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Magic angle and plasmon mode engineering in twisted trilayer graphene with pressure
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Recent experimental and theoretical investigations demonstrate that twisted trilayer graphene (tTLG) is a
highly tunable platform to study the correlated insulating states, ferromagnetism, and superconducting proper-
ties. Here we explore the possibility of tuning electronic correlations of the tTLG via a vertical pressure. A full
tight-binding model is used to accurately describe the pressure-dependent interlayer interactions. Our results
show that pressure can push a relatively larger twist angle (for instance, 1.89◦) tTLG to reach the flat-band
regime. Next, we obtain the relationship between the pressure-induced magic angle value and the critical
pressure. These critical pressure values are almost half of that needed in the case of twisted bilayer graphene.
Then, plasmonic properties are further investigated in the flat-band tTLG with both zero-pressure magic angle
and pressure-induced magic angle. Two plasmonic modes are detected in these two kinds of flat-band samples.
By comparison, one is a high energy damping-free plasmon mode that shows similar behavior, and the other
is a low energy plasmon mode (flat-band plasmon) that shows obvious differences. The flat-band plasmon is
contributed by both interband and intraband transitions of flat bands, and its divergence is due to the various shape
of the flat bands in tTLG with zero-pressure and pressure-induced magic angles. This may provide an efficient
way of tuning between regimes with strong and weak electronic interactions in one sample and overcoming the
technical requirement of precise control of the twist angle in the study of correlated physics.
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I. INTRODUCTION

Twisted bilayer graphene (tBG) with a “magic angle” (�
1.1◦) has gained extensive attention since the discovery of
gate-tunable unconventional superconductivity and strongly
correlated insulating phases, which are due to the presence
of ultraflat bands near the Fermi level [1,2]. Recently, exper-
imental and theoretical investigations have been shown that
twisted trilayer graphene (tTLG) has a better tunability of
its superconducting phases than the twisted bilayer graphene,
which makes it a good platform to study the correlated prop-
erties [3–10]. Plenty of degrees of freedom, for instance, the
twist angle, stacking configurations, external electric field,
and interlayer separation, are available to tune the electronic
properties of the tTLG. In particular, the interlayer coupling
strength can be precisely controlled by the external vertical
pressure.

Previous studies of the pressure effect are mainly fo-
cused on bilayer cases. It has been studied experimentally
that the hydrostatic pressure can tune the interlayer coupling
and hence the band structure of graphene moiré superlattices
[11,12]. Interestingly, for twisted bilayer graphene with a
moderate twist angle that shows relatively weak correlation
under ambient pressure, an appropriate hydrostatic pressure
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induces robust insulating phases and superconductivity with
higher Tc than that in the zero-pressure magic-angle case
[13,14]. Theoretically, vertical pressure can be used to achieve
the ultraflat bands in twisted bilayer graphene with arbitrary
twist angles [15–19]. Consequently, when studying the strong
correlation, we can reduce the impact of structural inhomo-
geneity by using a moiré pattern with a short wavelength.
However, the vertical pressure effects on the electronic prop-
erties of twisted trilayer graphene have not been explored yet.
Furthermore, it remains unclear if the flat bands tuned by the
vertical pressure has similarly peculiar properties as that of
the tTLG with the zero-pressure magic angle.

Recently, plasmons were detected by utilizing a scattering-
type scanning near-field optical microscope (s-SNOM) in tBG
with 1.35◦ [20]. Different from the monolayer graphene which
displays damped plasmons, tBG with the magic angle has
collective modes that are damping free. The flat-band plasmon
modes are ultraflat over the whole wave vector, and with the
energy determined by the band width of the flat bands. Such
different electronic response to various band widths can be
used to identify the magic angle in samples that far beyond the
ability of the first-principles methods. Moreover, it has been
theoretically predicted that unconventional superconductivity
in tBG is mediated by the purely collective electronic modes
[21,22]. A deep understanding of the collective excitations
in flat-band materials, for instance, the tTLG with the zero-
pressure magic angle and with the pressure-induced “magic
angle,” may shed light on the plasmonic superconductivity.
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FIG. 1. (a) The upper panel shows the top view of the atomic configuration of tTLG-AÃA-6.01◦. High-symmetry stacking regions of AAA,
ABA, BAB are marked by black, red, and blue circles, respectively. The lower panel shows a schematic representation of these high-symmetry
stacking patterns. The number 6.01 stands for the twist angle θ = 6.01◦. (b) The out-of-plane displacement of relaxed tTLG-AÃA-1.35◦

