
PHYSICAL REVIEW B 99, 155412 (2019)

Time-dependent quantum Monte Carlo simulation of electron devices with two-dimensional
Dirac materials: A genuine terahertz signature for graphene

Zhen Zhan,1,2 Xueheng Kuang,1 Enrique Colomés,2 Devashish Pandey,2 Shengjun Yuan,1 and Xavier Oriols2,*

1Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology,
Wuhan University, Wuhan 430072, China

2Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193-Bellaterra (Barcelona), Spain

(Received 10 January 2019; revised manuscript received 22 March 2019; published 10 April 2019)

An intrinsic electron injection model for two-dimensional (2D) Dirac materials, like graphene, is presented
and its coupling to a recently developed quantum time-dependent Monte Carlo simulator for electron devices,
based on the use of stochastic Bohmian conditional wave functions, is explained. The simulator is able to capture
the full (dc, ac, transient, and noise) performance of 2D electron devices. In particular, we demonstrate that the
injection of electrons with positive and negative kinetic energies is mandatory when investigating high-frequency
performance of Dirac materials with Klein tunneling, while traditional models dealing with holes (defined as the
lack of electrons) can lead to unphysical results. We show that the number of injected electrons is bias dependent,
implying that an extra charge is required to get self-consistent results. Interestingly, we provide a successful
comparison with experimental dc data. Finally, we predict that a genuine high-frequency signature due to a
roughly constant electron injection rate in 2D linear band electron devices (which is missing in 2D parabolic
band ones) can be used as a band structure tester.
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I. INTRODUCTION

During recent years, two-dimensional (2D) materials have
attracted great interest from the scientific community [1,2].
For instance, graphene and transition-metal dichalcogenides
have been intensively explored to avoid or minimize some
fundamental challenges (short-channel effects, parasitic ef-
fects) for developing a new generation of electron devices
with nanometric lengths and terahertz (THz) working fre-
quencies [3–6]. The accurate modeling of 2D transistors at
such THz working frequencies is not trivial because, apart
from the inherent difficulties involved in predictions at high
frequencies, some physical phenomena, like Klein tunneling
or electrons with positive and negative kinetic energies, need
to be properly included in the discussion [7,8].

In general, the predictions of THz magnitudes, like the
power spectral density of the fluctuations of the electrical
current, require us to deal with quantum observables involving
multitime measurements (correlations) where the measure-
ment itself exerts a backaction on the measured object [9].
This implies that most of the quantum electron device simula-
tors with a unitary (Schrödinger-like) equation of motion for
(closed) systems, which successfully provide static dc proper-
ties of nanoscale devices, are no longer applicable here. New
nonunitary equations of motion for (open) quantum system
are required to model state reduction (collapse) or decoherent
phenomena due to the measurement, which faces important
computational and conceptual difficulties [10]. Contrary to
(Schrödinger-like) unitary equations of motion, a dynamical
map that preserves complete positivity of these nonunitary
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equations of motion with continuous (or multitime) measure-
ment is not always guaranteed [11]. Some phenomenological
treatments of the decoherence, such as the Boltzmann colli-
sion operator in the Liouiville equation [12] or the seminal
Caldeira-Leggett master equation [13], violate complete pos-
itivity, giving negative probabilities. In addition, because of
the inherent quantum contextuality [14,15], the predictions of
these continuously measured systems, in principle, depend on
the type of measuring apparatus implemented in each model
[16]. For the particular THz predictions of the electron device
invoked here, in addition, the relevant electrical current is the
total current, which is the sum of the conduction (flux of
particles) plus the displacement (time derivative of the electric
field) components [12]. The displacement current, which is
usually negligible for dc predictions, can no longer be ignored
for THz predictions.

In the literature, there are basically two types of strategies
(not always adapted for THz electron devices) to develop
nonunitary equations of motion for general quantum systems
under continuous measurement [10]. The first type is looking
for an equation of motion for the (reduced) density matrix and
computing dynamic properties from ensemble values of the
time evolved density matrix. The Kubo approach [17] (linear
response theory) is a successful theory that provides dynamic
properties (also for electron device simulations [16,18]) when
the perturbations (here including the backaction or deco-
herence due to the measurement [16]) over the equilibrium
state of the system are small enough [18]. An important
result of the Kubo formalism is the fluctuation-dissipation
theorem [18,19], which shows that the electrical transport is
not an equilibrium problem. The Lindblad master equation
[20] provides an excellent framework for solutions of the
first type, preserving complete positivity in general Markovian
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quantum systems [10,21]. The exact form of the Lindblad
superoperator in each particular application requires addi-
tional assumptions [10] about the measurement backaction
(resolution of the measurement) and/or the interaction with
the environment.

The second type of strategy to treat the quantum system
with continuous (or multitime) measurements is to unravel the
density matrix in terms of the individual states and look for the
equation of motion of each individual state conditioned upon
the specific measured value [10,21]. Quantum trajectories can
generally be assigned to the path of each individual (condi-
tioned) states and the dynamic predictions are later evalu-
ated by an ensemble over these conditioned states. Inspired
by the spontaneous collapse theories, stochastic Schrödinger
equations are developed to describe individual experiments in
Markovian or non-Markovian systems [22]. It has been shown
that linking those (conditioned) states of the open system at
different times and assigning them physical reality (beyond
mere mathematical elements to properly reproduce ensemble
values) require dealing with theories that allow a description
of some properties of the system (here the measured value of
the total current) even in the absence of measurement [23–25].
In this work, we will use this last type of conditional state for-
malism from an approach recently presented by some authors
[26,27], using the conditional wave function, which is defined
in a natural way in Bohmian theory [28]. Our approach is
general and valid for Markovian and non-Markovian systems,
with or without dissipation, and it guarantees a dynamical
map that preserves complete positivity [27]. The practical
application of this approach to electron devices has been
implemented by some authors into the BITLLES simulator
[26,27,29–33]. The inclusion of the displacement current in
the simulator has been explained in detail in Ref. [34]. The
type of backaction induced by the continuous measurement of
the electrical current is explained in Ref. [35]. In this work,
we adapted the BITLLES simulator to 2D Dirac materials
(also called linear band materials) where the wave nature of
electrons in the low-energy range is described by a bispinor
solution of the Dirac equation [36].

The main contribution of this work is twofold. First, we
provide a complete description of the time-dependent electron
injection model for 2D materials that can be adapted to
the BITLLES simulator to study high-frequency performance
of nanoscale devices. From a computational point of view,
the environment determines the boundary conditions at the
border of the simulation box through mechanical statistical
arguments [37,38]. In this paper, in particular, we discuss
the electron injection model for Dirac (like graphene) 2D
materials and compare it with that of a parabolic band (like
black phosphorus) 2D material. Interestingly, we will show
that the traditional modeling of electrons in the valence band
by holes (lack of electrons) cannot be applied to the modeling
of high-frequency performance of 2D materials with linear
bands because of the Klein tunneling. We also show that the
number of injected electrons is bias dependent, implying that
an extra charge is required to get self-consistent results.

The second main contribution of this work is the predic-
tion of a genuine high-frequency signature that appears in
graphene devices, due to their roughly constant injection
rate of electrons in the transport direction. We argue that this

signature can be used as a linear or parabolic energy band
tester. We anticipate the presence of a peak in the power spec-
tral density in the 2D linear band devices with ballistic trans-
port, but such peak is missing in devices with 2D parabolic
bands. For devices with 2D parabolic-band materials (like
black phosphorous) the dispersion on the velocities of the
electron entering inside the active region is so large that the
above mentioned signature disappears. In 2D Dirac materials,
there is still a dispersion in the velocity of electrons in the
transport direction, but our realistic and detailed implemen-
tation of the injection of electrons shows that such velocity
dispersion is not large enough to wash out the peak in the
power spectral density.

After this brief introduction, the meaning of the intrinsic
electron injection model is explained in Sec. II, emphasizing
that contact resistances are not explicitly considered and they
can be later reintroduced. The local and nonlocal properties
that determine the time-dependent electron injection model
for linear and parabolic band structures are explained in
Secs. III and IV, respectively, where difficulties of dealing
with holes in graphene high-frequency predictions are ex-
plained in detail. Numerical results for ac, transient, and noise
performances of graphene transistors are discussed in Sec. V.
We also show excellent agreement of our multiscale postpro-
cessing simulation with dc experimental results. Finally, after
properly developing the time-dependent injection model for
graphene in the previous section, we present at the end of
this section a genuine high-frequency signature of graphene
devices. We conclude the paper in Sec. VI.

II. INTRINSIC INJECTION MODEL

All electron device simulators artificially split the whole
device into the open system and the environment (or reser-
voirs). From a computational point of view, the open system
is defined as the simulation box that includes, at least, the
device active region. In principle, the dynamics of the relevant
degree of freedom in the open system (the transport electrons)
is described by mechanical (classical [39,40] or quantum
[26,41,42]) equations of motion. The environment determines
boundary conditions at the border of the simulation box
through mechanical statistical arguments [37,38]. An impor-
tant part of the boundary condition at reservoirs (also referred
to as the contact) are the so-called electron injection models.

