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In the emerging world of twisted bilayer structures, the possible configurations are limitless, which enables a
rich landscape of electronic properties. In this paper, we focus on twisted bilayer transition metal dichalcogenides
(TMDCs) and study their properties by means of an accurate tight-binding model. We build structures with
different angles and find that the so-called flat bands emerge when the twist angle is sufficiently tiny (smaller
than 7.3◦). Interestingly, the band gap can be tuned up to 5% (107 meV) when the twist angle in the relaxed
sample varies from 21.8◦ to 0◦. Furthermore, when looking at the local density of states we find that the band
gap varies locally along the moiré pattern due to the change in the coupling between layers at different sites.
Finally, we also find that the system can suffer a transition from a semiconductor to a metal when a sufficiently
strong electric field is applied. Our study can serve as a guide for the practical engineering of TMDC-based
optoelectronic devices.
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I. INTRODUCTION

Although graphene has been known for some time now
[1], recently, there has been renewed interest in the properties
of bilayer structures due to the discovery of strongly corre-
lated effects in these structures at certain small (magic) twist
angles [2]. This finding triggered a handful of experimental
and theoretical studies into that kinds of structures in which
not only strongly correlated effects such as superconductivity
and quantum phase transitions [3–13] but also the existence
of pseudomagnetic fields due to the strain that the system can
experience by externally applying a mechanical strain [14,15]
or due to intrinsic strain that appears in the moiré pattern
because of the incommensurability of the superstructures [16]
can occur.

Similar to graphene, group V-B transition metal dichalco-
genides (TMDCs) are exfoliated materials that have a
hexagonal structure and also change their electronic proper-
ties dramatically when lowering the number of layers to one.
Interestingly, in contrast to graphene, TMDCs are semicon-
ductors, and moreover, the nature of the band gap depends on
the number of layers changing from indirect to direct when
the system goes from multilayer to monolayer [17]. The fact
that monolayer TMDCs present a direct band gap overcomes
one of the major drawbacks of graphene for its integration in
modern electronic and optoelectronic devices. Furthermore,
this band gap can be tuned by means of the so-called strain-
tronics [18] methods or electric fields. Therefore, it seems like
a natural and interesting step to study the electronic proper-
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ties of twisted bilayer TMDCs. Recently, a theoretical work
using density functional theory (DFT) methods predicted the
existence of flat bands in MoS2 when the twist angle is suf-
ficiently small [19]. Furthermore, an experimental work was
carried out on another twisted bilayer TMDCs, WSe2, that
found such flat bands when achieving small twist angles [20].
Interestingly, it has been shown that the different environment
surrounding the atoms due to the change in the stacking along
the moiré pattern in heterobilayer TMDCs (a structure formed
by a different TMDCs in each layer) entails a difference in
the interlayer coupling, which results in a local change in
the gap [21]. Nevertheless, a thorough study of the electronic
properties and their possible tunability of the twisted bilayer
TMDCs is still lacking.

In this work, we study the electronic properties of twisted
bilayer MoS2 and the possibility of tuning the band gap. This
paper is organized in the following way: We first show how
to build the commensurate twisted bilayer TMDCs and the
method used to compute their electronic properties. Then, we
study the tunability of these properties by means of a change
in the rotation angle by the variation of the local interlayer
couplings due to the different stackings in the moiré pattern
or by applying an electric field to the system.

