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We develop a first-principles theory of resonant impurities in graphene and show that a broad range of

typical realistic impurities leads to the characteristic sublinear dependence of the conductivity on the

carrier concentration. By means of density functional calculations various organic groups as well as

adatoms such as H absorbed to graphene are shown to create midgap states within �0:03 eV around the

neutrality point. A low energy tight-binding description is mapped out. Boltzmann transport theory as well

as a numerically exact Kubo formula approach yield the conductivity of graphene contaminated with these

realistic impurities in accordance with recent experiments.
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The mechanism determining the charge carrier mobility
of present graphene samples is being controversially de-
bated. The main experimental fact requiring an explanation
is that, away from the neutrality point, the conductivity of
graphene is weakly temperature dependent and approxi-
mately proportional to the carrier concentration ne [1,2].
This definitely requires the assumption of some long-range
interactions with scattering centers. The Coulomb interac-
tion with charge impurities is an ‘‘explanation by default’’
[3]. However, it seems that some experimental data cannot
be explained in this way, especially, a relatively weak
sensitivity of the electron mobility to dielectric screening
[4]. Thus, alternative scattering mechanisms are also dis-
cussed, such as frozen ripples [5] and resonant scatterers
[5–8]. In the first case the long-range character of the
interactions is due to the long-range character of elastic
deformations and in the second one due to divergence of
the scattering length. New experimental data [9] seem to
support the latter possibility.

Theoretically, both suggestions face serious problems.
The ‘‘ripple’’ mechanism requires quenching of the ther-
mal bending fluctuations [5,10], but there are still no
realistic scenarios of such a quenching. Resonant scatter-
ing naturally appears for vacancies [8] but they do not
exist, in noticeable concentrations, in graphene samples
if they are not created artificially, e.g., by irradiation [11].
Adsorbates on graphene can provide resonances (quasilo-
calized states) close enough to the neutrality point [12–15]
but not necessarily [12,16]. For impurity resonances some
100 meV off the neutrality point the conductivity should
display a pronounced electron-hole asymmetry [16] which
is not observed in experiments. So, it is not clear whether
resonant impurity scattering can be the main limiting factor
in a general case.

In this Letter, we build a first-principles theory of elec-
tron scattering by realistic resonant impurities, such as
various organic molecules which are always present in
exfoliated graphene samples [17,18]. Combining the

Boltzmann equation approach and a numerically exact
Kubo formula consideration with first-principles parame-
ters, we show that this class of impurities can limit electron
transport in typical exfoliated graphene samples and ex-
plain the experimentally observed concentration depen-
dence of the conductivity.
Exfoliated graphene samples are contaminated with

long polymer chains [17,18]. Most important about these
contaminants is their possibility to form a chemical bond to
carbon atoms from the graphene sheet. To model such a
situation we carry out density functional theory (DFT)
calculations of graphene with adsorbed CH3, C2H5,
CH2OH (as simplest examples of different organic
groups), as well as H and OH groups. From the resulting
supercell band structures we derive effective interaction
parameters entering a TB model and find that the exact
chemical composition is not essential: the parameters are
very similar for all adsorbates except for the case of
hydroxyl. This facilitates us to obtain the effect of the
contamination on the electron conductivity.
An atomistic description of the graphene adsorbate sys-

tems is achieved by DFT calculations within the general-
ized gradient approximation (GGA) [19] on 3� 3� 9� 9
graphene supercells containing one impurity. Using the
Vienna ab initio simulation package (VASP) [20] with the
projector augmented wave (PAW) [21,22] basis sets, we
obtain fully relaxed adsorption geometries and calculate
the supercell band structures.
The DFT results for CH3, C2H5, CH2OH on graphene

are shown in Fig. 1(a) and compared to H and OH adsor-
bates. All of these impurities bind covalently to graphene
and create a midgap state as characteristic for monovalent
impurities [15]. For all adsorbates except OH the midgap
state lies within �0:03 eV around the neutrality point. As
the supercell band structures for the organic groups and for
H on graphene virtually coincide within an energy range of
more than �1 eV, it becomes clear that the parameters of
the midgap state depend very weakly on the adsorbed
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group and, thus, can be considered as robust for further use
in the transport theory.