The selection of simulation box dimensions is a difficult
task because it implies a trade off between reducing them
to minimize the computational burden and enlarging them
to ensure that a reasonable quasiequilibrium distribution of
electrons are present at its borders. Strictly speaking, the
electron distribution at the source and drain contacts depicted
in Fig. 1(a) are not in thermodynamic equilibrium because
a net current ID is flowing through them. Nevertheless, the
macroscopic behavior of such regions is expected to be similar
to that of a resistor. Thus, a typical strategy to minimize the
dimension of the simulation box is disregarding the explicit
simulation of electrons at these contacts and focusing only
on the simulation of electrons inside what we consider the
intrinsic active device region. The role of contacts can be
later reincorporated into the result as a type of multiscale
postprocessing algorithm that we will explain in this section.
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FIG. 1. (a) Schematic view of a dual-gate graphene field-effect
transistor (GFET). The central (pink) region corresponds to the
intrinsic part of the GFET, whose transport electrons are explicitly
simulated. (b) An equivalent circuit that includes the intrinsic part,
top view of panel (a), plus the source, RS , and drain, RD, contact resis-
tances. The electron injection model (bold black lines) are spatially
located at the left and right sides of the intrinsic part, excluding the
graphene-contact resistance. The intrinsic voltages VGSint and VDSint

used in the simulation are also indicated. The effect of the contact
resistances can be later incorporated as a multiscale postprocessing
algorithm, as explained in the text.

In a dual-gate graphene field-effect transistor plotted in
Fig. 1(a), for instance, we can assume that the channel
conductivity and the drain current ID are mainly controlled
by the intrinsic gate-source voltage and that a reasonable
quasiequilibrium distribution of carriers can be expected at
borders (injection regions) plotted in Fig. 1(b). This will be
the assumption followed along all this work for either linear or
parabolic band 2D materials, meaning that we are considering
injection from a 2D-2D interface as indicated in Fig. 1(b).

The algorithm to reincorporate the nonsimulated part of
Fig. 1(a) is explained in the equivalent circuit of Fig. 1(b),
with source RS and drain RD contact resistances substituting
for the eliminated part. We first compute the drain-to-source
current ID by explicitly simulating the intrinsic part of the
GFET with appropriate boundary conditions. In particular,
we consider the intrinsic voltages VGSint and VDSint and the
injection model explained in this work. Second, with other
complementary simulation tools, we compute the resistance
between the (3D) source metal and (2D) material interface in
the source and drain contacts. For example, the conductance G
of the metal-graphene contact can be calculated by the SIESTA

package. Then, the contact resistance is deduced from G by

accounting for a thermal and puddle broadening [43]. In fact,
we can also compute the metal-graphene contact resistance
from an analytical model proposed by Chaves et al. [44]. The
final step is converting the intrinsic voltages VGSint and VDSint

into the extrinsic voltages at the gate VGS and at the drain VDS ,
satisfying the following Kirchhoff’s laws of the equivalent
circuit of Fig. 1(b) as [2]

VGS = VGSint + IDRS (1)

and

VDS = VDSint + ID(RD + RS ), (2)

where we have assumed that the source is grounded. Note that
when we extract the extrinsic properties in the third step, we
lose accuracy by plugging the more accurate intrinsic results
into a less accurate compact model.

The contact resistances are a bottleneck limiting the per-
formance of many 2D electron devices and their adverse
effects become even more pronounced as the device gate
length decreases. As a consequence, the IRDS 2017 en-
visions transistors with the contact resistance lower than
0.03 � mm in Ref. [3]. Recently, remarkable progress has
been made in achieving experimentally Ohmic contacts in
2D transistors. For instance, a van der Waals heterostructure
hBN/MoS2/hBN is employed to maximize the graphene con-
tact resistance, with contact barriers lower than 0.1 meV in
Ref. [45]. Interestingly, high-quality low-temperature Ohmic
contacts (with contact resistance within the range of 0.2–
0.5 k�μm) have been achieved in transition-metal dichalco-
genides transistors by utilizing a selective etching process in
Ref. [46].

From a computational point of view, independent of the
value of the contact resistance, its effect can be understood as
a deterioration of the transmission coefficient at the 3D-2D in-
terface that results in a reduction of the density of states and a
modification of the occupation function. In principle, it would
be possible to include the 3D-2D transition in a complete
electron transport model, but it would be computationally very
costly. Obviously, the proposed multiscale three-step simula-
tion algorithm has an important computational advantage. For
quasistatic results, like dc characteristics, the proposed three-
step algorithm can be fully satisfactory, as we will show later
in Sec. V B. However, for high-frequency results, for instance,
the ac, transient, and noise information at the THz region
[34,47], the description of the dynamics of electrons crossing
a 3D-2D interface as a simple resistive behavior seems less
accurate. If required, more elaborate models for coupling
the not explicitly simulated regions with the simulation box,
even at high-frequency regimes, with the same multiscale
methodology are also available in the literature [31,48].

III. LOCAL CONDITIONS ON THE INJECTION

In this section, we will discuss those spatial local (depend-
ing on the properties of only one contact) conditions that are
relevant for developing the electron injection model.

There is no unique local argument to define a time-
dependent electron injection model. For example, when the
boundary conditions are defined far from the device active
region (for large simulation boxes), it is reasonable to assume
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that the electron injection model has to satisfy charge neutral-
ity. This local condition in the physical (real) space determines
how many electrons need to be injected at each time step of the
whole simulation. However, in positions closer to the device
active region (for small simulation boxes) charge neutrality
at the borders is not fully justified. Then, it is assumed that
electrons entering into the simulation box are in thermody-
namic equilibrium (with an energy distribution determined
by a quasi-Fermi-Dirac function) with the rest of electrons
in the contact [49]. The thermodynamic equilibrium in this
second model is basically imposed on electrons entering into
the simulation box, not on those leaving it. In this paper, this
second model is adapted to 2D materials.

A. Density of electrons in the phase space

As we have mentioned above, the injection model de-
scribed here can be applied to either classical or quantum
systems. For a quantum system, the wave nature of electrons
will be described by bispinors solutions of the Dirac equation.
We are assuming that in the contacts such bispinors are
moving in free space and are roughly equal to a Gaussian
bispinor [see Eq. (A2) in Appendix A], where a meaningful
definition of its mean (central) position x0 and mean (central)
wave vector kx0 is given. In addition, a Bohmian trajectory
will be assigned to each electron. Therefore, following the
Bohmian ontology, we will assume in this paper that the wave
and particle properties of electrons are well defined along the
device independent of whether they are being measured. It
is well known that this Bohmian language (which resembles
a classical language) is perfectly compatible with orthodox
quantum results [26].

We assume that electron transport (from source to drain)
takes place at the x direction and that z is the direc-
tion perpendicular to the transport direction inside the 2D
material. Then, we define a phase-space cell, labeled by
the position {x0, z0} and wave vector {kx0, kz0} with a vol-
ume �x�z�kx�kz, as the degrees of freedom {x0, z0, kx, kz}
satisfying x0 < x < x0 + �x, z0 < z < z0 + �z, kx0 < kx <

kx0 + �kx, and kz0 < kz < kz0 + �kz. As a consequence of
the Pauli exclusion principle [49], the maximum number of
available electrons n2D in this phase-space cell in the contact
borders is

n2D = gsgv
�x�z�kx�kz

(2π )2
, (3)

where the gs and gv are the spin and valley degeneracies,
respectively. See Appendix B to specify the physical meaning
of �x, �z, �kx, �kz in terms of the wave-packet nature of
(fermions) electrons with exchange interaction. Equation (3)
specifies that, on average, each electron requires at least a
partial volume 2π for each position × wave vector product
of the phase space. Each electron requires a volume (2π )2 of
the whole available phase space in a 2D material.

B. Minimum temporal separation t0 between electrons

At any particular time t , all electrons with wave vector
kx ∈ [kx0, kx0 + �kx] inside the phase cell will attempt to enter
into the simulation box during the time interval �t . We define
�t = �x/vx as the time needed for the electrons with velocity

component in the transport direction vx to move a distance
�x. The time step �t is always positive, because electrons
entering from the right contact with negative velocity move
through a distance −�x. Notice that we have assumed that the
phase space cell is so narrow in the wave vector directions that
all electrons have roughly the same velocity vx. Therefore, the
minimum temporal separation t0 between injected electrons
from that cell, defined as the time step between the injection
of two consecutive electrons into the system from the phase
space cell, can be computed as the time interval �t divided by
the number of available carriers n2D in the phase-space cell:

t0 = �t

n2D
= (2π )2

gsgv

1

vx�z�kx�kz
. (4)

For materials with a linear band structure, the velocity of
electrons in the transport direction is vl

x = sv f kx/|�k|, with s
being the band index and v f being the Fermi velocity. It is im-
portant to emphasize that the x-component electron velocity
vl

x is explicitly dependent on both wave vector components kx

and kz. Then, the minimum temporal separation is written as

t l
0 = (2π )2

gsgv

|�k|
sv f kx�z�kx�kz

. (5)

According to Eq. (5), the temporal separation between two
electrons with smaller kz will be shorter than that with larger
kz. As a consequence, almost all electrons in graphene are
injected with low kz (with kx ≈ |�k|) and with a velocity close
to the maximum value, i.e., vx ≈ v f .

For comparison, we also explain explicitly the electron
injection model for a parabolic band material. For materials
with a parabolic band structure, the velocity in the transport
direction is v

p
x = h̄kx

m∗ , with m∗ being the electron effective
mass. The velocity is only dependent on the kx. Substituting
v

p
x into Eq. (4), we obtain

t p
0 = (2π )2

gsgv

m∗

h̄kx�z�kx�kz
. (6)

From Eq. (6), it is clear that the t0 is only affected by the
wave vector kx, and for instance an electron with higher kx

needs less injection time t0 to enter in the system. Note that,
in Eqs. (5) and (6), we assume the electron has a constant
velocity when it moves a distance �x. This requires a very
small size of the wave vector components �kx�kz. Ideally,
we have to consider �kx ≈ δkx and �kz ≈ δkz but a practical
implementation of the electron injection model relaxes these
restrictions to reduce the computational burden (see discus-
sion in Appendix C). Let us notice that in the linear case, since
the wave packet tends to be dispersionless, the restriction on
the size of the wave vector cells can be relaxed, while for a
parabolic band structure material, because the wave packet
has a larger dispersion, the consideration of a small enough
wave vector cell is more restrictive.