without pressure, relaxed tTLG-AÃA-1.89◦ without and with 4 GPa vertical pressure, respectively. (c) Band structure and density of states of
relaxed tTLG-AÃA-1.35◦ under ambient pressure. (d) and (e) Band structure and density of states of relaxed tTLG-AÃA-1.89◦ without and
with 4 GPa vertical pressure, respectively.

Up to now, flat bands are detected in several graphene moiré
superlattices, for example, tBG with the magic angle [1,2],
tBG under moderate pressure [11,12], tTLG with the magic
angle [3–10,23], trilayer graphene boron-nitride moiré super-
lattices [24], and so on. Natural questions are whether these
flat-band materials display similar plasmon excitations and
the collective modes have similar mechanisms. All in all, a
systematic investigation of the collective plasmon modes in
graphene moiré superlattices with flat bands is demanding.

In this paper, we study the pressure effects on the elec-
tronic properties of tTLG by means of a full tight-binding
(TB) model. We find that an experimental accessible verti-
cal pressure (with the value almost half of that in the tBG
cases) can push a large twist angle system to reach the flat-
band regime [13,15,25]. Then, the plasmonic properties of the
flat-band materials are investigated by utilizing the Lindhard
function. We observe distinct collective plasmon modes in the
tTLG with zero-pressure and pressure-induced magic angles.
The outline of the paper is as follows: In Sec. II, the TB
model and the computational methods are introduced, then
followed by the response of the band width and band gap
of tTLG-AÃA-1.89◦ to the vertical pressure. In Sec. IV, we
compare the plasmonic properties of the flat-band twisted
multilayer graphene, in particular, of tTLG-AÃA with the

zero-pressure magic angle and pressure-induced magic angle.
Finally, we give a summary and discussion of our work.

II. NUMERICAL METHODS

The moiré supercell of twisted trilayer graphene is con-
structed by identifying a common periodicity between the
three layers [26]. Generally, the electronic properties of the
tTLG vary with different stacking configurations [27]. In this
paper, we only focus on a mirror-symmetric structure, the
so-called tTLG-AÃA, which starts with a AAA stacking (θ =
0◦) and with the middle layer twisted an angle θ with respect
to both the top and bottom layers. The rotation origin is
chosen at an atom site. As shown in Fig. 1(a), the supercell is
composed of various high-symmetry stacking patterns, that is,
the AAA, ABA, and BAB stackings. Furthermore, the lattice
relaxation (both the out-of-plane and in-plane) is considered
by utilizing the semiclassical simulation package LAMMPS in
all calculations [28]. The intralayer and interlayer interactions
of twisted trilayer graphene are simulated with the LCBOP
[29] and Kolmogorov-Crespi potential [30], respectively.

The electronic properties of the tTLG are obtained by
using a full tight-binding model based on pz orbitals. The
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Hamiltonian of the system has the form [27]:

H =
∑

i

εi|i〉〈i| +
∑
〈i, j〉

ti j |i〉〈 j|, (1)

where |i〉 is the pz orbital located at ri, εi is the on-site energy
of orbital i, and 〈i, j〉 is the sum over indices i and j with
i �= j. The hopping integral ti j , interaction between sites i and
j, is

ti j = n2Vppσ (ri j ) + (1 − n2)Vppπ (ri j ). (2)

Here ri j = |ri j | is the distance between two sites located at
ri and r j , n is the direction cosine of ri j along the direction
ez that is perpendicular to the graphene layer. The Slater and
Koster parameters Vppσ and Vppπ are expressed as distance-
dependent functions [26]:

