
PHYSICAL REVIEW B 84, 125455 (2011)

Landau level spectrum of ABA- and ABC-stacked trilayer graphene
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We study the Landau level spectrum of ABA- and ABC-stacked trilayer graphene. We derive analytic low-
energy expressions for the spectrum, the validity of which is confirmed by comparison to a π -band tight-binding
calculation of the density of states on the honeycomb lattice. We further study the effect of a perpendicular
electric field on the spectrum, where a zero-energy plateau appears for ABC stacking order, due to the opening of
a gap at the Dirac point, while the ABA-stacked trilayer graphene remains metallic. We discuss our results in the
context of recent electronic transport experiments. Furthermore, we argue that the expressions obtained can be
useful in the analysis of future measurements of cyclotron resonance of electrons and holes in trilayer graphene.
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I. INTRODUCTION

Recent experimental realizations of graphene trilayers1–6

(TLGs) have opened the possibility of exploring their intrigu-
ing electronic properties, which depend dramatically on the
stacking sequence of the graphene layers.7,8 The low-energy
band structure for ABA-stacked TLG consists of one massless
and two massive sub-bands, similar to the spectrum of one-
single-layer graphene (SLG) and one-bilayer graphene (BLG),
while an ABC trilayer presents approximately cubic bands.9

Interestingly, when TLG is subjected to a perpendicular
electric field, a gap can be opened for ABC samples,2,3,10–12

similarly to BLG,13 whereas ABA TLG remains metallic with
a tunable band overlap.14

When a strong magnetic field is applied perpendicular to
the TLG planes, the band structure is quantized into Landau
levels (LLs). The number of graphene layers as well as their
relative orientation (stacking sequence) determine the features
of the quantum Hall effect (QHE) in this material, where the
Hall conductivity presents plateaus at15,16

σxy = ±ge2

h

(
n + N

2

)
, (1)

where N = 3 is the number of layers, n is the LL index,
g = 4 is the LL degeneracy due to spin and valley degrees of
freedom, −e is the electron charge, and h is Planck’s constant.
In particular, the plateau structure in σxy of TLG has been
shown to be strongly dependent on the stacking sequence.2

In this paper we study the LL quantization of TLG. We
obtain analytical expressions for the LL spectrum of TLG with
ABA or ABC stacking order. The range of applicability of the
analytical results is studied by a comparison to the density
of states (DOS) obtained from a numerical solution of the
time-dependent Schrödinger equation within the framework
of a tight-binding model on the honeycomb lattice.17–19 We
further study the effect of a perpendicular electric field in the
LL spectrum, finding that a zero-energy plateau develops in
the Hall conductivity only for ABC-stacked graphene, while
ABA-stacked graphene remains ungapped.

The paper is organized as follows. In Sec. II we obtain
analytically the low-energy LL spectrum of TLG. The analytic
expressions of Sec. II are compared to the DOS numeri-
cally obtained from a full tight-binding calculation in the

honeycomb lattice in Sec. III. Our main conclusions are
summarized in Sec. IV.

II. ANALYTIC DERIVATION OF THE LANDAU LEVEL
SPECTRUM

In nature there are two known forms of stable stacking
sequence in TLG, namely, ABA (Bernal) and ABC (rhom-
bohedral) stacking.20 The difference between ABA and ABC
stacking, schematically shown in Fig. 1, is that the third layer
is rotated with respect to the second layer by −120◦ (so that
it will be exactly under the first layer) in ABA stacking, while
it is rotated by +120◦ in ABC stacking.7,21,22 In a basis with
components of ψA1 , ψB1 , ψA2 , ψB2 , ψA3 , ψB3 , where ψAi

(ψBi
) are the envelope functions associated with the probability

amplitudes of the wave functions on sublattice A (B) of the
ith layer (i = 1,2,3), the effective low-energy Hamiltonian of
ABA-stacked TLG around the K point is7

Hp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 vFp− 0 0 0 0

vFp+ 0 γ1 0 0 0

0 γ1 0 vFp− 0 γ1

0 0 vFp+ 0 0 0

0 0 0 0 0 vFp−
0 0 γ1 0 vFp+ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where p± = px ± ipy , with p = (px,py) the two-dimensional
momentum operator and vF = 3at/2 the Fermi velocity of the
monolayer graphene, in terms of the in-plane nearest-neighbor
hopping t ≈ 3 eV and the carbon-carbon distance a ≈ 1.42 Å
(from now on we use units such that h̄ ≡ 1 ≡ c). For the
moment, we only include the interlayer hopping γ1 ≈ 0.4 eV
in Eq. (2). The effective Hamiltonian for K ′ is obtained by
exchanging p+ and p−. The effect of far-distant hopping such
as γ3 is discussed in Appendix C. The Hamiltonian, (2), leads
to a combination of two linear SLG-like bands [black lines
in Fig. 2(a)] and four massive BLG-like bands [red and green
lines in Fig. 2(a)].