C. Thermodynamic equilibrium

We assume that electrons inside the contacts are in qua-
sithermodynamic equilibrium. For electrons (fermions), the
Fermi-Dirac distribution f (E ) provides the probability that a
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quantum state with energy E is occupied,

f (E ) = 1

exp
(E−E f

kBT

) + 1
, (7)

where E f is the quasi-Fermi level (chemical potential) at
the contact, kB is the Boltzmann constant, and T is the
temperature. The electron energy E is related to its wave
vector by the appropriate linear or parabolic energy dis-
persion. We notice that the assumption of thermodynamic
equilibrium is an approximation because the battery drives the
electron device outside of thermodynamic equilibrium (this
approximation explains why we define a quasi-Fermi level,
not an exact Fermi level). There is no need to anticipate the
energy distribution of electrons leaving the simulation box
(the equations of motion of electrons implemented inside the
simulation box will determine when and how electrons leave
the open system).

D. Probability of injecting N electrons during the time interval τ

At temperature T = 0, the mean number of electrons in
the phase-space cell q〈N〉 is equal to 〈N〉 ≡ n2D given by
Eq. (3), which means that electrons are injected regularly at
each time interval t0. At higher temperature T > 0, the mean
number of electrons in the cell 〈N〉 is lower than n2D. In fact,
because of Eq. (7), we get 〈N〉 ≡ n2D f (E ). The statistical
charge assigned to this cell is therefore equal to 〈Q2D〉 ≡
−qn2D f (E ). Here q is the elementary charge without sign.
The physical meaning of 〈N〉 ≡ n2D f (E ) is that the number
of electrons N in the cell (all with charge −q) varies with
time. We cannot know the exact number N of electrons at each
particular time, but statistical arguments allow us to determine
the probabilities of states with different N . Such randomness
in N implies a randomness in the number of electrons injected
from each cell. This temperature-dependent randomness is the
origin of the thermal noise [49,50].

It is known that the injection processes follow the binomial
distribution with a probability Prob(E ) of success [49]. For
example, for the local conditions discussed in this section,
we can assume that the probability of effectively injecting
electrons with energy E is given by the Fermi-Dirac statistics
discussed in Eq. (7), i.e., Prob(E ) ≡ f (E ). The probability
P(N, τ ) that N electrons are effectively injected into a par-
ticular cell adjacent to the contact during a time interval τ is
defined as

P(N, τ ) = Mτ !

N!(Mτ − N )!
Prob(E )N [1 − Prob(E )]Mτ −N , (8)

where Mτ is the number of attempts of injecting carriers in a
time interval τ , defined as a number we get by rounding off
the quotient τ/t0 to the nearest integer number toward zero,
i.e., Mτ = floor(τ/t0). The number of injected electrons is
N = 1, 2, . . . , Mτ .

IV. NONLOCAL CONDITIONS ON THE INJECTION

In order to simplify the computations, not all electrons
present in an open system are explicitly simulated. Only
transport electrons, defined as those electrons whose move-
ments are relevant for the computation of the current, are

explicitly simulated. The contribution of the nontransport
electrons to the current is negligible and their charge is
included as part of a fixed charge. What determines if an elec-
tron is a transport electron or not? In principle, one is tempted
to erroneously argue that the quasi-Fermi level provides a lo-
cal rule to determine if an electron is a transport electron or not
(those electrons with energies close to the quasi-Fermi level
are transport electrons, while those electrons with energies
well below are irrelevant for transport). This local rule is not
always valid for all materials and scenarios. As we will see,
more complex nonlocal rules are needed to define transport
electrons in materials with linear band structures.

A. Electrons and holes in parabolic bands

When modeling traditional semiconductor devices usually
the applied bias in the edges of the active region is less than
the energy band gap. See Figs. 2(a) and 2(b). Then, one can
assume that transport electrons belong to just one band along
the whole device, either the conduction band (CB) or valence
band (VB). For example, all electrons in the CB are transport
electrons, while electrons in the VB do not participate in
the transport because there are no free states available. See
blue (dark) regions for transport electrons in CB and orange
(light) region in the VB of Figs. 2(a) and 2(b). The important
point is that the number of transport electrons in this case
is bias independent, meaning that the number of transport
electrons remains the same in Figs. 2(a) and 2(b). We notice
that the division between transport and nontransport electrons
in scenarios such as Fig. 2(c), which could correspond to a
Zener diode [52], where a very large bias (greater than the
energy gap) is applied, cannot be treated in the same way as
the previous scenarios.

In order to simplify the computational burden of transport
electrons in the VB, traditional simulators use the concept of
hole, defined as the absence of an electron in the VB. The
total current IV B in the VB can be computed by summing the
current Ii of each transport electron, IV B = ∑n

i=1 Ii, where n
is the number of transport electrons in the VB. However, if n
is quite close to the maximum number of allowed electrons
in that relevant energy region denoted by nmax, then, by
knowing that a VB full of electrons (with equal number of
electrons with positive and negative velocities) does not have
net current, giving IV B,max = ∑nmax

i=1 Ii = 0, we get

IV B =
n∑

i=1

Ii −
nmax∑
i=1

Ii =
nmax−n∑

j=1

(−I j ). (9)

Thus, instead of simulating i = 1, . . . , n transport electrons,
we can simulate j = 1, . . . , n′ transport holes with n′ ≡
nmax − n, assuming that the current of the holes (−I j ) is
opposite to that of the electron current Ii. This can be achieved
by considering that holes have positive charge +q. The charge
can also be self-consistently computed with the hole concept
developed for the current. We define Qfix as the fixed charge
belonging to dopants or nontransport electrons with energies
below E = E f − 5kBT in the VB; see Ref. [53]. Equivalently,
we define Qmax = ∑nmax

i=1 (−qi ) as the charge belonging to the
VB full of electrons with an energy above E = E f − 5kBT .
Therefore, the charge due to the n electrons in that energy
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FIG. 2. Schematic representation of the energy band structure as a function of the source and drain position for a device with applied
bias. The (a), (b), and (c) insets correspond to a device with parabolic CB and VB separated by an energy band gap Egap with different bias
conditions, while the (d), (e), and (f) insets correspond a gapless material with linear CB and VB. The blue (dark) and orange (light) regions
corresponds to the transport and nontransport electrons, respectively, defined in the text. In the insets (a) and (b), the numbers of transport
and nontransport electrons are independent of the applied bias. The inset (c) corresponds to the energy profile of a Zener diode under a high
reverse bias where additional transport electrons in the VB have to be considered. The insets (d), (e), and (f) shows scenarios where the
number of transport electrons is strongly dependent on the bias conditions, where the electrons in the energy range from E1 = Ef s − 5kBT to
E2 = Ef s − 5kBT − VDS are the additional transport electrons that have to be additionally considered at each bias point. The inset (g) represents
the conservation of kz in the description of an electron traversing the device from source to the drain. Only the electrons with the momentum
range in the source spanned by the smaller (blue) circle in the drain can effectively traverse the device satisfying kz conservation. Note that in
the linear band case, the linear dispersion is constant; for instance, for graphene, the injection model is valid in the low-energy range from −1
to 1eV where the band structure is linear [51].

region when considering the transport of holes is

Q = Qfix +
n∑

i=1

(−qi ) = Qfix + Qmax +
n′∑

j=1

q j . (10)

We have to consider the holes as carriers with positive charge
+q and consider a fixed charge Qmax, in addition to Qfix, when
dealing with n′ holes. The concept of holes has been tradition-
ally used to successfully simplify the computational burden
associated to scenarios like the ones plotted in Figs. 2(a) and
2(b) with parabolic bands.

B. Electrons or holes in linear bands

The utility of the holes and the uniformity of Qfix has to be
revisited when dealing with Dirac materials because the band-
to-band tunneling provides an unavoidable transition from VB
to CB.

In Figs. 2(c)–2(f), we see those electrons depicted in blue
(dark gray) whose energy is well below the local quasi-Fermi
level in the source E f s, but that effectively contribute to
current because such electrons in the VB in the source contact
are able to travel through the device, cross the Dirac point
via Klein tunneling, and arrive at the CB in the drain contact.
The argument saying that the VB is full of electrons in the
source contact giving zero current (Imax = ∑nmax

i=1 Ii = 0) is
false here. Such argument is a local argument that does not
take into account the nonlocal relation between the source
and the drain contacts. Clearly, electrons with energies below
E = E f s − 5kBT in the source are also relevant for transport.

In order to minimize the number of transport electrons
in the simulating box, we use the following algorithm. In
the source contact, the transport electrons are all electrons

within the energy range [E f d − 5kBT, E f s + 5kBT ] defined
in Figs. 2(c)–2(f). Notice the use of the drain quasi-Fermi
level E f d in the source contact. The energy range in the drain
contact is [E f d − 5kBT, E f d + 5kBT ]. Since we can consider
that E f s = E f d + qVDS with VDS being the applied voltage, the
number of transport electrons selected with the overall criteria
is bias dependent and position dependent. Other criteria are
also possible in the selection of the transport electrons. Note
that considering more or less transport electrons in the simu-
lation is not a physical problem but a computational problem
because it increases the computational effort. The criteria
specified here to select the transport electrons as explained in
Figs. 2(c)–2(f) is the one that minimizes the overall number
of transport electrons.