Vppπ (ri j ) = −γ0e2.218(b0−ri j )Fc(ri j ),

Vppσ (ri j ) = γ1e2.218(h0−ri j )Fc(ri j ), (3)

where b0 = 1.42 Å and h0 = 0.335 Å represent the nearest
carbon-carbon distance and interlayer distance in equilibrium,
respectively. The intralayer and interlayer hopping parameters
γ0 = 3.2 eV and γ1 = 0.48 eV are used in all calculations.
Fc(r) = (1 + e(r−0.265)/5)−1 is a smooth function. All the hop-
pings with ri j � 8.0 Å are considered in the calculations.

To calculate the electronic properties of the tTLG under
a vertical pressure, we extend the hopping parameters in
Eq. (3). It has been proven that the vertical compression has
a negligible influence on the intralayer hopping parameters,
whereas significantly modifying the interlayer hopping pa-
rameters [15,18]. Therefore, we only modify the interlayer
hopping term Vppσ as [18]

Vppσ (ri j ) = γ1e2.218(h−ri j )e−(h−h0 )/λ′
Fc(ri j ), (4)

where λ′ = 0.58 Å, and h is the out-of-plane projection of
ri j . The evolution of the lattice constants with the vertical
pressure in twisted multilayer graphene has been theoretically
investigated, which has the expression as [12,15,31]

Pressure = A(eB(1−h/h0 ) − 1), (5)

with A = 5.73 GPa and B = 9.54. Here, δ = 1 − h/h0 is the
compression.

By direct diagonalization of the Hamiltonian in Eq. (1), we
calculate the band structure of tTLG with different twist an-
gles. Moreover, we use the tight-binding propagation method
in the frame of a full TB model to calculate the density of
states (DOS) as [32]

D(E ) = 1

2πN

N∑
p=1

∫ ∞

−∞
eiEt 〈ϕp(0)|e−Ht |ϕp(0)〉dt, (6)

where |ϕp(0)〉 is one initial state with the random superposi-
tion of basis states at all sites N . To investigate the plasmonic
properties of the twisted trilayer graphene, we obtain first the
dynamical polarization by using the Lindhard function in a
full TB model as [33,34]


(q, ω) = − gs

(2π )2

∫
BZ

d2k
∑
l,l ′

nF (Ekl ) − nF (Ek′l ′ )

Ekl − Ek′l ′ + h̄ω + iδ

×|〈k′l ′ | eiq·r | kl〉|2. (7)

Here, nF (H ) = 1
eβ(H−μ)+1 is the Fermi-Dirac distribution oper-

ator, β = 1
kBT being T the temperature and kB the Boltzmann

constant, and μ is the chemical potential; |kl〉 and Ekl are
the eigenstates and eigenvalues of the TB Hamiltonian in
Eq. (1), respectively, with l being the band index, k′ = k + q,
δ → 0+; the integral is taken over the whole Brillouin zone
(BZ). Then, based on the random phase approximation (RPA),
the dielectric function is given by the formula [34–36],

ε(q, ω) = 1 − V (q)
(q, ω), (8)

where V (q) = 2πe2

k|q| is the Fourier component of the two-
dimensional Coulomb interaction, and κ is the background
dielectric constant. We set κ = 3.03 to simulate the hexag-
onal boron nitride substrate environment in our calculations.
Finally, the energy loss function has the form,

S(q, ω) = −Im(1/ε(q, ω)). (9)

In principle, undamped plasmons with frequency ωp exist if
both Re ε(q, ωp) = 0 and the loss function S(q, ω) is peaked
around ωp with width γ 	 ωp. The loss function can be
directly measured by the s-SNOM in the experiment. As a
consequence, we will mainly focus on the calculation of the
loss function in the paper.