II. THE COMMENSURATE BILAYERS

We consider bilayer TMDCs, which are composed of two
monolayers of MoS2 rotated in the plane by an angle θ . Since
the two layers have the same lattice constant, following the
same method as in twisted bilayer graphene, the moiré super-
cell can be constructed by identifying a common periodicity
between the two layers [5]. We start with the 2H stacking
(θ = 0◦) of MoS2, that is, with the Mo (S) atom in the top
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FIG. 1. (a) The moiré superlattice of twisted bilayer MoS2 with
rotation angle θ = 3.5◦. (b) Zoom around the atomic structures of
different high-symmetry points. The AB, BMo/Mo, BS/S, and Br re-
gions are highlighted by circles of different colors.

layer directly above the S (Mo) in the bottom layer, and choose
the rotation origin (O) at an atom site. For the top layer, we
define a supercell with a basis vector V1(n, m) = na1 + ma2,
where a1 and a2 are the lattice vectors of single-layer MoS2

and n and m are non-negative integers with n − m = 1, which
means that the supercell contains only one moiré pattern. For
the bottom layer, a cell with the same size and rotated by
an angle θ can be obtained with the basis vector V′

1(m, n).
Then, the commensurate bilayers with the twist angle θ can
be achieved by rotating the top cell with V1 by θ/2 and ro-
tating the bottom cell with V′

1 by −θ/2. The rotation angle is
given by

cos θ = n2 + 4nm + m2

2(n2 + nm + m2)
. (1)

The commensurate supercell contains N = 6(n2 + nm + m2)
atoms, and the lattice vectors are V1 and V2 = −ma1 + (n +
m)a2, with |V1| = |V2| = a

2 sin(θ/2) , where a = 3.16 Å is the
lattice constant of the single-layer MoS2 [22]. Figure 1(a)
shows a twisted bilayer MoS2 structure with a twist angle
θ = 3.5◦, which is obtained with n = 10 and m = 9. The
moiré superlattice contains 1626 atoms. In a supercell with
a relatively small twist angle there are several high-symmetry
stacking patterns, for instance, AB, BMo/Mo, and BS/S. In the
AB stacking, the Mo atoms of layer 1 are over the S atoms of
layer 2, and the S atoms of layer 1 are over the Mo atoms of
layer 2. For BMo/Mo, Mo atoms of layer 1 are over Mo atoms
of layer 2, and all S atoms of one layer are located in the center
of hexagons of the other layer. For BS/S, S atoms of layer 1 are
over S atoms of layer 2, and all Mo atoms of one layer are in

the center of hexagons of the other layer. The Br site is located
at one third of the BS/S–AB path. All of these special sites are
illustrated in Fig. 1(b).

III. NUMERICAL METHOD

Ultraflat bands at the valence band edge were discovered
theoretically in twisted bilayer MoS2 [19,23,24]. Up to now,
the largest system of this kind of calculation using first-
principles methods contained 4902 atoms, which corresponds
to a twist angle of 2.0◦. Although it is possible to perform
calculations on larger systems, there are some limitations due
to the computational resources when the twist angle becomes
smaller since the number of atoms increases sharply. A sys-
tematic study of these larger systems can be more easily done
by utilizing a tight-binding method. For instance, the system
with the electronic properties calculated by diagonalization
in reciprocal space contains up to 59 644 orbitals, which
corresponds to θ = 1◦.

In this paper, we will use another approach, the tight-
binding propagation method (TBPM), to investigate the
electronic properties of twisted bilayer MoS2. The TBPM
is based on the numerical solution of the time-dependent
Schrödinger equation without any diagonalization [25]. Both
memory and CPU costs scale linearly with the system size.
Therefore, the TBPM can tackle systems with the number of
orbitals being as large as 10 million, for instance, extremely
tiny twist angles in twisted bilayer graphene [16] and bilayer
graphene quasicrystals [26]. More importantly, defects and
magnetic and electric fields can be easily implemented in this
approach. We briefly outline the main formalism of using the
TBPM to calculate the density of the states (DOS). TBPM
starts with a random superposition of basis function |φ0〉 =∑

ci|ai〉, where ci are random complex numbers and |ai〉 are
basis states of the calculated sample. Then, by solving the
time-dependent Schrödinger equation, the DOS is obtained
from the Fourier transform of the time-dependent correlation
function: d (ε) = 1

2π

∫ +∞
−∞ eiετ 〈φ0|e−iHτ/h̄|φ0〉dτ , where H is

the Hamiltonian of the system. In this method, the accuracy
is determined by the number of orbitals in the sample and
can be increased by using larger samples or averaging results
from different random initial states. The number of time inte-
gration steps determines the energy resolution. The larger the
system is, the more accurate the calculated results are. Such a
method was implemented in our home-made program TIPSI

(tight-binding propagation simulator), where the density of
the states, local density of states, quasieigenstates, and many
other electronic and optical properties can be easily obtained
once the Hamiltonian of the system is given.