From Fig. 2(e), we can rewrite the charge assigned to
electrons in the CB and VB of the drain contacts for a gapless
material as follows:

Qdrain = Qfix +
ndrain∑
i=1

(−qi ). (11)

The charge distribution in the source is not exactly the same
as in Eq. (11) because, as discussed above, the number of
transport electrons in the source nsource is different from ndrain.
Therefore, we get

Qsource = Qfix +
nsource∑
i=1

(−qi ) − Qadd(xsource ), (12)

where Qadd(xsource ) is just the additional charge assigned to
the additional number of transport electrons nsource − ndrain

simulated in the source. In fact, as we will discuss at the
end of Sec. IV C, in each point of the device and each bias
point, we have to consider a different value of Qadd(x). In
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FIG. 3. Schematic representation of (a) electron-hole generation due to light absorption, (b) Klein tunneling process modeled by one
electron injected from the source, changing from VB to CB, and arrival at the drain contact (c) Klein tunneling modeled as an electron-
hole generation at time tG in the x = G. The carriers are assumed to travel at a constant velocity ve = v f and vh = −v f . The processes
depicted in panels (a) and (b) provide the correct instantaneous current depicted in the right column. However, when modeling high-frequency
properties of graphene transistors, unphysical predictions result from the treatment of the Klein tunneling as an electron-hole generation process
in panel (c).

particular, we notice that Eq. (11) can be written as Eq. (12)
with the condition Qadd(xdrain ) = 0. Finally, we notice that
the consideration of this position-dependent charge can be
avoided by just using the same number of transport electrons
in the drain and in the source, but this would imply an
increment of the computational effort to transport electrons
that, in fact, do not provide any contribution to the current.
In conclusion, minimizing the number of transport electrons
implies a position- and bias-dependent definition of Qadd(x).

One can argue that electrons in the VB can be better tackled
using the hole concept, as typically done in materials with
parabolic band. However, the use of the concept of hole in
materials with linear bands results in important difficulties,
when dealing with the Klein tunneling process, which can
imply unphysical predictions. Within the language of holes,
the transport process from the VB to the CB through Klein
tunneling can be modeled as an electron-hole generation pro-
cess inside the device [8,54], as plotted in Fig. 3(c). The Klein
tunneling electron-hole generation process wants to mimic the
electron-hole pair generated, at time tG in a position located at
x = G of the device, by an incident photon as seen in Fig. 3(a).
However, the process in Fig. 3(a) representing an electron in
the VB that absorbs a photon and jumps into the CB, while
leaving a hole (absence of an electron) in the VB, is a process
that occurs in nature, while the process depicted in Fig. 3(c)

is an artificial process. A natural process representing Klein
tunneling is depicted in Fig. 3(b), where an electron is injected
at time t0 from x = 0 in the source contact and it traverses the
whole device, changing from the VB to the CB, and arrives
at the drain contact x = L after a time interval te − t0 = L/ve,
where te is the final time and ve is the electron velocity. Next,
we list the reasons why we argue that the process in Fig. 3(c) is
artificial and which computational difficulties and unphysical
results it may imply:

(i) The electron-hole generation process in Fig. 3(c) re-
quires the definition of a transition probability that depends
on the number of electrons (number of holes) in a particular
region of the phase space inside the device, which in turn
depends on the occupation probability. What is the occupation
probability inside the device? Obviously, we can assume some
thermodynamic quasiequilibrium occupation function inside
the device at the price of reducing the fundamental character
of the simulation [8,54]. Notice that the process in Fig. 3(b)
just requires the definition of the natural injection rate from
the source contact.

(ii) The electron-hole transition probability would also
require an ad hoc definition of Klein tunneling transmission
coefficient from VB to CB. However, Klein tunneling is a
quantum interference phenomena depending on many factors
(like the electron energy, the direction of propagation, the
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time-dependent potential profile, etc.), implying important
difficulties when attempting to develop ad hoc analytic ex-
pressions to capture all features of the Klein tunneling. Again,
the process in Fig. 3(b), when dealing with electrons defined
as bispinors as defined in Sec. V C, just requires solution of
the time-dependent Dirac equation.

(iii) For a full quantum time-dependent electron transport
simulator, such electron-hole generation would require a def-
inition of the electron and hole wave packets in the middle of
the simulation box. We can assume a Gaussian type for the
wave packet deep inside the reservoirs; however, the type of
wave packet generated in the middle of the simulation box,
while undergoing Klein tunneling, can hardly be anticipated
by ad hoc models. As we see in Appendix A, the type of
electron wave packet in the middle of the device following
the process in Fig. 3(b) does not need to be anticipated, but
it is just the time-dependent bispinor solution of the Dirac
equation.

(iv) The most important difficulty of the electron-hole
process described in Fig. 3(c) is the time-dependent cur-
rent that it provides. On the right side of Fig. 3, we plot
the instantaneous current provided by the three transport
processes computed from (the two-terminal version of) the
Ramo-Shockley-Pellegrini [47,55,56] expression,

Ie/h(t ) = qe/hve/h

L
�(t ), (13)

where qe/h is the electron (qe = −q) or the hole (qh = q)
charge and ve/h is the electron (ve = v f ) or hole (vh = −v f )
velocity. We have defined �(t ) = 1 while the carrier is inside
the device [0, L] and �(t ) = 0 when the carrier is outside,
under the assumption that the electron and hole suffer an
instantaneous screening process occurring in the metallic con-
tact region. The total current Itotal(t ) = Ie(t ) + Ih(t ) is given
by the sum of the electron current Ie(t ) plus the hole current
Ih(t ). We define th in Figs. 3(a) and 3(c) as the time when the
hole reaches the source contact given by th − tG = G/vh, with
the electron-hole pair created at the position x = G 
 L/2.
The charge transmitted, from source to drain, during the three
processes depicted in Fig. 3 is always

q =
∫ te

t0

[Ie(t ) + Ih(t )]dt . (14)

The case in Fig. 3(b) is trivially demonstrated by multiply-
ing the time interval te − t0 = L/ve by the current qve/L in
Eq. (9). The cases in Figs. 3(a) and 3(c) require multiplying
the time interval te − tG = (L − G)/ve by the current qve/L
and adding the product of th − tG = tG − t0 = G/vh by the
current qvh/L. This result means that the unphysical transport
process depicted in Fig. 3(c) has no net effect on the modeling
of DC properties of graphene devices. It gives the same DC
transmitted charge as the one in Fig. 3(b), if the previous (i),
(ii), and (iii) requirements are successfully satisfied. However,
the differences in the instantaneous total current between
the natural Klein tunneling process in Fig. 3(b) and the
artificial one in Fig. 3(c) imply dramatic differences in the
high-frequency predictions of graphene devices that cannot be
overcome.

As illustrated in Fig. 3(b), none of the above (i), (ii),
(iii), and (iv) difficulties are present when only transport

electrons, not holes, are considered in the VB and simulated
through the Dirac equation, as we will shown in Sec. V C.
All assumptions done in the explanation above (like a 1D
spatial device with a two terminal Ramo-Shockley-Pellegrini
expression [47,55,56] with metallic contacts) are done for
simplifying the discussion. More realistic assumptions would
not avoid the unphysical results obtained from Fig. 3(c) for
high-frequency graphene results. We notice that the transit
time, which has direct implications on the cutoff frequency
of GFETs, is roughly equal to the physical value te − t0 in
Fig. 3(b), while it takes the unphysical values (th − tG) 

(te − t0) or (te − tG) 
 (te − t0) in Fig. 3(c). See Refs. [57,58]
for a discussion on tunneling times in graphene.

C. Pauli principle between the source and drain
contacts and conservation laws

We can invoke a new strategy to further minimize the
number of transport electrons in the simulation box by taking
into account the Pauli exclusion principle between source and
drain contacts. This strategy is based on the following two
assumptions. First, we consider that electrons move quasibal-
listically inside the simulation box, so that we can reasonably
predict what is the energy of an electron at the drain, initially
injected from the source, and vice versa. The second assump-
tion is that the occupation functions at the drain and source not
only provide the energy distributions of electrons entering into
the simulation box but also provide a reasonable prediction of
the energy distribution of electrons leaving it. Under these two
assumptions, we can avoid the injection of electrons from one
side that will not be able to arrive to the other side in a later
time because other electrons are occupying that region of the
phase space (positions and wave vectors).

Let us assume an electron moving ballistically inside the
graphene channel with total energy E satisfying the energy
conservation law. Assuming an electron with energy E is
effectively injected from the source contact, the probability
that it will arrive at the drain (in thermal equilibrium) with the
same energy E is given by the probability that such region of
the phase space is empty of electrons, which is fsd (E ) = [1 −
f (E )] with f (E ) given by Eq. (7) and E f ≡ E f d indicating the
quasi-Fermi level at the drain contact.