In the presence of an external perpendicular magnetic
field,23 the canonical momentum p must be replaced by
the gauge-invariant kinetic momentum p → � = p + eA(r),
where A(r) is the vector potential, and that obeys the

125455-11098-0121/2011/84(12)/125455(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.125455
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FIG. 1. Atomic structure of ABA- and ABC-stacked trilayer
graphene. Intralayer t and interlayer γ1 and γ3 hopping amplitudes
are shown schematically.

commutation relation [�x,�y] = −i/ l2
B , where lB = 1/

√
eB

is the magnetic length. Therefore, this allows us to introduce
the ladder operators â = (lB/

√
2)�− and â† = (lB/

√
2)�+,

where �± = �x ± i�y , which obey the commutation rela-
tion [â,â†] = 1. As in the usual one-dimensional harmonic
oscillator,

â|n〉 = √
n|n − 1〉, â†|n〉 = √

n + 1|n + 1〉,
where |n〉 is an eigenstate of the usual number operator
â†â|n〉 = n|n〉, with n � 0 an integer. Then the Hamiltonian
can be expressed in terms of â and â† as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �Bâ 0 0 0 0

�Bâ† 0 γ1 0 0 0

0 γ1 0 �Bâ 0 γ1

0 0 �Bâ† 0 0 0

0 0 0 0 0 �Bâ

0 0 γ1 0 �Bâ† 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where �B is the magnetic energy defined by �B = √
2vF/lB .

Therefore the six-component eigenstates of H can be re-
constructed as ψ = [cA1ϕn−1,k , cB1ϕn,k , cA2ϕn,k , cB2ϕn+1,k ,
cA3ϕn−1,k , cB3ϕn,k]T , where cAi

(cBi
) are amplitudes. If we

choose the Landau gauge A(r) = (0,Bx), then the wave
function of the nth LL ϕn,k(x,y) is given by24

ϕn,k(x,y) = in
(

1

2nn!
√

πlB

)1/2

eikye−z2/2Hn(z), (4)

(a) (b)

FIG. 2. (Color online) Low-energy band structure of ABA- and
ABC-stacked trilayer graphene around the K point. We have used
the tight-binding parameters t = 3 eV and γ1 = 0.4 eV. Horizontal
dash-dotted (blue) lines are a guide for the eye that mark, for the
parameters used, t and γ1, the position of the bottom (top) of the
upper (lower) bands. The analytic expressions of these bands are
given in Appendix A.

where z = (x − kl2
B)/lB , Hn(z) is the Hermite polynomial, and

ϕn,k ≡ 0 for n < 0. Then the Hamiltonian matrix in the basis
of ψ is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �BC1 0 0 0 0

�BC1 0 γ1 0 0 0

0 γ1 0 �BC2 0 γ1

0 0 �BC2 0 0 0

0 0 0 0 0 �BC1

0 0 γ1 0 �BC1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

with C1 = √
n and C2 = √

n + 1. Equation (5) has six
eigenvalues, which can be easily calculated:

En,s = ± 1√
2

[
2γ 2

1 + (2n + 1)�2
B

+ s

√
4γ 4

1 + 4(2n + 1)γ 2
1 �2

B + �4
B

]1/2
, (6)

En,0 = ±�B

√
n, (7)

with s = ±1 and n � 0. The eigenstates corresponding to the
above LLs are given in Appendix B. Note that Eq. (6) coincides
(apart from the numerical factor