In order to calculate the electronic band structures of
twisted bilayer TMDCs, we use the accurate tight-binding
Hamiltonian introduced in Ref. [27]. The minimum atomic
orbital bases to correctly describe monolayer TMDCs are the
five d orbitals of the transition-metal atom and three p orbitals
of each of the two chalcogen atoms [28,29]. This model well
reproduces the band structure calculated using DFT with GW
quasiparticle correction in the low-energy region. For bilayer
TMDCs, the total Hamiltonian can be written as [27,30]

Ĥ = Ĥ (1L)
1 + Ĥ (1L)

2 + Ĥ (2L)
int , (2)
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where Ĥ (1L)
1(2) is the 11-orbital single-layer Hamiltonian and

Ĥ (2L)
int is the interlayer Hamiltonian. Ĥ (1L)

1(2) contains the on-
site energy, the hopping terms between orbitals of the same
type at first-neighbor positions, and the hopping terms be-
tween orbitals of different types at first- and second-neighbor
positions. The interlayer hopping Hamiltonian includes only
the interaction between the chalcogen atoms at the interface of
the bilayer:

Ĥ2L
int =

∑
p′

i,r2,p j ,r1

φ̂
†
2,p′

i
(r2)t (LL)

p′
i,p j

(r2 − r1)φ̂1,p j (r1)

+ H.c., (3)

where φ̂i,p j is the p j orbital basis of the ith monolayer. Within
the Slater-Koster approximation, the hopping terms can be
expressed as

t (LL)
p′

i,p j
(r) = [Vpp,σ (r) − Vpp,π (r)]

rir j

r2
+ Vpp,π (r)δi, j, (4)

where r = |r| and the distance-dependent Slater-Koster pa-
rameter is

Vpp,b = νbe[−(r/Rb)ηb ], (5)

where b = σ, π , νb, Rb, and ηb are constant values that de-
pend on the specific chalcogen interlayer interactions, for
which values are taken from Ref. [27]. In our calculations,
we include only the interlayer hopping terms between a pair
of chalcogen atoms that are separated by a distance smaller
than 8 Å.

In all the calculations, we use a large enough system with
more than 10 million orbitals to ensure the convergence of the
results. For instance, the number of orbitals in the unit cell of
twisted bilayer MoS2 with θ = 2.0◦ is 17 974. To perform the
calculation with the TBPM, we use a large sample containing
31 × 31 unit cells. The time steps are set to 4096, which
gives an energy resolution of 1.8 meV. Periodic boundary
conditions are used in the simulation. Furthermore, we can use
TBPM to obtain the map of the amplitudes of the quasieigen-
states, which has been shown to be in agreement with the
measured dI/dV mapping in experiments (for instance, the
results in Ref. [16]). Note that the band structure calculations
in Sec. IV C are performed by standard diagonalization of the
Hamiltonian in Eq. (2).

IV. Results and Discussion

A. Tuning the band gap by rotation angle

It has been proven that the twist angle has significant in-
fluence on the electronic properties of twisted bilayer TMDCs
[31–35]. All these studies were mainly focused on large rota-
tion angles. Interestingly, ultraflat bands have been detected
in low-angle twisted bilayer MoS2. These flat bands pro-
vide a good platform to explore new physical phenomena,
for instance, the Mott-insulating phase at half filling of the
band [2,19]. This leaves important questions unaddressed:
Are there ultraflat bands in twisted TMDCs with a tiny twist
angle? What exotic features will be found in low-angle twisted
bilayer TMDCs?