A similar argument can be invoked for momentum con-
servation. When considering transport electrons incident on a
potential barrier that is translationally invariant in the z direc-
tion (perpendicular to the transport direction), i.e., V (x, z) =
V (x), in addition to the conservation of electron energy E ,
the conservation of the momentum projection kz can also be
invoked. Let us give an example on how the conservation
of momentum projection kz affects our injection model in
graphene. We consider one electron with energy E injected
successfully from the source contact into the system and that
the electron is transmitted (without being scattered) through
a potential barrier and finally arrives at the drain contact.
According to the linear dispersion relation in graphene, the
maximum absolute value of momentum projection kz that
the electron can obtain is klim = |(E + qVDS )/(h̄v f )|; see the
definition of klim in Fig. 2(g). In the source, all those electrons
whose |kz| > klim will not be able to reach the drain; i.e., only
electrons whose kz belongs to the momentum range spanned
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by the smaller blue circle could reach the drain. Therefore, at
the source contact, the probability Pkz that an injected electron
will satisfy the conservation of momentum is given by

Pkz = [1 − �(|kz| − klim )], (15)

where �(|kz| − klim ) is a Heaviside step function.
Up to now, we have mentioned three (one local and two

nonlocal) conditions to determine the probability that an
electron is effectively injected from the source. At the source
contact, the probability fsum(E ) that the electron is effectively
injected from the source as a transport electron is

fsum(E ) = fs(E ) fsd (E )Pkz

= 1

exp[(E − E f s)/(kBT )] + 1

×
{

1 − 1

exp[(E − E f d )/(kBT )] + 1

}

× [1 − �(|kz| − |k|lim )]. (16)

The Fermi-Dirac distribution in Eq. (7) is a general law used
in most nanoscale simulators. The other two additional laws
are optional requirements of the injection model that allow
a reasonable reduction of the simulated number of transport
electrons without affecting the current computations, which
could be eliminated if a many-body treatment of the equation
of motion of electrons is considered in the simulation box
[26,59]. However, in the traditional single-particle treatment
of the equation of motion, such additional requirements tend
to capture the role of the Pauli exclusion principle in the
dynamics of the electrons inside the simulation box.

Figure 4 illustrates how the additional two laws (nonlocal
conditions) affect the energy distribution in the new injection
model in the case of injected electrons having ballistic trans-
port in graphene transistors. In Fig. 4(a), all the electrons in
VB are attempted to be injected into the system. However,
in Fig. 4(b), when the nonlocal conditions are included, the
energy distribution in VB is different from that in Fig. 4(a).
In Fig. 4(b), less electrons from VB attempt to be injected
into the system with an important reduction of the number of
injected electrons, which in case of being injected would not
contribute to transport properties. The occupation probability
for the electrons in VB with kz > 0.5 nm−1 equals 0, which
is a result of the kz conservation. The probability for the
electrons in VB with energy E > 0.2 eV (for |�k| > 0.5 nm−1)
approximates 0, which is a result of the correlation between
the source and drain contacts.

Finally, let us exemplify how we introduce the additional
charge in Eqs. (11) and (12) in a graphene device. Our purpose
here is to compute the charge of electrons that will be injected
in a nonequilibrium scenario. The density of states in 2D
linear graphene is

Dgr (E ) = gsgv|E |
2π h̄2v2

f

, (17)

where the spin degeneracy gs = 2 and the valley degeneracy
gv = 2. Regarding Fig. 2(f), in principle the amount of charge
Qadd would be computed from the integral of Dgr (E ) from E2

to E1. However, this is not fully true. First, only electrons trav-
eling in the transport direction are simulated, so we just need

FIG. 4. The energy distribution of the electrons with positive
energies (in CB) and negative energies (in VB) injected from the
source contact plotted in (a) which is computed from equation (7)
and in (b) which is computed from equation (16). The absolute
temperature T = 300 K, Fermi-level at the source contact Ef s =
0.1 eV, an voltage drop VDS = 0.3 V applied to the device and the
Fermi velocity v f = 5×105 m/s.

half of this charge. In addition, as presented above, we also
have to account for the conservation of momentum kz for all
energy levels from E2 until E1. For this reason, for example,
not all electrons from the energy level E2 will be able to arrive
to the drain, and just a fraction of them will be injected. This
fraction is easily understood from Fig. 2(g). Only electrons
belonging to the circumference arc will be injected and will
be able to reach the drain. The semi-circumference length is
L = πE2 and the length of the mentioned circumference arc is
La = 2|E2|arcsin(E1/E2). Therefore, the ratio of electrons to
be injected is La/L = 2arcsin(E1/E2)/π . This calculus must
be performed along the device. Then, the amount of charge to
be added (Qadd) in each point of the device is the following:

Qadd(x) = q
∫ E f s−5kBT −V (x)

E f s−5kBT −VDS

gsgv|E |
2π h̄2v2

f

FcorrdE , (18)
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where Fcorr is the correction factor and is equal to Fcorr =
La/2L.

V. NUMERICAL RESULTS

In Sec. V A, we provide a discussion on how the local
conditions studied in Sec. III provide some important differ-
ences in the injection from linear or parabolic 2D materials.
The comparison of the intrinsic and extrinsic GFET will be
explained in Sec. V B. Then, in Sec. V C, we will discuss
the results of the additional charge and dissipation on the
dc current when applied to graphene transistors. Finally, the
ac and noise performances of GFET will be analyzed in
Secs. V D and V E, respectively. The main prediction of this
work about the high-frequency signature for graphene will be
presented at the end of Sec. V E.

A. Local conditions on the electron injection
from parabolic or linear 2D materials

The effect of the material energy spectrum on the number
of attempts of injecting electrons into the system is plotted
in Fig. 5. As can be seen in Fig. 5(b), only electrons with
large kx are injected into the system. However, in the case
of materials with linear dispersion relations, as shown in
Fig. 5(a), the majority of injected electrons have smaller kz. As
a consequence, most injected electrons move in the transport
direction at the saturation velocity vx ≈ v f (with |kx| ≈ |�k|).

This difference in the type of injection can imply relevant
differences between the electrical properties of electrons de-
vices fabricated with 2D materials with linear or parabolic
bands. As a simple estimation, we assume a ballistic transport
in the electronic device and compute the (instantaneous) total
current I from each electron inside of the simulation box. The
current I is computed by using the Ramo-Shockley-Pellegrini
theorem [47,55,56] in Eq. (9). As plotted in Fig. 6(a), almost
all electrons injected from a contact with linear band structure
have the same velocity and carry the same instantaneous
current I . On the contrary, in Fig. 6(b), electrons injected
from a parabolic band structure material has large dispersion
in both the velocity and instantaneous current I . The cur-
rent dispersion (noise) of both types of band structures are
dramatically different, which can have relevant effects in the
intrinsic behavior of AC and noise performances, which we
will explicitly discussed in Sec. V D.

B. Intrinsic-extrinsic injection model

Here we test the multiscale intrinsic-extrinsic property of
our injection model discussed in Sec. II. First, we compute
the intrinsic properties of GFET by using the BITLLES
simulator [27,30–33]. The definition of the equation of mo-
tion of electrons, as a time-dependent Dirac equation, is
explained in Appendix A and the technical details on how
the injection model is implemented are discussed in Appendix
C. Then, we plug the drain current ID, the intrinsic gate-
source voltage VGSint and intrinsic drain-source voltage VDSint

into the analytical expressions Eqs. (1) and (2) to calculate
the extrinsic voltages depicted in the equivalent circuit of
Fig. 1(b). The results for the dc current are compared with
the experimental results in Ref. [60]. From the experimental
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FIG. 5. Number of attempts of injecting electrons computed
from Eq. (5) plotted in panel (a) and from Eq. (6) in panel (b) for
a cell �x�z�kx�kz during a simulation time �t = 0.1 ns at zero
temperature. The parameter m∗ = 0.2m0 being m0 the free electron
mass, gs = 2, gv = 2, Fermi velocity v f = 5×105m/s, the dimen-
sions of the phase-space cell are selected as �x = �z = 1×10−7 m,
�kx = �kz = 3×107m−1.

data in Ref. [60], some relevant parameters for the simulation
are extracted. For instance, the Fermi velocity is 106 m/s,
the contact resistance is 600 �μm, the top-gate capaci-
tance is about 9×10−7 nF/μm2, the carrier concentration is
1.705×1012 cm−2, and the temperature is 300 K. The gate
length is 40 nm, which is short enough to assume a ballistic
transport for electrons when traversing the simulation box.
We suppose a Fermi level of 0.3 eV, which gives a typical
carrier concentration of 1.705 × 1012 cm−2 in the simulations.
We compare our simulated results with the experimental ones
for different VDS and VGS = 0 V. As plotted in Fig. 7, the
simulation and experimental results show quantitative agree-
ment, fully justifying our multiscale postprocessing algorithm
for our intrinsic-extrinsic injection model for dc properties.
As indicated in Sec. II, for high-frequency regimes, more
elaborated models for the contact resistance are also avail-
able in the literature [31,48]. For simplicity, in the following
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FIG. 6. Number of electrons as a function of instantaneous cur-
rent I for materials with (a) linear and (b) parabolic band structures
during τ = 0.1 ns at zero temperature. The simulation conditions are
the same as in Fig. 5 and with Fermi level Ef = 0.32 eV.

results, we will focus only on the intrinsic results, without the
intrinsic-extrinsic voltage conversion.

C. Additional charge and dissipation on the dc properties

Furthermore, we present numerical results for four differ-
ent graphene transistors simulated with the BITLLES sim-
ulator [27,30–33] following the injection model, including
the additional charge, presented here. Electrons injected are
described by conditional Gaussian bispinor given by Eq. (A2),
following Fermi statistics at room temperature. Once inside
the device, the equation of motion of the bispinor is given
by the (pseudo) Dirac equations (one for each injected elec-
tron). The bispinor is used to guide the Bohmian trajectories,
which provide the charge density to solve the Poisson equa-
tion that, later, determine the time-dependent potential present
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FIG. 7. The current-voltage characteristic for a GFET computed
(red square) from BITLLES simulator compared with experimental
results (black line) from Ref. [60]. The red square in the inset cor-
responds to the intrinsic gate-source voltage VGSint and drain-source
voltage VDSint used to simulate the drain current ID in the BITLLES
simulator.

in the Dirac equation in a self-consistent loop (for additional
information, see Ref. [26]). Details about the Dirac equation
and Bohmian trajectories are explained in Appendix A.