For an analytical description of these systems we start
with a TB model of graphene,

Ĥ ¼ �t
X

hi;ji
cyi cj; (1)

where ci denotes the Fermi operator of an electron in the
carbon pz orbital at site i, the sum includes all pairs of
nearest-neighbor carbon atoms, and t � 2:6 eV is the
nearest-neighbor hopping parameter. In this framework,
we consider a ‘‘noninteracting Anderson impurity,’’ adding

to (1) the localized state, Ĥimp ¼ �dd
yd, with on-site

energy �d and corresponding Fermi operator d, which is

coupled to the graphene bands by V̂ ¼ Vcy0dþ H:c:.
To describe electron transport in pristine as well as

doped graphene correctly, the analytical model has to
recover the realistic system within an energy window of
some 100 meV around the neutrality point. Applying the
same supercell boundary conditions as in the DFT simu-
lations to the TB impurity model, we obtain the TB super-
cell band structures as depicted in Fig. 1(b). The band
structure of graphene with a methyl group is well fitted
with V � 2t ¼ 5:2 eV and �d � �t=16 ¼ �0:16 eV.

For the DFT band structures of all other neutral func-
tional groups we find a good fit of TB with jVj * 2t and
j�dj & 0:1t � 0:26 eV. The hybridization strength V being
a factor 2 larger than t is in accordance with the hybrid-
ization for hydrogen adatoms from Ref. [16] and appears
very reasonable, as the impurity forms a � bond with the
host atom underneath [23]. The on-site energies j�dj ob-
tained here are significantly smaller than the value �d ¼
1:7 eV used for H in Ref. [16] which will make our results
for the transport properties qualitatively different. We note
that the model parameters extracted here are converged
with respect to the supercell size.

The scattering of electrons caused by resonant impuri-
ties is described by the T matrix (for a review, see

Ref. [14]) TðEÞ ¼ V2

E��d�V2g0ðEÞ , where g0ðEÞ � E
D2 �

lnj E2

D2�E2 j � i�N0ðEÞ, with N0ðEÞ ¼ jEj
D2 �ðD� jEjÞ and

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
�

p
t � 6 eV, is the local Green function of pris-

tine graphene. Correspondingly, N0ðEÞ is the density of

states (DOS) per spin and per carbon atom. The T matrix

exhibits a resonance at Eð1� V2

D2 lnj E2

D2�E2 jÞ � �d ¼ 0

which is the energy of the midgap state. The impurity
model parameters obtained from DFT lead to resonances
in an energy region of �0:03 eV around the Dirac point,
which proves consistency of our TB model with DFT.
In the Boltzmann equation approach, the T matrix can be

used to estimate the conductivity �: � ¼ ð2e2=hÞvFkF�,
where vF is the Fermi velocity and kF is the Fermi wave
vector. For a concentration of ni impurities per carbon
atom, the scattering rate reads as [16,24,25] ��1 ¼
ð2�=@ÞnijTðEFÞj2N0ðEFÞ and yields the conductivity

� � ð2e2=hÞð2�nijTðEFÞ=Dj2Þ�1: (2)

In the limit of resonant impurities with V ! 1, we obtain
T ! �1=g0ðEÞ � �½2E

D2 lnj ED j��1 for E � D. Hence, the

conductivity reads in this limit as

� � ð2e2=hÞ 2
�

ne
ni

ln2
��������
EF

D

��������; (3)

where ne ¼ E2
F=D

2 is the number of charge carriers per
carbon atom. Equation (3) yields the same behavior as for
vacancies [8]. In the case of the resonance shifted with
respect to the neutrality point the consideration of Ref. [7]
leads to the dependence

