. 11,
371 (2020).

[60] G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson, and S. Yuan,
npj Comput. Mater. 5, 122 (2019).

[61] A. Hams and H. De Raedt, Phys. Rev. E 62, 4365 (2000).
[62] A. Laturia, M. L. Van de Put, and W. G. Vandenberghe, npj 2D

Mater. Appl. 2, 6 (2018).
[63] K. Khaliji, T. Stauber, and T. Low, Phys. Rev. B 102, 125408

(2020).
[64] F. H. da Jornada, L. Xian, A. Rubio, and S. G. Louie,

Nat. Commun. 11, 1013 (2020).
[65] M. N. Faraggi, A. Arnau, and V. M. Silkin, Phys. Rev. B 86,

035115 (2012).
[66] K. Andersen and K. S. Thygesen, Phys. Rev. B 88, 155128

(2013).
[67] M. Angeli and A. H. MacDonald, Proc. Natl. Acad. Sci. USA

118, e2021826118 (2021).
[68] M. Mannaï and S. Haddad, Phys. Rev. B 103, L201112 (2021).

245415-13

https://doi.org/10.1038/s41563-020-00873-5
https://doi.org/10.1038/s41598-021-95700-5
https://doi.org/10.1103/PhysRevLett.124.217403
http://arxiv.org/abs/arXiv:2110.10172
http://arxiv.org/abs/arXiv:2108.11406
https://doi.org/10.1103/PhysRevB.105.064504
https://doi.org/10.1103/PhysRevB.88.035135
https://doi.org/10.1103/PhysRevB.89.235420
https://doi.org/10.1103/PhysRevB.93.205145
https://doi.org/10.1103/PhysRevB.96.085405
https://doi.org/10.1103/PhysRevB.96.205430
https://doi.org/10.1021/acs.nanolett.9b04349
https://doi.org/10.1088/1361-648X/aa86b9
https://doi.org/10.1038/s41699-017-0003-9
https://doi.org/10.1111/jmi.12900
https://doi.org/10.1103/PhysRevB.90.161410
https://doi.org/10.1103/PhysRevB.103.L161401
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevLett.112.116801
https://doi.org/10.1021/acs.nanolett.6b02587
https://doi.org/10.1103/PhysRevB.102.081103
https://doi.org/10.1103/PhysRevB.82.115448
https://doi.org/10.1103/PhysRevB.84.035439
https://doi.org/10.1038/srep25670
https://doi.org/10.1103/PhysRevLett.120.156405
https://doi.org/10.1016/0927-0256(95)00037-1
https://doi.org/10.1088/0957-4484/26/31/315706
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1103/PhysRevB.92.205108
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRevB.92.195402
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1038/s41467-019-14207-w
https://doi.org/10.1038/s41524-019-0258-0
https://doi.org/10.1103/PhysRevE.62.4365
https://doi.org/10.1038/s41699-018-0050-x
https://doi.org/10.1103/PhysRevB.102.125408
https://doi.org/10.1038/s41467-020-14826-8
https://doi.org/10.1103/PhysRevB.86.035115
https://doi.org/10.1103/PhysRevB.88.155128
https://doi.org/10.1073/pnas.2021826118
https://doi.org/10.1103/PhysRevB.103.L201112