The simulated GFET has the following parameters: chan-
nel length is Lx = 40 nm, width Lz = 250 nm, and Fermi
energy is 0.15 eV above the Dirac point. It has bottom and top
gates, whose voltages are set equal to zero, Vbg = Vtg = 0 V.
In Fig. 8, we see four different current-voltage characteristics
of GFET. The insets are related to the one plotted in Fig. 2
indicating the relevant presence of electrons with energy
above the Dirac point (CB) and below (VB). First, let us
only focus on the dashed lines which corresponding to the
ballistic transport case. The dark blue curve corresponds to the
scenario where electrons are injected from both CB and VB.
Contrary to normal transistors, there is no saturation current,
since the more the voltage is applied between source and
drain, the more electrons are transmitted from the source to the
drain (from valence band in the source to conduction band in
the drain). On the other hand, in the light blue curve, we allow
only injection from the CB. Then, current saturates because
after the voltage reaches the Fermi energy value, the same
amount of electrons from the conduction band are injected
independently of the applied voltage. This is similar to typical
transistors with semiconductors having energy gaps large
enough such that typically only electrons from the conduction
band (or only electrons from the valence band) are considered.

The dc current with dissipation is plotted in the solid
curves. In the simulation, both the acoustic and optical
phonons are considered with emission and absorption from
both zone edge and zone center with energy interchange of
±0.16 and ±0.196 eV, respectively. The scattering rates for
graphene are obtained from Ref. [61]. More details on how
dissipation is taken into account for in the simulation box can
be found in Ref. [36]. Since the mean free path of graphene
is of order of a micron and our simulated devices are far
smaller, dissipation has a minor effect on the current-voltage
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FIG. 8. Current-voltage characteristic for the four GFETs. The
dashed lines are for the ballistic transport with the dark blue (square)
one represents normal graphene injection (electrons injected from
both the CB and VB) current-voltage characteristic and the light blue
(diamond) line represents only electrons from the CB are injected. In
the orange solid (up triangle) curve, dissipation due to acoustic and
optical phonons are taken into account. The red solid (down triangle)
curve has the same scatterings but the effective collision rates are
(artificially) enhanced. The insets sketch different energy profiles for
applied bias.

characteristic, which can be clearly seen by comparing the
orange (with dissipation) and dark blue (without dissipation)
lines. Even with enhanced scattering rates (red line), com-
pared to the ballistic case, the dc current only decreases at
high applied drain voltages.

D. Transient simulations

Nowadays, electron devices based on 2D materials are
expected to fulfill the demand of the THz working frequency
in radio-frequency applications. In this high-frequency win-
dow, the quasistatic approximation method fails to properly
model the high-frequency behavior. Consequently, a full time-
dependent simulation of the quantum transport is demanded
[57,62]. In this other example, we present (see Fig. 9) the
instantaneous current after a transient perturbation in the
gates. This scenario is useful to study high-frequency ef-
fects, i.e., the transient and high-frequency noise [57]. We
used another GFET with the same parameters, except for
the channel length, which is Lx = 400 nm. In Fig. 9, we see
the mean current (in solid thick lines) in the drain, source,
and gate as function of time, and their instantaneous current
(in thin lines). After time t = 1 ps, the current in the drain
increases, contrary to the source, that decreases after the gate
voltage perturbation. We notice that the total (particle plus
displacement) current has been computed for each contact.
At each time step, the sum of the three currents is zero,
satisfying current conservation law. We see in Fig. 9 the
transient dynamics related to the electron dwell time (with
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FIG. 9. The transient current in a GFET. Initially both (top and
bottom) gates voltage values are set to Vbg = Vtg = −0.15 V; at time
t = 1 ps, these values are changed to Vbg = Vtg = 0.15 V.

Klein tunneling) and the noise induced by the randomness in
the electron injection process.

E. Noise simulations: A high-frequency signature for graphene

Next, we discuss how the two different types of injection
provide relevant differences in the noise performances. We
are interested here in the differences in the high-frequency
noise. In Appendix D, we show that for low frequencies
(ω → 0) both types of injection provides identical results.
Both satisfy the fluctuation-dissipation theorem. On the con-
trary, important differences appears at high frequencies. The
power spectral density of the source and drain currents for
transistors based on graphene and black phosphorus are plot-
ted in Fig. 10. Note that the transistors have a linear and
parabolic dispersion injection, respectively. We get the analyt-
ical parabolic dispersion of black phosphorus from Ref. [63].
The technical details about how to compute the power spectral
density can be found in Ref. [64]. First, obviously, due to
the higher mobility of graphene, the noise spectrum in the
graphene transistor has a displacement toward higher fre-
quency range than that in the black phosphorus device. In
addition, the power spectral density in the source and drain
contacts of the graphene transistor has a maximum around
1 THz. The physical origin of this peak is that almost all
electrons injected from a linear 2D material have roughly the
same velocity [see Fig. 6(a)] when entering into the device
active region. However, the large variation of the velocities for
the electrons injected from a parabolic 2D material washes out
such a peak in the black phosphorus transistor. The significant
difference of the power spectral density can be utilized as
a detector for the linear and parabolic band materials. We
argue that the peak in Fig. 10 is a genuine high-frequency
signature of the graphene material, which open applicabilities
of measuring the transport properties of 2D linear materials.
For instance, by knowing the minimum temporal separation
t l
0 in Eq. (5) from the power spectral density peak, we can

calculate the v f or the �x, which corresponds to the Fermi
velocity and the size of the wave packet.
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FIG. 10. Power spectral density of the current fluctuations as a
function of frequency for a semiclassical Monte Carlo simulation of
transistors [illustrated in Fig. 1(a)] based on a linear (red solid lines)
and parabolic (black dashed lines) 2D materials. For simplicity and
only focus on the effect of the injection, both devices have the same
device geometry and under dc conditions: the gate polarization V =
0 V and applied drain bias is 0 V. Electrons are only injected from
the source contact.

VI. CONCLUSIONS

The electron injection model in Dirac materials has some
particularities not present in the traditional modeling of elec-
tron transport in parabolic band materials. In particular, in
gapless materials like graphene with a Dirac structure, the
injection of electrons with positive (in CB) and negative (in
VB) kinetic energies are mandatory to properly describe elec-
tron device characteristics with Klein tunneling. Then, it is
shown that the number of injected electrons is bias dependent
so that an extra charge has to be added when computing
the self-consistent results. We demonstrate that the use of
traditional transport models dealing with holes (defined as the
lack of electrons) can lead to unphysical results when applied
to high-frequency predictions of Dirac materials with Klein
tunneling. From the differences between linear and parabolic
energy bands, we can anticipate some important differences in
their noise performances. The injection rate in Dirac materials
tends to be a constant leading to a genuine high-frequency
signature. Future work will be devoted to the difference in
the high-frequency noise between devices with parabolic and
linear band structures, which will open many unexplored
applicabilities of using this noise as a band structure tester
and utilizing it to predict the transport properties (for instance,
the Fermi velocity and the size of the wave packet) of the 2D
linear materials.
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APPENDIX A: ELECTRONS AS BISPINOR SOLUTION
OF THE TIME-DEPENDENT DIRAC EQUATION

In this Appendix, we detail how we define the wave
nature of electrons in graphene transistors by using the con-
ditional bispinor wave functions in the BITLLES simula-
tor [27,30–33]. Graphene dynamics (as well as for other
Dirac structure materials) are given by the Dirac equation,
and not by the usual Schrödinger one, which is valid for
parabolic bands. Thus, the wave function associated to the
electron is no longer a scalar but a bispinor 	 = (ψ1, ψ2)t ≡
[ψ1(x, z, t ), ψ2(x, z, t )]t . The two (scalar) components are
solution of the mentioned Dirac equation:

ih̄
∂

∂t

(
ψ1

ψ2

)

=
(

V (x, z, t ) −ih̄v f
∂
∂x − h̄v f

∂
∂z

−ih̄v f
∂
∂x + h̄v f

∂
∂z V (x, z, t )

)(
ψ1

ψ2

)
. (A1)

We remind that v f = 106 m/s is the graphene Fermi velocity
and V (x, z, t ) is the electrostatic potential. The initial electron
wave function is a Gaussian bispinor wave packet:(

ψ1(x, z, t )

ψ2(x, z, t )

)
=

(
1

seiθ �kc

)
ψg(x, z, t ), (A2)

where ψg(x, z, t ) is a (scalar) Gaussian function with central
momentum �kc = (kx,c, kz,c ). We use s = 1 for the initial elec-
tron in the CB and s = −1 for the initial electron in VB, and
θ�kc

= arctan(kz,c/kx,c).
Apart from the bispinor, each electrons is described also

by a Bohmian trajectory. From Eq. (A1), we can also identify
the Bohmian velocity of an electron by using the general
expression �J (�r, t ) = ρ�v = |	(�r, t )|2�vB so that

�vB(�r, t ) = J (�r, t )

|	(�r, t )|2 = v f 	(�r, t )†�σ	(�r, t )

|	(�r, t )|2 (A3)

and the Pauli matrices are

�σ = (σx, σz ) =
((

0 1
1 0

)
,

(
0 −i
i 0

))
. (A4)

In the literature, usually, our Pauli matrix σz in Eq. (A4)
is defined as the σy. However, since we define our sheet of
graphene in the plane x and z, our notation is different. From
the above equation, the Bohmian velocity in the x and z
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directions can be given as

vBx(�r, t ) = Jx(�r, t )

|	(�r, t )|2 = v f 	(�r, t )†σx	(�r, t )

|	(�r, t )|2 (A5)

and

vBz(�r, t ) = Jz(�r, t )

|	(�r, t )|2 = v f 	(�r, t )†σz	(�r, t )

|	(�r, t )|2 . (A6)

The Bohmian trajectory of each electron is computed by
time integrating the above velocities. The initial position of
each electron is chosen according to the quantum equilibrium
hypothesis [28]. This hypothesis assumes that the initial posi-
tions and velocities of the Bohmian trajectories are defined
and distributed according to modulus of the initial wave
function, which ensures that the trajectories will reproduce
the modulus of the wave function and that Bohmian mechan-
ics reproduces the same outcomes as the orthodox quantum
theory [28].