III. EVOLUTION OF BANDS IN TWISTED TRILAYER
GRAPHENE BY PRESSURE

Figure 1(c) shows the band structure and density of states
of relaxed tTLG-AÃA with twist angle θ = 1.35◦ under am-
bient pressure. The band gap (energy difference between the
valence band edge and its higher energy band at the � point of
the Brillouin zone) is about 55.4 meV and the band width (the
energy difference between the � and K points of the valence
band edge) is about 10 meV. Similar to the tBG case, the states
of four nearly flat bands around the Fermi level show strong
localization at the AAA stacking regions. One significant dif-
ference between the tTLG and tBG is the coexistence of the
flat bands with a Dirac cone close to one another only in the
mirror-symmetric tTLG-AÃA [37]. The relative energy of the
Dirac cone with respect to the flat bands is sensitive to the
computational parameters of the TB model [27,37]. Here, the
Dirac cone is below the flat bands about 18.8 meV. Theoret-
ically, one definition of the “magic angle” is the angle where
the Fermi velocity at the K and K′ points of the BZ vanishes.
Another definition is those which lead to the narrowest bands
[38]. In the relaxed tTLG-AÃA cases, the narrowest bands
appear in sample with θ = 1.35◦—the so-called zero-pressure
magic angle. When the twist angle increases to θ = 1.89◦,
as illustrated in Fig. 1(d), the band width is significantly
enlarged and the band gap has a value of 48 meV due to
the reduced interlayer interactions [39]. Moreover, two van
Hove singularities flank the Dirac point. Two different sets of
linear dispersion bands with different Fermi velocities located
at the K point of the BZ. One preserved monolayer band
has Fermi velocity around 9.35 × 105 m/s, and the other has
reduced Fermi velocity around 1.53 × 105 m/s due to the
interlayer interaction. When applying a vertical pressure with
the value of 4 GPa as shown in Fig. 1(e), four nearly flat
bands appear near the Fermi level, which can be attributed
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to pressure-enhanced interlayer correlations. The distortion of
the flat bands is different from that of the relaxed tTLG-AÃA
with the zero-pressure magic angle, and the band gap has an
obvious decrease, which is due to the reduced ratio of the
interlayer interactions at the AA and AB regions [37], shown
in Fig. 1(b). We explicitly describe how to relax the tTLG
with pressure. First, we introduce the pressure by decreasing
the interlayer distance of tTLG according to Eq. (5), and
then calculate the force that each atom suffers by using the
LAMMPS package. Secondly, we add the calculated force to
atoms on the top and bottom layers and let the atoms fully
relax to reach their minimum energy in the LAMMPS package.
As illustrated in Fig. 1(b), all the out-of-plane deformations
show a similar relaxation pattern. In both tTLG-AÃA-1.35◦
and tTLG-AÃA-1.89◦ under ambient pressure, atoms in the
AAA regions [black circle in Fig. 1(a)] deform up to 0.14
Å, whereas atoms in the ABA (BAB) region as marked by
red (blue) circle are slightly deformed, and the protected
middle layer has minimum deformation. Moreover, the mir-
ror symmetry of the top and bottom layers still preserves
after relaxation [27]. When applying a 4-GPa pressure to the
tTLG-AÃA-1.89◦, we can see that the deformation of the
AAA regions are suppressed, which results in a reduced band
gap as shown in Fig. 1(e). The LDOS mapping in Figs. 3(e)
and 3(f) shed light on in-plane deformations. That is, the
samples with pressure have larger in-plane displacements than
that under ambient pressure, which is in agreement with the
results in Ref. [18].