In this part, we study the density of states of twisted bilayer
MoS2 with various rotation angles. The smallest rotation angle
that we calculate is 0.8◦, which results in a moiré pattern
that contains 29 526 atoms (108 262 orbitals). It is far be-
yond the ability of state-of-the-art first-principles methods
and tight-binding methods where the electronic structure is
calculated by using diagonalization methods. The DOS of
rigidly twisted bilayer MoS2 with angles changing from 0◦
to 21.8◦ is plotted in Fig. 2(a). It is clear that the DOS varies
significantly depending on the angle, especially for the DOS
deep in the valence band, which is in good agreement with
the calculated results in Ref. [36]. More interesting things
happen near the band edges. In order to investigate this, the
detailed evolution of DOS near the band edge is illustrated
in Figs. 2(b) and 2(c). We see clearly that, except for the 0◦
angle that corresponds to the 2H stacking, as the twist angle
decreases, the conduction band edge energy decreases, and the
energy gap decreases. That is, the band gap can be engineered
through the control of the rotation angle. As shown in Fig. 3
(black line), the band gap reduces by 104 meV (around 5%
change) when changing the rotation angle from 21.8◦ to 0.8◦.
Note that, for samples with small twist angles, some energy
peaks appearing near the valence band edges correspond to
the detected ultraflat bands. For instance, in the DOS of the
twisted bilayer MoS2 with twist angle θ = 3.5◦, the peak lo-
cated at −0.2 eV corresponds to the ultraflat band discovered
in Refs. [19,37]. In principle, for rigidly twisted MoS2 with
rotation angles below a crossover value θ∗ ≈ 7◦, the isolated
flat band emerges, and the states of the flat band in the va-
lence band maximum (VBM) are localized in the BS/S region

FIG. 2. (a) The calculated DOS of rigidly twisted bilayer MoS2 with different twist angles. (b) and (c) The detailed changes in the DOS
near the valence and conduction band extrema, respectively.
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FIG. 3. The band gap Eg between the CBM and VBM of twisted
bilayer MoS2 with different rotation angles. The black and red lines
are for unrelaxed and relaxed cases, respectively.

(see Sec. IV B). This result is consistent with reported exper-
imental and DFT results [19,20].

Next, we investigate the influence of the lattice relaxation
on the band gap of twisted bilayer MoS2 with various ro-
tation angles. The structural relaxations are performed with
the LAMMPS [38,39] package, in which the Stillinger-Weber
potential [40] for interactions between atoms within the layer
and the Lennard-Jones potential [41] for interlayer inter-
actions are implemented. The minimizations are performed
using the conjugate gradient method with the energy tolerance
being 10−15 eV. The relaxed sample is assumed to keep the
period of the rigidly twisted MoS2. The lattice relaxation
leads to the variation of the interatomic bond lengths, which
modifies both the interlayer and intralayer hoppings in Eq. (2).
The interlayer hopping changes according to Eq. (5), and the
distance-dependent intralayer hopping can be written as [42]

t intra
i j,μν (ri j ) = t intra

i j,μν

(
r0

i j

)(
1 − �i j,μν

∣∣ri j − r0
i j

∣∣∣∣r0
i j

∣∣
)

, (6)