√
2 in front of γ1) with the

LL spectrum of a BLG,25 whereas Eq. (7) corresponds to the
LL spectrum of an SLG. This is expected since the low-energy
band structure of ABA TLG consists of two massless SLG-like
bands and four massive BLG-like bands, as discussed above.
In Fig. 3(a) we show the LL spectrum Eqs. (6) and (7) for
ABA TLG obtained for the first 50 LLs of each band (we only
show the states with positive energy). As in the zero-magnetic-
field case, there are two sets of BLG-like LLs which disperse
roughly linearly with B (the LLs plotted in red and green),
whereas the SLG-like band that disperses linearly in k leads
to a set of

√
B-like LLs (plotted in black) [see Fig. 3(b) for

a zoom-in on the low-energy and low-magnetic-field region
in Fig. 3(a)]. Furthermore, a set of LL crossings occurs due
to the massless and massive characters of the sub-bands, as
has been observed experimentally.1 Note that the LLs in the
low-energy part of the spectrum have only En,− character [see
Figs. 3(a) and 3(b)], unless the magnetic field is very strong.
For example, the third low-energy LL belongs to the set of LLs
En,0 when B � 45 T. On the other hand, the En,+ LLs only

appear at an energy |E| � |E0,+| =
√

2γ 2
1 + �2

B . In the limit

n�2
B 	 γ 2

1 , the BLG-like bands, Eq. (6) , can be simplified to

En,− ≈ ± v2
F

l2
Bγ1

√
2n(n + 1), (8)

which is similar to the commonly used expression for the
low-energy spectrum of BLG in a weak magnetic field.15

Whereas some of the results for the LL spectrum of ABA
TLG have been discussed before,26,27 much less effort has
been placed on understanding the ABC TLG. However, recent
experiments have shown the stability of TLG stacked with a
rhombohedral order, and the possibility of opening a gap by
applying a transverse electric field to the sample,2,3,6 which

125455-2



LANDAU LEVEL SPECTRUM OF ABA- AND ABC-STACKED . . . PHYSICAL REVIEW B 84, 125455 (2011)

FIG. 3. (Color online) Three band structures in the Landau level (LL) spectrum of ABA- and ABC-stacked trilayer graphene. We have used
Eqs. (6) and (7) for ABA stacking and Eq. (13) for ABC stacking. Only the first 50 LLs in each band are presented.

has activated the interest in TLG with this stacking sequence.
The Hamiltonian for ABC-stacked TLG around the K point is

Hp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 vFp− 0 0 0 0

vFp+ 0 γ1 0 0 0

0 γ1 0 vFp− 0 0

0 0 vFp+ 0 γ1 0

0 0 0 γ1 0 vFp−
0 0 0 0 vFp+ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The eigenvalues of Eq. (9) leads, as shown in Fig. 2(b), to a
low-energy band structure that consists of a set of six cubic
bands, two of them touching each other at the K point and the
other four crossing at an energy E = ±γ1 above (below) the K

point. In the following we obtain the LL spectrum for this case.
In a manner similar to that for the ABA case, the six-component
eigenstates of the Hamiltonian for ABC-stacked TLG can be
reconstructed as ψ = [cA1ϕn−1,k , cB1ϕn,k , cA2ϕn,k , cB2ϕn+1,k ,

cA3ϕn+1,k , cB3ϕn+2,k]T , and the Hamiltonian matrix in this case
is (n � 0)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �BC1 0 0 0 0

�BC1 0 γ1 0 0 0

0 γ1 0 �BC2 0 0

0 0 �BC2 0 γ1 0

0 0 0 γ1 0 �BC3

0 0 0 0 �BC3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

with C1 = √
n, C2 = √

n + 1, and C3 = √
n + 2. The eigen-

values of Eq. (10) are the solutions of the equation

E6
n + bE4

n + cE2
n + d = 0, (11)

where

b = −2γ 2
1 − 3(1 + n)�2

B,

c = γ 4
1 + 2(1 + n)γ 2

1 �2
B + (2 + 6n + 3n2)�4

B, (12)

d = −n(n + 1)(n + 2)�6
B,
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FIG. 4. (Color online) Comparation of the Landau level spectrum obtained from the analytic expressions derived in the text (color lines)
and the numerical simulation (black lines) of ABA- and ABC-stacked trilayer graphene. The sample used in the numerical simulations contains
3200 × 3200 atomic sites in each layer, and we use the periodic boundary conditions in the plane (XY ) of graphene layers.