� / ðq0 � kF lnkFRÞ2; (4)

where � corresponds to electron and hole doping, respec-
tively, and R is the effective impurity radius.
We now investigate to which extend realistic resonant

impurities create sublinear behavior similar to Eqs. (3) and
(4). To this end, we first estimate the conductivity accord-
ing to Eq. (2) for different types of impurities (Fig. 2). For
the resonant scatterers from Fig. 1 (except for OH) the
conductivity curves are expected to lie within the region
bounded by the curves belonging to �d ¼ �0:26 eV and
�d ¼ 0:26 eV. These curves are very similar to V-shape
experimental curves [1,2,4,9] and can be roughly fitted to
the limit of Eqs. (3) and (4). The effective radius R result-

ing from Eq. (3) is R ¼ D=@vF � 0:9 �A and has been also
used in the fit according to Eq. (4) in Fig. 2.
Experimentally, sublinear behavior similar to Eqs. (3) and

FIG. 1 (color online). (a) Band struc-
tures of 4� 4 graphene supercells with
CH3, C2H5, CH2OH, H, and OH adsor-
bates and the respective adsorption ge-
ometries of the CH3, C2H5, CH2OH (c)–
(e) groups. (b) Comparison of the super-
cell band structure of graphene with CH3

as obtained from DFT to the TB models
with V ¼ 2t and on-site energies �d ¼
�0:16 eV and �d ¼ �0:65 eV.
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(4) has been observed [9,11] with effective impurity radii

in the range of R ¼ 2:3� 2:9 �A. However, any estimation
of effective radii should be considered only qualitatively,
as D and R enter the conductivity logarithmically and a
wide range of cutoffs lead to similar curves.

The result for impurities with V ¼ 2t and �d ¼ 1:7 eV,
which corresponds to H adatoms in the model of Ref. [16],
differs qualitatively from our results and from experimen-
tal data which emphasizes the crucial importance of a
careful first-principles determination of the model parame-
ters. In our model and for the charge carrier concentration
being varied within jnej<0:003=C-atom¼1:1�
1013 cm�2, impurities like CH3, C2H5, CH2OH, or H at-
tached to graphene lead to a Boltzmann conductivity with
one distinct minimum close to the neutrality point.

At low charge carrier concentrations or high impurity
concentrations, the Boltzmann approach becomes ques-
tionable. To understand the onset of this parameter regime
and the behavior of the conductivity in this regime, we
performed numerically exact calculations of the conduc-
tivity in the TB model (1) using the Kubo formula. [See the
online supplementary material [26].]

The results for two types of resonant scatterers, adsorbed
atoms with �d ¼ �t=16, V ¼ 2t resembling CH3 groups,
and for vacancies are shown in Fig. 3. One can see that the
Boltzmann equation is applicable only for impurity con-
centrations smaller than a few percent per site (already for
5% the difference in concentration dependence is essen-
tial). The Boltzmann approach does not work near the
neutrality point where quantum corrections are dominant
[6,27,28]. In the range of concentrations, where the
Boltzmann approach is applicable the conductivity as a
function of energy fits very well the dependence of Eq. (4),

with q0 ¼ 0:02 �A�1, R ¼ 0:6 �A for ni ¼ 0:1%, and q0 ¼

0, R ¼ 0:5 �A for nx ¼ 0:1% with kF ¼ EF=ð@vFÞ as in
clean graphene.
Close to the neutrality point the conductivity deviates

from the Boltzmann equation result of Eq. (2). Boltzmann
theory is not capable of yielding � ¼ 4e2=�h for clean
graphene at the neutrality point [6,27]. Moreover, resonant
impurities lead to the formation of a low energy impurity
band (see increased DOS at low energies in Fig. 4). At
impurity concentrations on the order of a few percent
[Figs. 3(c) and 3(d)] this impurity band contributes to the
conductivity and can lead to a maximum of � in the
midgap region. Moreover, the impurity band can host
two electrons per impurity. For impurity concentrations
below �5%, this leads to a plateau shaped minimum of
width 2ni (or 2nx) in the conductivity vs ne curves around
the neutrality point. Analyzing the plateau width in experi-
mental data (similar to the analysis for N2O4 acceptor
states in Ref. [13]) can, thus, yield an independent estimate
of impurity concentrations. For chiral disorder [29,30]
corresponding to the resonant impurities considered,
here, as well as short range disorder [31,32] (anti)localiza-
tion effects can become important in cases like graphane,
where impurity concentrations are varied between a few
percent and 100%. In clean micron size samples with
realistic impurity concentrations on the order of ni ¼
0:01%–0:1% these effects present merely corrections:
Upon doubling the simulation cell length (4096� 4096 !
8192� 8192) at ni ¼ 0:1% the changes of the conductiv-
ity at the neutrality point are below 10%.
Electron scattering in bilayer graphene has been proven