where t intra
i j,μν is the intralayer hopping between the μ orbital

of the ith atom and ν orbital of the jth atom, r0
i j and ri j

are the distance between the ith and jth atoms in the equi-
librium and relaxed cases, and �i j,μν is the dimensionless
bond-resolved local electron-phonon coupling. We assume
that �i j,μν = 3, 4, 5 for the S-S pp, S-Mo pd , and Mo-Mo
dd hybridizations, respectively [42]. As we can see from the
red line in Fig. 3, the minimum band gap appears at the
twisted MoS2 with θ = 7.3◦. The band gap declines 108 meV
from θ = 0◦ to 7.3◦. Moreover, the lattice relaxation increases
the band gap for all the twisted samples. In the tiny twist
angle, the reduction of the band gap is compensated by the
lattice relaxation. As we know, the relaxation effect is more
significant in samples with a small rotation angle. So we can
see from the red line in Fig. 3 that the band gap changes more
smoothly in the tiny twist angles. Such a relaxation effect can
be suppressed when placing the sample on a hexagonal BN
substrate [43,44].
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FIG. 4. (a) The calculated LDOS in the AB, BMo/Mo, BS/S, and
Br regions in a rigidly twisted bilayer MoS2 sample with θ = 3.5◦.
(b) The logarithmic scales of the LDOS near the valence and con-
duction band edges.

B. Tuning the band gap by interlayer coupling at different
high-symmetry stacking points

It has been shown experimentally that, for heterostructures
composed of monolayers of two different TMDCs, the local
band gap is periodically modulated by the interlayer cou-
pling at different high-symmetry points with an amplitude
of ∼0.15 eV [21]. Can the interlayer coupling be used as a
parameter to tune the local band gap for the twisted homo-
bilayer TMDCs (the heterostructure composed of the same
monolayer TMDCs)? To answer this question, we calculate
the local density of states for the twisted bilayer MoS2 with
θ = 3.5◦ at the high-symmetry stacking points AB, BMo/Mo,
BS/S, and Br (illustrated in Fig. 1).

The results are shown in Fig. 4(a). Similar to the DOS in
Fig. 2, the interlayer coupling changes also significantly the
local DOS (LDOS) deep into the valence band. The details
of the LDOS near the VBM and conduction band minimum
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FIG. 5. The local band gap Eg of the AB, BMo/Mo, BS/S, and Br
regions in twisted bilayer MoS2 with θ = 3.5◦. The black and red
lines are for the rigid and relaxed cases, respectively.

(CBM) are plotted in Fig. 4(b). In the conduction band, the
LDOSs near the band edge are similar for the four high-
symmetry sites. On the contrary, the VBM has a remarkable
change due to the different interlayer couplings at the four
points, which can be seen more clearly in the logarithm of
the LDOS illustrated in Fig. 4(b). Furthermore, we find in
Fig. 4 that the ultraflat-band signature, which corresponds to a
peak with energy ∼ − 0.2 eV, appears only at the BS/S and
Br points. We can also see that the sharpest peak appears
in BS/S sites. This is expected since at this position the top
layer S atom sits directly above a bottom layer S atom, which
gives the strongest interlayer interaction, given the fact that in
our tight-binding model, interlayer coupling originates from
hopping between S atoms in different layers. The absence
of signals of the flat band in other areas indicates that the
localization of the electronic states of the flat band is around
the BS/S site, which is in accordance with the localization
of the VBM wave function in the rigidly twisted sample in
Ref. [19]. The local energy gap in different stacking regions
is shown by the black line in Fig. 5. We can see how the
band gap changes locally depending on the specific site. At
BS/S, which has the strongest interlayer coupling, we find the
minimum local energy gap. The local band gap is modulated
periodically with an amplitude of ∼35 meV. The evolution
of such a site-dependent local band gap is in agreement with
the experimental results reported for heterostructure TMDCs
[21]. In the relaxed case, as shown by the red line in Fig. 5,
the minimum band gap is still located in the BS/S region,
and the difference of the band gap at different high-symmetry
points is ∼31 meV. All in all, an important consequence of
the interlayer coupling in the moiré supercell is the tuning the
local band gap at different stacking points.