which leads to an LL spectrum for ABC-stacked TLG given
by28

En,1 = ±
√

2
√

Q cos

(
θ + 2π

3

)
− b

3
,

En,2 = ±
√

2
√

Q cos

(
θ + 4π

3

)
− b

3
, (13)

En,3 = ±
√

2
√

Q cos

(
θ

3

)
− b

3
,

where

θ = cos−1

(
R√
Q3

)
, (14)

R = − b3

27
+ bc

6
− d

2
, (15)

Q = b2

9
− c

3
. (16)

In Eq. (10), the LL index n is required to be nonnegative.
However, note that Eq. (10) also admits eigenstates with
real eigenvalues that contain components with n = −1. The
corresponding eigenenergies can be obtained by setting C1 =
−1, C2 = 0, and C3 = 1 in Eq. (10). This leads to three twofold
eigenvalues that complement Eq. (13),

E−1,1 = 0, E−1,3 = ±
√

γ 2
1 + �2

B,

where we label the contributions from the last two bands as
E−1,3, because they have a field dependence similar to that of
the En,3 LLs [see Fig. 3(d)].

In the low-magnetic-field limit, the LL spectrum for ABC-
stacked TLG can be approximated by7,9

En ≈ ±
(
2v2

F

/
l2
B

)3/2

γ 2
1

√
n(n + 1)(n + 2). (17)

The positive-energy part of the LL spectrum obtained from
Eq. (13) is represented in Fig. 3(c). One can distinguish one
set of LLs starting from zero energy, which correspond to
the low-energy band that touches the Dirac point, plus two
sets of LLs at an energy ∼γ1 which are related to the bands
that cross at γ1 [see Fig. 2(b)]. Whereas the low-energy set
of LLs can be understood from a standard quantization of a
low-energy cubic band, the LLs that appear at En ∼ γ1 deserve
some discussion [see Fig. 3(d) for a zoom-in on the low-field
region of these states]. Most saliently, the hybridization of
the upper bands leads to two different sets of LLs. One set
of LLs [plotted in green in Figs. 3(c) and 3(d)], associated
with the inner branches of the hybridized bands [denoted by
green lines in Fig. 2(b)], disperses with an energy En > γ1

and it is quite similar to that of a SLG. The other set of
LLs, associated with the outer branches of the hybridized
bands [denoted by red lines in Fig. 2(b)], has an energy that
first decreases with B until it reaches a minimum value and
then increases in energy as B increases [see the lower set of
LLs in Fig. 3(d), which are shown in red]. This behavior is
due to the cusp of this branch at E = γ1 and resembles the
saddle point of the BLG bands in the presence of a transverse
electric field. The effect of the perpendicular electric field in
BLG is to open a gap in the spectrum, leading to Mexican
hat–like bands,13,29–35 with the corresponding anomalous LL
quantization of the band.25,36,37 Therefore, the LLs associated
to the quantization of the lower branches of the hybridized
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bands in ABC TLG can be obtained, in a first approximation,
by using the semiclassical approximation used in Ref. 36 for a
biased BLG. The degeneracy of zero-order LLs in ABC TLG
is three times larger than that in SLG. This result remains
correct also for the case of an inhomogenous magnetic field as
follows from the index theorem.38

III. DENSITY OF STATES FROM A FULL π -BAND
TIGHT-BINDING MODEL

In order to check the range of validity of the analytic
expressions obtained in Sec. II, in this section we compare the
LLs obtained from Eqs. (6), (7), and (13) for the low-energy
spectrum of ABA- and ABC-stacked TLGs, respectively, to
the DOS obtained numerically by solving the time-dependent
Schrödinger equation (TDSE) on a honeycomb lattice in the
framework of a π -band tight-binding model.17–19 The effect of
an external magnetic field is considered by means of a Peierls
substitution,

tmn → tmne
ie

∫ n

m
A·dl, (18)

where tmn is the hopping amplitude between site m and site n of
the honeycomb lattice, and