Obviously, similar to the method of precisely controlling
the twist angle, pressure is an efficient way of tuning the
tTLG-AÃA into the magic regime. Next, we investigate how
the band structures evolve with the external vertical pressure.
As shown in Fig. 2(a), the band gap and band width vary
nonmonotonically with the pressure, and such tendency is
similar to that of the tBG case [18]. In the rigid sample, the
band gap is zero when the pressure is higher than 3 GPa.
The band width decreases linearly with the pressure growing
up to 2.5 GPa, and then increases linearly after the pressure
goes beyond the turning point 2.5 GPa, whereas the band gap
remains unchanged with the pressure higher than 2.5 GPa.
In the relaxed sample, the critical pressure is around 4 GPa,
where both the band gap and band width reach their minimum
values. That is, for the tTLG-AÃA-1.89◦ under 4-GPa vertical
pressure, the flat-band regime is achieved. Such value of pres-
sure can be achievable experimentally. Recent experimental
progress that makes use of a hydrostatic pressure allowed one
to continually tune the interlayer separation in van der Waals
heterostructures with pressure up to 2.3 GPa [11]. Higher
pressure would be achievable with diamond anvil cells. By
assuming that the interlayer coupling strength has quadratic
dependence on compression and neglecting the momentum
scattering that the twist angle introduces, we can write the
critical value θc(δ) of the magic angle as a function of com-
pression δ as [15]

θc(δ) = θ0[(t2/t0)δ2 − (t1/t0)δ + 1], (10)

where θ0 = 1.35◦ is the magic angle under ambient
pressure, and the numerical parameters are t[0,1,2] =
[1.117, 2.466, 192.496]. From the results in Fig. 2(b), it is
obvious that the pressure needed to induce the flat bands in

FIG. 2. (a) The band width and band gap of tTLG-AÃA-1.89◦

versus the vertical pressure for the rigid and relaxed cases, respec-
tively. The red and blue triangular symbols stand for the band width
and band gap in the relaxed case, respectively. The red and blue star
symbols stand for the band width and band gap in the rigid case,
respectively. (b) Pressure-induced magic angle as a function of the
critical compression. The blue dashed line is for the tTLG case and
the red dashed line is for the tBG case that is extracted from Ref. [15].

tTLG is lower than that in the tBG case. Furthermore, the
pressure-induced magic angle θc = 3◦ could be achievable
when applying a pressure around 10 GPa, where no significant
reconstruction appears.

To understand the pressure effect, we compare the elec-
tronic properties of tTLG-AÃA-1.89◦ with ambient and
critical pressures. We calculate the layer-projection weights
of the band structure of tTLG-AÃA-1.89◦ under ambient and
moderate pressures in Figs. 3(a) and 3(c), separately. First,
let us focus on the conduction and valence band edges. The
middle layer has 50% weight in tTLG-AÃA-1.89◦ under zero
and critical pressures. The weights are always identical in top
and bottom layers, which means that the mirror symmetry is
still maintained under pressure. Next, we investigate the lo-
calization of the states in tTLG-AÃA-1.89◦ with and without
critical pressures. The inverse participation ratio (IPR), which
is defined as

∑N
i=1 |ai|2/(N

∑N
i=1 |ai|4), where ai is the state at

site i and N is the total number of sites, are shown in Figs. 3(b)
and 3(d). After applying a pressure to the tTLG-AÃA-1.89◦
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FIG. 3. The electronic properties of relaxed tTLG-AÃA-1.89◦ under ambient and high pressures. (a) and (c) The layer-projected weights
of band eigenstates of tTLG-AÃA-1.89◦ under ambient and 4 GPa vertical pressures, respectively. The thickness of the lines represent the
weight of band eigenstates. (b) and (d) The band structure and inverse participation ratio (IPR) of the tTLG-AÃA-1.89◦ under ambient and
4 GPa external pressure, respectively. (e) and (f) Calculated local density of states (LDOS) mappings of van Hove singularities near the Fermi
level of tTLG-AÃA-1.89◦ without pressure and with 4 GPa pressure.

sample, the IPR in the conduction and valence band edges
change from 0.5 to 0.1, which means the states become more
localized. Our LDOS mappings in Figs. 3(e) and 3(f) [the
high-symmetry stacking regions are marked by AAA, ABA,
BAB in Fig. 3(e)] further clarify the charge concentration pro-
cess. After applying a vertical pressure, the charges are in the
AAA of the top and bottom layer gathering to the AAA center,
while in the protected middle layer, charges from the ABA and
BAB are concentrating to the center of AAA. The charge dis-
tribution for the tTLG-AÃA-1.89◦ under critical pressure in
Fig. 3(f) is almost the same as magic angle tTLG-AÃA-1.35◦
under ambient pressure [27]. All in all, the vertical pressure
has a similar effect of modifying the electronic properties of
tTLG as that of tuning the twist angle.