The periodic variation of the local electronic structure as
a consequence of different interlayer couplings is also vi-
sualized more clearly by looking at the energy dependence
of the spatial distribution of the LDOS plotted in Fig. 6. In
the rigid cases, for instance, at a high negative energy of
−2.06 eV, where a peak appears in the LDOS of the AA site,
the spectrum at that same position is higher than that of the
other three high-symmetry points. However, at an energy of
around −0.2 eV, where the spectral feature of the AA site
is out of the tunneling range, the intensity of the AA site

(a)

(b)

FIG. 6. Calculated LDOS mapping with different energies of the
twisted bilayer MoS2 with θ = 3.5◦ for the (a) rigid and (b) relaxed
cases. The corresponding energies and the four special sites, AB,
BMo/Mo, BS/S and Br, are labeled in each image.

changes from a bright feature to a deep hole, whereas the BS/S

and Br sites have the highest spectral at energies −0.226 and
−0.204 eV, respectively. As we discussed previously, all the
states are localized around the BS/S site at −0.2 eV. The con-
tinuous evolution of the local electronic spectrum by different
energies at different sites also occurs for positive energies (not
shown here). For the relaxed sample, as shown in Fig. 6(b),
the first flat band (−0.032 eV) in the VBM is mainly located
at the AB site. The variation of the local electronic spectra
at different sites also exists. However, the lattice relaxation
weakens such variation. All in all, all these results show a
periodic charge density modulation at different energies over
large areas in both rigid and relaxed cases, which can be
detected experimentally using scanning tunneling microscopy
dI/dV mapping.

C. Tuning the band gap by applying an electric field

As has been shown, a vertical electric field can open a band
gap in bilayer graphene [45,46]. Furthermore, bilayer TMDCs
can suffer a transition from a semiconductor to a metal when
the applied field is strong enough [47–49]. However, to date
the effect of the electric field and the possible modulation
of the band gap in small-angle twisted TMDCs has not been
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FIG. 7. Band structure of rigidly twisted bilayer MoS2 with θ = 3.5◦ along the �-K-M-� direction in reciprocal space as a function of the
applied external electric field. The band structures are obtained by exact diagonalization of the Hamiltonian in Eq. (2). Note that the vertical
axis scales are different in each panel.

studied. Since all of these materials could be integrated into
new electronic devices where a gate is applied, the study of
this effect is of much interest. In this part, we investigate the
band gap tuning in twisted bilayer TMDCs by an external
electric field applied perpendicularly to the layers, in partic-
ular, the twisted bilayer MoS2 with θ = 3.5◦.

Figure 7 shows the band structure of rigidly twisted bilayer
MoS2 with θ = 3.5◦ under four different strengths of external
electric fields perpendicular to the layers. The band gap is
driven linearly to zero as electric field E increases, and the
system changes from a semiconductor to a metal when E is
large enough. This can be easily understood thanks to the
so-called giant Stark effect [50]. Due to the redistribution of
the charge density on different layers when an electric field
is applied, bands belonging to different layers are separated
from each other, which results in the reduction of the energy
gap. This same effect is also found in 2H stacking bilayer
TMDCs [47,48] and large-angle twisted bilayer WS2 [49].
The evolution of the band gap as a function of E for twisted
bilayer MoS2 with three different rotation angles is plotted
in Fig. 8. Since the difference of the band gap in the three
twist angles is quite small, the threshold values where the
system becomes metallic do not change significantly with the
twist angle. The band gaps in the relaxed samples are larger
than that of the same rigid ones. Consequently, in the relaxed
system, we would need a higher electric field to close the
band gap.

V. CONCLUSION

In this paper we have studied the electronic properties of
twisted bilayer MoS2 and their possible tunability by means

of an accurate TBPM. We have seen that the flat band appears
when reaching angles sufficiently small. Interestingly, we can
tune the value of the gap up to 5% just by changing the
rotation angle in relaxed systems. Furthermore, the gap is
modulated at different high-symmetry positions of the struc-
ture due to the different interlayer couplings that appear. We
have also shown that another effective method to tune the
band gap is to apply a perpendicular electric field, In fact,
the band gap diminishes with increasing electric field, and the
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FIG. 8. The band gap of rigidly twisted bilayer MoS2 with
different rotation angles as a function of the applied external
electric field.
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system can undergo a transition from a semiconductor to a
metal when the field is high enough.
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