∫ n

m
A · dl is the line integral of the

vector potential. A numerical study of the magnetoelectronic
properties of ABC TLG has also been reported in Ref. 39.
In Fig. 4 we compare our analytic results of Eqs. (6), (7),
and (13) with the numerical TDSE results for the DOS, for
two different values of magnetic field. We find a very good
agreement between analytic and tight-binding results up to an
energy of ∼0.5 eV. Note that when an LL crossing occurs, for
example, of an SLG-like LL crossing with a BLG-like LL in
ABA TLG, this leads to an increase in the peak in the DOS.
This is, e.g., the reason for the enhanced peaks at E ≈ 0.5 eV
and E ≈ 0.7 eV in Fig. 4(b), as can be deduced by following
the LL spectrum in Fig. 3(a) at B = 50 T. Far from the neutral
point, at an energy E � 0.5 eV the analytic results are shifted to
the right of the spectrum, compared with the numerical TDSE
results (see, e.g., the peaks corresponding to En,− for ABA-
and En,1 for ABC-stacked TLG, represented by the vertical
red lines in Fig. 4). This is due to the fact that the dispersion
relation for SLG is not linear anymore, so that higher order
terms should be included for a precise reproduction of the
position of the LLs.

It is interesting also to check the range of validity of the
most commonly used approximated expressions for the LL
spectrum of TLG [Eq. (8) for ABA and Eq. (17) for ABC].
Contrary to SLG, for which the LL spectrum behaves as√

Bn up to rather high energies (in Ref. 40 a deviation of
only ∼40 meV at an energy of 1.25 eV was reported), the
B

√
n(n + 1) behavior of the BLG-like LLs of ABA TLG as

well as the B3/2√n(n + 1)(n + 2) behavior of ABC TLG is
valid only in a rather reduced range of energies in the spectrum.
In fact, we see in Fig. 5 that, for the moderate value of magnetic
field used for this plot (B = 20 T), the approximations Eqs. (8)
and (17) fail to capture accurately even the second LL of the
spectrum. The deviation is especially important for ABC TLG,
as shown in Fig. 6, where one can see that there are deviations
of hundreds of milli–electron volts between the two results
already for low LLs at some intermediate values of magnetic
field, ∼15–20 T. This is somewhat expected since recent

FIG. 5. (Color online) Landau level spectrum of (a) ABA- and
(b) ABC-stacked trilayer graphene at B = 20 T obtained from the
numerical solution of the TDSE using a π -band tight-binding model
(black lines). (a) The TDSE result is compared to the results from the
analytic expression En,− (vertical red lines) and En,0 (vertical green
lines) from Eqs. (6) and (7) and to the approximation, Eq. (8). (b) The
TDSE DOS results are compared to the analytic result for En,1 from
Eq. (13) and to the approximation, Eq. (17) (blue line).

cyclotron resonance experiments41,42 on BLG required the use
of the equivalent expression for BLG of Eq. (6), which we
have obtained for the BLG-like bands of ABA TLG. Indeed, a
good fit (apart from some possible many-body corrections)43,44

of the magneto-optical experiments on BLG was achieved
by using an expression similar to Eq.(6), with the only
tight-binding parameters γ0 ≡ t and γ1. Therefore, we expect
that the analytic expressions Eqs. (6), (7), and (13) that we
have obtained can be useful when analyzing future cyclotron
resonance experiments on ABA- and ABC-stacked TLG.

Furthermore, motivated by recent transport measurements
on TLG, which have revealed the strongly stacking-dependent
QHE in this material,1–6 we have calculated the Hall conduc-
tivity for the two stacking sequences of TLG, considering also
the effect of a transverse electric field in the spectrum. Here the
Hall conductivity σxy is calculated using the Kubo formula45

σxy = −nsec

B
+ �σxy, (19)

where the charge density ns = ∫ E

0 ρ(E)dE is obtained by
integration of the DOS ρ(E) calculated from the TDSE and
π -band tight-binding method, and �σxy is a correction due
to scattering of electrons with impurities,18 which is zero
in the clean limit considered here. In Fig. 7, we show the
Hall conductivity of ABA- and ABC-stacked TLG with or
without an external electric field. In the absence of any
bias, the Hall conductivity for the two cases is similar, with
plateaus at ν = ±6, ± 10, ± 14, . . .. However, the structure
of σxy is different when we consider the effect of a transverse
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FIG. 6. (Color online) Comparation of the analytic results for the
first 10 Landau levels (LLs) obtained from Eqs. (6), (7), and (13)
for ABA- and ABC-stacked graphene, respectively [solid (black)
lines], and the approximations Eqs. (8) and (17) [dashed (red) lines].
Insets: Difference between Eqs. (6)–(13) and the commonly used
approximations Eqs. (8)–(17). Note the different ranges of magnetic
fields used in the insets with respect to the figures.