IV. PLASMONIC PROPERTIES OF TWISTED TRILAYER
GRAPHENE WITH MAGIC ANGLES

In the previous section, we show that pressure can trigger
the appearance of flat bands in tTLG with twist angles larger
than the zero-pressure magic angle θ = 1.35◦. One question
arises: Will the pressure-induced flat bands show similarly
peculiar properties as those of the zero-pressure flat bands?
To answer the question, we investigate the plasmon modes in
tTLG with magic angles. Generally, when a plasmon mode
with frequency ωp exists, the electron energy loss spectra
possesses a sharp peak at frequency ω = ωp. The loss function
can be obtained theoretically by using Eq. (9). For the relaxed
tTLG-AÃA − 1.35◦, as shown in Fig. 4(a), several collec-
tive plasmon modes with energies between 0.01 and 0.15 eV

appear. Similar to the tBG case [33], a plasmon mode with
energy around 0.15 eV is attributed to the interband transitions
from the valence band near the Fermi level to the conduction
bands located at the energy around 0.15 eV. Two collective
modes appear in the low energy range. One has an energy of
0.01 eV and stretches to large q. Such plasmon comes from
both the interband and intraband transitions of flat bands, and
has a weak dependence on the wave vectors, which is due
to the interband transition between the flat bands and higher
bands [40]. The interband transition between the flat bands
is suppressed by the interband polarization of flat bands with
higher energy bands. This effect is more significant in the
second mode with the energy around 0.027 eV, which only
appears in small q. The second plasmon is contributed only by
the interband transition of flat bands. Such interband polariza-
tion is suppressed in the large q range (results not shown here).
From the imaginary part of the dynamic polarization functions
(−Im(
(q, ω))) plotted in the bottom panel of Fig. 4(a), we
can see clearly that these plasmon modes are free from Landau
damping. The excitons would not exchange energy with other
collective excitations nor have single particle-hole transitions,
which means the plasmon mode near 0.15 eV is a long-lived
plasmon mode.

For the tTLG-AÃA-1.89◦ under critical pressure, a collec-
tive plasmon mode locates at energy 0.15 eV, and from the
dynamic polarization functions [−Im(
(q, ω))] in the bottom
panel, we can see this kind of plasmon behave the same as
the magic angle tTLG-AÃA − 1.35◦ under ambient pressure.
However, only one plasmon mode appears in the low energy
range, which may due to the different shape of the flat bands.
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FIG. 4. Plasmonic properties of relaxed tTLG-AÃA. The figure is organized in columns. In each column, the upper panel shows the loss
function (−Im(1/ε)) and the lower panel shows the imaginary part of the frequency-dependent dynamic polarization function −Im(
(q, ω)).
(a) Result for tTLG-AÃA-1.35◦ under ambient pressure. (b) and (c) Results for tTLG-AÃA-1.89◦ under vertical pressure of 4 GPa and under
ambient pressure, respectively. The wave vectors are along � to M in the first Brillouin zone. The temperature is 1 K and chemical potential is
μ = 0.

Such flat-band plasmon stretches to large wave vector q,
whereas it disperses within particle-hole continuum, as shown
in the bottom panel of Fig. 4(b). This is due to the reduction of
the band gap in the pressure-induced magic angle tTLG. For
the tTLG-AÃA − 1.89◦ under ambient pressure, a collective
plasmon mode exists around 0.05 eV, and this plasmon mode
is a long-lived plasmon mode. The tunable plasmons in Fig. 4
strengthen the finding that a sample with a relatively larger
twist angle can be pushed to the flat-band regime by applying
a vertical pressure, which could be justified in experiments by
s-SNOM [20], electron energy loss spectroscopy [41].