The bispinor in Eq. (A2) can be considered as a Bohmian
conditional “wave function” for the electron, a unique tool of
Bohmian mechanics that allows us to tackle the many-body
and measurement problems in a computationally efficient way
[26,27]. The Bohmian ontology allows us to describe the
(wave and particle) properties of electrons along the device
independently of the fact of being measured. It is well known
that this Bohmian language (which resembles a classical
language) is perfectly compatible with orthodox quantum
results [26].

APPENDIX B: NUMBER OF ELECTRONS
IN A REGION OF THE PHASE SPACE

To simplify the discussion, we use a 1D phase space
and consider electrons (fermions) without spin. The spatial
borders of the phase space are selected, arbitrarily, as x =
0 and x = L. The common argument used in the literature
counts the number of Hamiltonian eigenstates fitting inside
in the phase space, when applying the well-known Born–von
Karman periodic boundary conditions [65]. The result is that
each electron requires a partial volume of 2π of the phase
space, as indicated in Eq. (3). After discussing the limitations
of this procedure, we obtain the same result by imposing
the exchange interaction among electrons associated to time-
dependent wave packets.

1. Limitations of the Born–von Karman periodic
boundary conditions

The single-particle Hamiltonian eigenstates of a semicon-
ductor can be written as Bloch states 	(x) ∝ eikxx so that, by
imposing the Born–von Karman periodic boundary conditions
on the spatial borders of the phase space, 	(x + L) = 	(x),
we require that eikxL = 1. Thus, we conclude that the allowed
wave vectors kx have to take the discrete values

kx = 2π
j

L
= �kx j (B1)

for j = 0,±1,±2, . . . with �kx = 2π/L. Because of the
Pauli exclusion principle, two electrons cannot be associated

to the same state 	(x) ∝ eikxx, i.e., to the same kx. Therefore,
the number of electrons in the 1D phase space, at zero tem-
perature, is just n1D = k f /�kx = k f L/(2π ) with k f the wave
vector associated to the Fermi energy. Thus, the well-known
density of states in the 1D phase space (without spin or valley
degeneracies) gives that each electron requires a volume of 2π

of the phase space, in agreement with Eq. (3).
In the above procedure, we give an unphysical definition of

the values �kx and �x mentioned in Eq. (3). We assume that
each electron described by 	(x) ∝ eikxx has a spatial extension
�x = L; then, using �x�kx = 2π, we get �kx = 2π/L. We
argue here that a time-dependent modeling of transport cannot
be based on time-independent energy eigenstates 	(x) ∝
eikxx. We are interested in electrons moving from the left
contact (i.e., with an initial probability located at the left),
traveling along the active region, until the electron reach the
right contact (i.e., with a final probability located at the right).
Next, we discuss how the number of electrons in the phase
space can be counted with time-dependent wave packets.

2. Exchange interaction among electrons in free space

We remark the wave nature of electrons in our 1D system
using, for example, a Gaussian wave packet,

ψ j (x) = 1(
πσ 2

k

)1/4 e[ikoj (x−xoj )]e

[
− (x−xoj )2

2σ2
x

]
, (B2)

where the electron wave function is located around the central
position xoj and central wave vector koj . The spatial dispersion
in the position space is σx, and in the wave vector space σk =
1/σx. Strictly speaking, Eq. (B2) is the envelope of a wave
function that varies smoothly in the atomistic resolution of a
semiconductor. The normalization condition can be written as∫ ∞
−∞ dx|ψ j (x)|2 = 1.

We consider a first wave packet ψ1(x) located somewhere
in the phase space. We consider a second wave packet ψ2(x),
initially far from the first wave packet, that approaches the
first one, for example, because of the interaction with all other
electrons. We simplify the many-body dynamics by consider-
ing that the first wave packet has fixed the central position x01

and central wave vector ko1 and that the second one keeps the
shape given by Eq. (B2) with values of the central position x02

and central wave vector ko2 varying to approach the location
of the first wave packet in the phase space. Thus, we compute
the probability P of the antisymmetrical state �(x1, x2) of
the two electrons from the Slater determinant, built from the
single-particle wave packets in Eq. (B2), as

P(�) =
∫ ∞

−∞

∫ ∞

−∞
dx1 dx2

1

2
|ψ1(x1)ψ2(x2)−ψ1(x2)ψ2(x1)|2

=
∫ ∞

−∞

∫ ∞

−∞
dx1 dx2|ψ1(x1)|2|ψ2(x2)|2

−
∫ ∞

−∞

∫ ∞

−∞
dx1 dx2ψ

∗
1 (x1)ψ2(x1)ψ∗

2 (x2)ψ1(x2).

(B3)
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FIG. 11. (a) Probability of not finding a second electron in the
central positions xo2 = x2 and central wave vector ko2 = k2 due to
the presence of another electron in xo1 = 2 μm and ko1 = 8 μm−1.
(b) Contour plot of panel (a). The line 0.31 corresponds to an ellipse
(inside a rectangle with sides are

√
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√
8σk) whose area is 2π .

This surface corresponds to the volume of the phase space needed
for each electron. See the exact computation in Eq. (B6) in this
Appendix.

Using Eq. (B2) gives [59]

P(�) = 1 − exp
(−d2

1,2

)
, (B4)

where we have defined the distance d1,2 between the wave
packets 1 and 2 in the phase space as

d2
1,2 = (ko1 − ko2)2

2σ 2
k

+ (xo1 − xo2)2

2σ 2
x

. (B5)

The interpretation of Eq. (B4) is simple. When the wave
packets are far away from each other in the phase space, i.e.,
|xo1 − xo2| � σx or |ko1 − ko2| � σk , the norm of the two-
electron wave function is equal to the unity. However, when
the wave packets are approaching each other, the probability
in Eq. (B4) decreases. In particular, for xo1 = xo2 and ko1 =
ko2, we get ψ1(x) = ψ2(x) and �(x1, x2) = ψ1(x1)ψ1(x2) −
ψ1(x2)ψ1(x1) = 0 with P(�) = 0 in Eq. (B4). This is the
time-dependent wave-packet version of the Pauli exclusion
principle (or exchange interaction) mentioned above for time-
independent Hamiltonian eigenstates.

In Fig. 11, we plot 1 − P(�) as a function of ko2 and x02.
For large values of d1,2, the probability of finding the second
electron is equal to the unity, P(�) = 1 [or 1 − P(�) = 0].
However, for small d1,2, the probability P(�) decreases. We
now compute the area of the phase space forbidden for the sec-
ond electron due to the presence of the first one. Not all points
xo2 and ko2 are equally forbidden. As we get closer to xo1 and
ko1, the less probable such second electron becomes. Thus, the
computation of this forbidden Area has to be weighted by the

probability 1 − P(�) given by Eq. (B4) as

Area =
∫ ∞

−∞
dko2

∫ ∞

−∞
dxo2[1 − P(�)]

=
∫ ∞

−∞
dko2

∫ ∞

−∞
dxo2 exp

(−d2
1,2

)

=
∫ ∞

−∞
dxo2 e

− (xo1−xo2 )2

2σ2
x

∫ ∞

−∞
dko2 e

− (ko1−ko2 )2

2σ2
k

= 2π. (B6)

This Area = 2π is universal and independent of the parame-
ters of the Gaussian wave packets [59]. This result can also
be extended to a many-particle wave function with a large
number of particles. Again, we obtain that each electron
requires a volume of 2π of the phase space, in agreement
with Eq. (3). This important result that we get from this last
wave-packet procedure is that the physical interpretation of
�x and �kx mentioned along the text can be defined as

�x = σx

√
2π, (B7)

�kx = σk

√
2π, (B8)

We notice that the condition σxσk = 1 implies the desired
condition �x�kx = 2π as mentioned in Fig. 11.

APPENDIX C: PRACTICAL IMPLEMENTATION
OF THE ELECTRON INJECTION MODEL

IN THE BITLLES SIMULATOR

In this part, we describe the procedure for implementing
the electron injection model described in the main text in the
time-dependent BITLLES simulator [27,29–33].

Step 1. Define a grid for the whole phase-space
associated to the injecting contact

We select the phase space of the contacts. The spatial limits
selected by the boundaries of the contact surfaces. The limits
of the reciprocal space {kx, kz} are selected indirectly by the
occupation function fsum(E ) in Eq. (12) in the main text.
That is, the maximum value of the wave vector components,
kx,max and kz,max, must be selected large enough to be sure that
fsum(E (kx,max)) = fsum(E (kz,max)) ≈ 0. The minimum value
of the wave-vector components is assumed to be kx,min =
−kx,max and kz,min = −kz,max.