electric field, which is accounted for here by adding a different
(nonzero) on-site potential on the top and the bottom layers,
namely, �1/2 on the top layer and −�1/2 on the bottom
layer. The main difference between ABA- and ABC-stacked
TLG in the presence of a transverse bias is that it leads to a gap
opening in the case of ABC stacking, while the ABA-stacked
TLG remains gapless, as has been observed experimentally.2

In fact, the opening of the gap and the corresponding insulating
state lead to the appearance of a zero-energy plateau in the Hall
conductivity in ABC TLG, a plateau which is absent in ABA
TLG, as shown in Fig. 7 for different values of �1. On the other
hand, the position of the plateaus depends very much on the
value of the induced difference potential �1. For a small bias
leading to �1 = 0.15 eV, we find plateaus for ABA TLG at
ν = ±2, ± 4, ± 6, ± 10, ± 14, . . ., whereas a higher value,
�1 = 0.3 eV, leads to plateaus at ν = ±2, ± 6, ± 8, ± 12,

± 14, . . .. On the other hand, whereas �1 = 0.15 eV leads to
plateaus for ABC at all even values of ν (including ν = 0),

FIG. 7. (Color online) Hall conductivity of ABA- and ABC-
stacked trilayer graphene with different values of �1 induced by
a transverse electric field.

some of the plateaus are missing for a higher value of bias,
�1 = 0.3 eV, for which we find plateaus at ν = 0, ± 2, ± 4,

± 6, ± 12, ± 16, . . .. In fact, a deeper understanding of the
Hall conductivity of TLG would require further analysis,
which is beyond the scope of this work. Furthermore, we
emphasize that, even experimentally, there is no consensus
so far about the structure of the quantum Hall plateaus in
TLG, different structures having been found for almost every
transport measurement.2,4–6

IV. CONCLUSIONS

In conclusion, we have derived analytic expressions for the
LL spectrum of TLG. The two stable stacking sequences, ABA
(Bernal) and ABC (rhombohedral), have been considered.
The LL spectrum for ABA TLG is composed of a set of
BLG-like LLs, which disperse at low energies as B, and a
set of SLG-like LLs, which disperse as

√
B. The different

characters of the bands lead to a series of LL crossings, which
has been observed experimentally.1 On the other hand, the
six cubic bands of ABC TLG lead to a rather peculiar LL
quantization of the spectrum. Whereas the bands that touch the
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Dirac point lead to a set of B3/2 LLs, the hybridization between
the two bands that cross each other at E = γ1 leads to one set
of massless-like LLs (with energy E � γ1), and a set of LLs
which present a minimum and then grow with B, associated
with the lower branch of the hybridized bands. The presence of
the minimum in this set of LLs is associated with the presence
of a cusp in this branch of the spectrum, in a manner similar
to that of the Mexican hat–like dispersion of a biased BLG.

The range of validity of our analytical results is checked
by comparing the LL spectrum obtained in the continuum
approximation to the DOS obtained from the numerical
solution of the TDSE of a π -band tight-binding model
on the honeycomb lattice. We find very good agreement
between the numerical solution and the analytic approximation
for the spectrum up to an energy of ∼500 meV. However,
we show that the most commonly used approximations for
the spectrum of TLG, for which the BLG-like LLs of ABA
TLG disperse as B

√
n(n + 1) and the LLs for TLG disperse

as B3/2√n(n + 1)(n + 2), fail to capture even the lower LLs
already for moderate magnetic fields of ∼20 T. Therefore, we
believe that our results may be useful for the analysis of future
magneto-optical measurements, which has been successfully
applied to study the LL spectra of SLG46,47 and BLG.41,42

Finally, we have calculated the Hall conductivity of TLG
by means of the Kubo formula. The inclusion of a transverse
electric field leads to a gap opening in ABC TLG, whereas
ABA TLG remains metallic. This effect is seen by the
appearance of a zero-energy plateau only for ABC stacking,
in agreement with recent transport experiments.2,4–6
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APPENDIX A: BAND STRUCTURE OF ABA AND ABC
TRILAYER GRAPHENE IN THE ABSENCE OF A

MAGNETIC FIELD

In the absence of a magnetic field, the Hamiltonian of ABA-
stacked TLG around the K point is given in Eq. (2), with

eigenenergies given by

Es = ±[
γ 2

1 + v2
F k2 + s

√
γ 4

1 + 2γ 2
1 v2

F k2
]1/2

, s = ±1,

(A1)
E0 = ±vF k.