In principle, there are two different ways to identify the
plasmon mode with frequency ωp. One is the energy where
the peak of the loss functions is located, which can be seen
clearly from the loss functions (−Im(1/ε)) in the top panel
of Fig. 4; another way is via identifying the frequencies
at which Re(ε(q, ω)) = 0 [34–36]. In Fig. 5, we plot the
frequency-dependent real part of the dielectric functions with
varied wave vectors. For the tTLG-AÃA-1.35◦ under ambient
pressure, the real part of the dielectric functions crosses zero at
the energy around 0.15 eV. For the low energy one, there exist
dips in the real part of the dielectric functions, and these dips
with varied wave vectors approach but never cross the zero
dashed line. That means the flat-band plasmon is not a genuine
plasmon [42]. Such a low energy plasmon mode can be tuned
to a damping free one by external factors, for instance, an
external electric field. Similarly, for the tTLG-AÃA − 1.89◦
under critical pressure, the high-energy plasmon mode is free
of damping and the low energy flat-band mode damps into
particle-hole continuum. The vertical pressure shifts the en-

ergy of the undamped plasmon in tTLG-AÃA − 1.89◦ from
0.05 to 0.15 eV. Based on the dielectric properties of the
tTLG-AÃA with and without pressure, we found that the ver-
tical pressure can push a larger twist angle to reach the
flat-band regime, and make its dielectric properties similar to
the magic angle tTLG-AÃA − 1.35◦ under ambient pressure.
Furthermore, the pressure-induced plasmon mode has a blue
shift. That is, a collective of plasmon mode with different
energies can be realized continuously by vertical pressure.

V. CONCLUSION

We have systematically investigated the evolution of the
band widths and band gaps of the tTLG-AÃA with an external
pressure. The electronic properties are obtained by employing
a full tight-binding model, and the relaxation effects have
been taken into account by using the LAMMPS package to fully
relax the sample. When applying a vertical pressure with the
value around 4 GPa, tTLG-AÃA-1.89◦ reach the flat-band
regime; both the band gap and band width approach their
minimum values. Based on the layer-projected band structure
and the LDOS mapping, we found that the appearance of the
pressure-induced flat bands is due to the charge concentration
in each layer as a result of the enhanced interlayer correla-
tions. Note that the distortion of the flat bands is different
from that of the zero-pressure magic angle case due to distinct
atomic relaxations. The dielectric and plasmonic properties
further strengthen our finding that a relatively larger twist
angle can be pushed to reach the flat-band regime by ver-
tical pressure. Two plasmonic modes are predicted in tTLG
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FIG. 5. (a) The real part of the frequency-dependent dielectric function of the relaxed tTLG-AÃA-1.35◦ under ambient pressure. (b) and
(c) The real part of the frequency-dependent dielectric function of relaxed tTLG-AÃA-1.89◦ under 4 GPa and ambient vertical pressures,
respectively. The red dashed line indicates the zero of the real part of the dielectric function.

with zero-pressure and pressure-induced magic angles. For
the high energy long-lived plasmon, the pressure-induced high
energy plasmon mode is almost the same as that with the
zero-pressure magic angle. However, the low energy plasmon
mode has obvious divergence, which is probably due to the
different shapes of the flat bands in these two kinds of magic
angle samples. Recent theory predicts that unconventional
superconductivity in TBG is mediated by the purely collective
electronic modes [21,22]. This may provide a platform to
justify the prediction. Furthermore, we may observe a much
higher superconducting Tc in the tTLG with the large pressure-
induced magic angle [37]. Last but not least, zero-energy
high-order van Hove singularity (VHS) has recently emerged
as a fascinating playground to study correlated and exotic su-
perconducting phases [4,43,44]. Such high-order VHS can be
achieved by tuning the band structure with a single parameter
in moiré superlattice, for instance, the twist angle, external

pressure, heterostrain, and external electric field. It will be
worth exploring if a high-order VHS could be induced in
tTLG by applying a vertical pressure, which will be our future
work.
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