In principle, the values �x, �z, �kx, and �kz has to be
selected according to the development done in Appendix B.
See Eqs. (31) and (32). However, if we are interested only
in studying dynamics of electrons at frequencies much lower
than 1/to [with to defined in Eq. (4) as the minimum temporal
separation between consecutive injected electrons], then we
can use larger values of �x, �z, �kx, and �kz to speed up
the computational burden of the injection algorithm. Then, the
spatial step �z can be chosen as large as the contact surface
(i.e., �z = Lz, Lz being the lateral width). The spatial step
�x is arbitrary and has no effect on the injection rate. The
wave-vector cell {�kx,�kz} has to ensure that all electrons
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have similar velocities in the x direction. The selection of �kx

needs to be small in either parabolic or linear band structures.
For parabolic bands, since the vx velocity is independent of
kz, to speed the computation, we can select �kz = 2kz,max.
However, for the material with linear band, because vx is
explicitly dependent on both wave-vector components kx and
kz, the interval �kz should also be selected to be small enough
to roughly maintain the constant velocity vx for all electrons
inside the cell. This grid has to be repeated for all the contacts
(source and drain) and all the energy bands (conduction band
and valence band) involved in the device simulation.

Step 2. Consider the charge of the nonsimulated
electrons for each bias point

According to discussion in the main text, the charge inside
the simulation box has two different origins. First, the charge
assigned to the explicitly simulated particles, i.e., the transport
electrons (injected) in the simulation box. Second, the charge
assigned to nonsimulated particles, i.e., the charge assigned
to the doping and the nontransport electrons. From each
bias condition, the charge assigned to nontransport electrons
varies. Therefore, at each bias point, we have to compute the
charge Qadd(x) defined in Eq. (18) as part of the fixed charge
in the simulation box when computing device electrostatics.

Step 3. Select the minimum temporal separation
t0 for each phase-space cell

At each time step �t of the simulation, the algorithm for
the injection of electrons has to be considered. For all the
cells of the phase space (for all the contacts and all the energy
bands involved in the device simulation) defined in step 1, a
computation of the minimal injection time t0 in Eqs. (5) and
(6) is required. When the time of the simulation is equal to
a multiple of t0, an attempt to inject an electron from this
particular phase-space cell into the simulation box happens.

Step 4. Decide if the electron is effectively injected or not

For each electron trying to be injected according to step 3,
a random number r uniformly distributed between zero and
one is generated. The electron is considered to be successfully
injected only if r < fsum(E ), with E being the kinetic energy
the electron taken. This stochastic procedure reproduces the
binomial probability described in Eq. (8) with the probability
Prob(E ) ≡ fsum(E ) given by Eq. (16). Since fsum(E ) depends
on the temperature, step 4 not only provides the correct aver-
age value of the number of injected electrons in a particular
energy but also the physical fluctuations responsible for the
thermal noise of the contacts (see Appendix D).

Step 5. Select the other properties of the effective
injected electron

Once the electron is effectively injected, some additional
effort to define its physical properties is required. The infor-
mation about the momentum, velocity, and x position for the
electron are specified from the selection of the injection cell in
steps 1 and 4. Since we consider confinement in the y direction
of the 2D materials, the y position is fixed. On the contrary, the

z position of the electron is selected with a uniform random
distribution along the lateral width of the spatial cell �z. If
we deal with quantum particles, the previous properties of
position and momentum refers to the central values of the
position and momentum of the wave packet (conditional wave
function) that is associated to the electron. If the Bohmian
approach for the quantum transport is taken into account, as
done in the BITLLES [27,30–33], the initial position of the
Bohmian particle has to be defined according to quantum
equilibrium [26]. This last definition of wave packet is ex-
plained in Appendix A for graphene under the Dirac equation.

Step 6. Repeat the complete injection procedure
during all the simulation

Step 3 is repeated at each step �t of the simulation time. In
addition, steps 4 and 5 are repeated for all attempts to inject
an electron.

APPENDIX D: THE FLUCTUATION-DISSIPATION
THEOREM

As we have indicated in the text, the Kubo approach [17]
(linear response theory) is a successful theory that provides
dynamic properties of quantum systems when the pertur-
bations over the equilibrium state of the system are small
enough [18]. A very important result of the Kubo formalism
is the fluctuation-dissipation theorem [18,19], which states
that the noise of the electrical current in equilibrium (quan-
tified by the power spectral density at zero frequency) is
directly linked to the resistance (conductance) that appears
in a sample for a very small applied bias. In this Appendix,
we test the physical soundness of our 2D electron injection
model by checking that it successfully satisfies the fluctuation-
dissipation theorem.

To simplify the discussion, and since we are only interested
in checking the electron injection model (not the equations of
motion inside the active region), we assume a two-terminal
device where all electrons injected from one contact finally
reach the other. Then, the number N of injected electrons from
one contact is identical to the number of transmitted electrons
from that contact to the other. In our simplified scenario (in
this Appendix) without electron correlations induced in the
active region, we will only check the mean current and the
noise associated to the injection from two symmetrical cells
of the phase space as described in Appendix C (one in the
drain and another in the source). The inclusion of all the cells
in the discussion will only obscure our development below by
including an additional sum over cells without incorporating
any new physical relevant argument.

1. Average current when VDS → 0:

The injection of electrons from one particular phase-space
cell of the contact with wave vectors {kx, kz} is given by the
binomial distribution P(N, τ ) in Eq. (8) with N the number of
electrons that are effectively injected during a time-interval
τ . As indicated above, we assume that all injected elec-
trons are transmitted electrons. Therefore, the average number
of electrons transmitted from source to drain is Eτ [N] =∑N=+∞

N=−∞ NP(N, τ ) = fs(E )Mτ = fs(E )τ/t0, where fs(E ) is
the Fermi distribution function f (E ) defined in Eq. (7) at
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the source contact. In the text, we define Mτ = floor(τ/t0) as
the number of attempts of injecting electrons during the time
interval τ . Since we are dealing here with τ → ∞, we directly
use the above simplification Mτ = floor(τ/t0) ≈ τ/t0. The
minimum temporal separation between electrons t0 is defined
in Eq. (4) for a general 2D materials [and in Eq. (5) for linear
ones and in Eq. (6) for parabolic ones]. Using the following
expression for the average current, we get

〈I〉 = lim
τ→∞ q

Eτ [N]

τ
= q

fs(E )

t0
. (D1)

Identical results (with opposite direction of the current for
electrons transmitted from the drain to the source and different
Fermi-Dirac function) are given from the drain current from a
phase-space cell in the drain with the same t0 and wave vector
{−kx, kz}. Notice that we are considering an almost source-
drain symmetrical scenario under the condition of a small
applied drain-source bias VDS → 0). Then, the final result
for the total average current is 〈I〉 = q[ fs(E ) − fd (E )]/t0.
When considering, fs(E ) = f (E − E f ) and fd (E ) = f (E −
E f + qVDS ), and under the assumption that VDS → 0, we get
fd (E ) = f (E − E f + qVDS ) ≈ f (E − E f ) + q ∂ f

∂E VDS , where

we have used ∂ f
∂VDS

= q ∂ f
∂E , giving fs(E ) − fd (E ) = −q ∂ f

∂E .
Then, we get the final result for the conductance assigned to
these source and drain phase-space cells as

GVDS→0 = 〈I〉
VDS

= −q2 ∂ f

∂E
/t0. (D2)

2. Power spectral density at zero frequency
(ω → 0) at equilibrium (VDS = 0)

For the binomial distribution of Eq. (8), we obtain that the
variance on the number N of transmitted electrons is given

by Eτ [N2] − (Eτ [N])2 = fs(E )[1 − fs(E )]τ/t0 with Eτ [N] =∑N=+∞
N=−∞ N2P(N, τ ). Then, using the Milatz’s theorem [49,66]

for the computation of the power spectral density at zero
frequency, we get

Sω→0 = lim
τ→∞ 2q2 Eτ [N2] − (Eτ [N])2

τ

= 2q2 fs(E )[1 − fs(E )]/t0. (D3)

Identical results are obtained for the electrons transmitted
from the opposite cell from at the drain and we get the final
result Sω→0 = 2e2{ fs(E )[1 − fs(E )] + fd (E )[1 − fd (E )]}/t0.
Notice the source and drain contributions are added because
in Eq. (D3) we are computing the average number square of
the particles, with N2 = (−N )2. Since we are assuming now
equilibrium with VDS = 0, we get fs(E ) = fd (E ) = f (E ) and
we use fs(E )[1 − fs(E )] + fd (E )[1 − fd (E )] = 2 f (E )[1 −
f (E )] = −2kBT ∂ f

∂E . Finally, we get

Sω→0 = −4q2kBT
∂ f

∂E
/t0. (D4)

Now, comparing Eqs. (34) and (36), we conclude that

Sω→0 = 4kBT GVDS→0, (D5)

which is just the well-known expression of the fluctuation-
dissipation theorem where the thermal noise in equilibrium
given by Eq. (D4) contains information of the conductance
of the sample outside of equilibrium given by Eq. (D2), and
vice versa. As a by-product, we also obtain the information
that the 2D linear or parabolic energy dispersion has no direct
effect on the shape of the power spectral density of the current
fluctuations at low frequencies (ω → 0).
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