Similarly, for ABC-stacked TLG, the Hamiltonian, Eq. (9),
leads to the eigenvalue problem

E6 − (
2γ 2

1 + 3v2
F k2

)
E4

+ (
γ 4

1 + 2γ 2
1 v2

F k2 + 3v4
F k4

)
E2 − v6

F k6 = 0, (A2)

the solutions of which take the form of Eq. (13) with the new
quantities b = −2γ 2

1 − 3v2
F k2, c = γ 4

1 + 2γ 2
1 v2

F k2 + 3v4
F k4,

and d = −v6
F k6. In fact, Eq. (A2) can be decomposed into the

two equations

E3 + vF kE2 − (
γ 2

1 + v2
F k2)E − v3

F k3 = 0, (A3)

E3 − vF kE2 − (
γ 2

1 + v2
F k2

)
E + v3

F k3 = 0, (A4)

the solutions of which are

Eα,s = 2
√

Q cos

(
θ + 2π

3

)
− s

vF k

3
,

Eβ,s = 2
√

Q cos

(
θ + 4π

3

)
− s

vF k

3
, (A5)

Eγ,s = 2
√

Q cos

(
θ

3

)
− s

vF k

3
,

where s = ±1 correspond to the solutions of Eq. (A3) and
(A4), respectively, in terms of the new parameters

θ = cos−1

(
sR√
Q3

)
, (A6)

R = 8v3
F k3

27
− vF kγ 2

1

6
, (A7)

Q = 3γ 2
1 + 4v2

F k2

9
. (A8)

APPENDIX B: WAVE FUNCTIONS OF ABA TRILAYER
GRAPHENE

From the matrix Hamiltonian, Eq. (3), one can calculate the
eigenstates of the ABA TLG. They are given by

ψn,s(x,y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

±{ n�B
2−E2

n,s√
nEn,s�B

− En,s√
n�B

[
1 − (1+n)�2

B (n �B
2−E2

n,s )
γ1

2E2
n,s

± E2
n,s−n�B

2

γ1
2

]}
ϕn−1,k(x,y)

[ − 1 + (1+n)�2
B (n �B

2−E2
n,s )

γ1
2E2

n,s
± n�B

2−E2
n,s

γ1
2

]
ϕn,k(x,y)

±(En,s

γ1
− n�B

2

γ1En,s

)
ϕn,k(x,y)

(√
1+n�B

γ1
− n

√
1+n�B

3

γ1E2
n,s

)
ϕn+1,k(x,y)

±
√

n�B

En,s
ϕn+1,k(x,y)

ϕn+2,k(x,y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B1)

125455-7
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FIG. 8. (Color online) Comparison of the Landau level spectrum and Hall conductivities of ABA- and ABC-stacked trilayer graphene with
(red lines) or without (black lines) considering the interlayer hopping parameter γ3.

and

ψn,0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∓ϕn−1,k(x,y)

−ϕn,k(x,y)

0

0

±ϕn+1,k(x,y)

ϕn+2,k(x,y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B2)

Note that the states with eigenvalues En,0 are the surface states,
which are located only on the top and bottom layers, and these
surface states in each layer have the same expressions as the
SLG.

APPENDIX C: EFFECT OF γ3 IN THE DOS

In this Appendix we study the effect of considering,
besides t and γ1, the interlayer hopping amplitude γ3 in

the spectrum (see Fig. 1). In Fig. 8, we compare the LL
spectrum and Hall conductivity of ABA- and ABC-stacked
TLG with and without γ3. Here we use γ3 = 0.3 eV as in
natural graphite.20,49 For the magnetic field considered, the
effect of γ3 in the spectrum is negligible, as shown in Fig. 8.
Therefore, trigonal warping has a very small effect on the
low-energy spectrum of LLs in the presence of a high magnetic
field. In fact, this is also the case in BLG, where the LL
spectrum can be adequately described by neglecting γ3 over
the field range where l−1

B > 3
2aγ3m (where m ≈ 0.054me is

the effective mass in bulk graphite).15 In our calculations, the
DOS and Hall conductivity are almost the same, as shown in
Fig. 8.
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