to differ essentially from the single layer case in Ref. [33]:
For a scattering potential with radius much smaller than the

σ 
(e

2 /
h)

e

 0

 20

 40

 60

 80

 100

−0.003 −0.002 −0.001  0  0.001  0.002  0.003

Eq. (4)

−0.26eV

+0.26eV

+1.7eV

Eq. (3)

n

FIG. 2 (color online). Conductivity � in the Boltzmann ap-
proach as function of charge carrier concentration ne (in units of
electrons per atom) for different impurities: Impurities with
hybridization V ¼ 2t ¼ 5:2 eV and on-site energies �d ¼
�0:26, 0.26, and 1.7 eV in concentration ni ¼ 0:1%. (Curves
are labeled by the corresponding �d.) Fits to the V ! 1 limit of
Eq. (3) with ni ¼ 0:06% (dashed) as well as Eq. (4) with q0 ¼
0:02 �A�1 (dash dotted) are shown. (Here, ne ¼ E2

F=D
2 corre-

sponds to the clean graphene DOS.)

FIG. 3 (color online). Conductivity � as a function of charge
carrier concentration ne (in units of electrons per atom) for
different resonant impurity ("d ¼ �t=16, V ¼ 2t) or vacancy
concentrations (nx): (a) ni ¼ nx ¼ 0:1%, (b) 0.2%, (c) 1%,
(d) 5%. Periodic boundary conditions are used with a sample
containing (a) 8192� 8192 and (b)–(d) 4096� 4096 carbon
atoms. The carrier concentrations ne are obtained from the
integral of the corresponding DOS depicted in Fig. 4.
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de Broglie wavelength of electrons, the phase shift of
s-wave scattering �0 tends to a constant as k ! 0.
Therefore, within the limit of applicability of the
Boltzmann equation, the conductivity of a bilayer should
be just linear in ne, instead of sublinear dependence (4) for
the single layer. The difference is that in the single layer,
due to vanishing DOS at the Dirac point, the scattering
disappears at small wave vectors as �0ðkÞ / 1

lnkR (with

ln2kR on the order of 10 for typical amounts of doping)
for resonant and as �0ðkÞ / kR for the nonresonant impu-
rities. Contrary, in the bilayer there are no restrictions on
the strength of the scattering and even the unitary limit
(�0 ¼ �=2) can be reached at k ¼ 0. As follows from
Ref. [33], a cylindric potential well of radius R, leads to

�0 ¼ �=2 if d
dR

J0ðqRÞ
I0ðqRÞ ¼ 0, where q is the wave vector

inside the well, J0 and I0 are the Bessel functions of real
and imaginary arguments, respectively. Thus, an assump-
tion that resonant scattering is the main limiting factor for
electron mobility in exfoliated graphene leads to the pre-
diction that the dependence of �ðneÞ should be essentially
different for the cases of bilayer and single layer, that is,
linear and sublinear, respectively. This agrees with the
experimental results [34].

In summary, we have demonstrated that realistic impuri-
ties in graphene frequently cause quasilocal peaks nearby
the neutrality point. In particular, for various organic
groups the formation of a carbon-carbon bond results in the
appearance of midgap (resonant) states within �0:03 eV
around the neutrality point. They can be described as
Anderson impurities with the hybridization parameter of
about 2t and on-site energies on the order of j�dj< t=10.
The resonant scattering model with these parameters de-
scribes satisfactory experimental data on the concentration
dependence of charge carrier mobility for graphene.
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