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We present a detailed numerical study of the electronic transport properties of bilayer and trilayer graphene
within a framework of single-electron tight-binding model. Various types of disorder are considered, such as
resonant �hydrogen� impurities, vacancies, short- or long-range Gaussian random potentials, and Gaussian
random nearest-neighbor hopping. The algorithms are based on the numerical solution of the time-dependent
Schrödinger equation and applied to calculate the density of states and conductivities �via the Kubo formula�
of large samples containing millions of atoms. In the cases under consideration, far enough from the neutrality
point, depending on the strength of disorders and the stacking sequence, a linear or sublinear electron-density-
dependent conductivity is found. The minimum conductivity �min�2e2 /h �per layer� at the charge neutrality
point is the same for bilayer and trilayer graphene, independent of the type of the impurities, but the plateau of
minimum conductivity around the neutrality point is only observed in the presence of resonant impurities or
vacancies, originating from the formation of the impurity band.
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I. INTRODUCTION

Graphene is a subject of numerous investigations moti-
vated by its unique electronic and lattice properties, interest-
ing both conceptually and for applications �for reviews, see
Refs. 1–10�. Single-layer graphene �SLG� is the two-
dimensional crystalline form of carbon with a linear elec-
tronic spectrum and chiral �A-B sublattice� symmetry, whose
extraordinary electron mobility and other unique features
hold great promise for nanoscale electronics and photonics.
Bilayer and trilayer graphenes, which are made out of two
and three graphene planes, have also been produced by the
mechanical friction and motivated a lot of researches on their
transport properties.11–40 The charge-carrying quasiparticles
in bilayer graphene �BLG� obey parabolic dispersion with
nonzero mass but retain a chiral nature similar to that in SLG
�with the Berry phase 2� instead of ��.11,12 Furthermore, an
electronic band gap can be introduced in a dual gate
BLG,15,22,41–44 and it makes BLG very appealing from the
point of view of applications. The trilayer graphene �TLG� is
shown to have different electronic properties which is
strongly dependent on the interlayer stacking sequence.45,46

Nevertheless, graphene layers in real experiments always
have different kinds of disorder, such as ripples, adatoms,
admolecules, etc. One of the most important problems in the
potential applications of graphene in electronics is, under-
standing the effect of these imperfections on the electronic
structure and transport properties.

The scattering theory for Dirac electrons in SLG is dis-
cussed in Refs. 47–51. Long-range scattering centers are of
special importance for transport properties of SLG, such as
charge impurities,6,52–55 ripples created long-range elastic
deformations,7,56 and resonant scattering centers.48,49,56–63

Recently, the impact of charged impurity scattering on elec-
tronic transport in BLG have been investigated
theoretically17,36,37 and experimentally.38 The linear density-
dependent conductivity at high density and the minimum

conductivity behavior around the charge neutrality point are
expected17,36,37 and confirmed38 but the experimental results
also suggest that charged impurity scattering alone is not
sufficient to explain the observed transport properties of pris-
tine BLG on SiO2 before potassium doping.38 One possible
explanation of the experimental results might be the opening
of a gap at the Dirac point in biased BLG.38 On the other
hand, some recent experimental59 and theoretical61–63 evi-
dences appeared that the resonant scattering due to carbon-
carbon bonds between organic admolecules and graphene �or
by hydrogen impurities which are almost equivalent to C-C
bonds in a sense of electron scattering62� is the main restrict-
ing factor for electron mobility in SLG on a substrate. These
results suggest that the resonant impurity could also be the
dominant factor of the transport properties of BLG and TLG.

In the present paper, we study the effect of different types
of impurities on the transport properties of graphene layers
by direct numerical simulations in a framework of the single-
electron tight-binding model. We consider four different
types of defects: resonant �hydrogen� impurities, vacancies,
Gaussian on-site potentials, and Gaussian nearest carbon-
carbon hoppings. The resonant impurities/vacancies and the
centers of the Gaussian potentials/couplings are randomly
introduced in the graphene layers. Our numerical calcula-
tions are based on the time-evolution method,63–65 i.e., the
time evolution of the wave functions according to the
Schrödinger equation with additional averaging over a ran-
dom superposition of basis states. The main idea is that by
performing Fourier transform of various correlation func-
tions, such as the wave function-wave function and current-
current correlation functions �Kubo formula�, one can calcu-
late the electronic structure and transport properties such as
the density of states �DOS�, quasieigenstates, and ac �optical�
and dc conductivities. The details of the numerical method
are presented in Ref. 63. The advantages of the time-
evolution method is that it allows us to carry out calculations
for very large systems, up to hundreds of millions of sites,
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with a computational effort that increases only linearly with
the system size.

The paper is organized as follows: Sec. II gives a descrip-
tion of the tight-binding Hamiltonian of multilayer graphene.
In Sec. III–VI, we focus on four different types of disorders,
respectively. resonant impurities, vacancies, potential impu-
rities, and nearest carbon-carbon hopping impurities. Finally,
a brief discussion is given in Sec. VII.

II. TIGHT-BINDING MODEL

In general, the tight-binding Hamiltonian of multilayer
graphene is given by

H = �
l=1

Nlayer

Hl + �
l=1

Nlayer−1

Hl�,

where Hl is the Hamiltonian of SLG for lth layer and Hl�
describes the hopping between layers l and l+1.

The single-layer Hamiltonian Hl is given by

Hl = H0 + Hv + Himp, �1�

where H0 derives from the nearest-neighbor hopping be-
tween the carbon atoms

H0 = − �
�i,j�

tijci
+cj , �2�

Hv denotes the on-site potential of the carbon atoms

Hv = �
i

vici
+ci, �3�

and Himp describes the resonant impurities �adatoms or ad-
molecules�

Himp = �d�
i

di
+di + V�

i

�di
+ci + H.c.� . �4�

The interlayer Hamiltonian Hl� of bilayer graphene with AB
Bernal stacking is given by

Hl� = − �1�
j

�al,j
+ bl+1,j + H.c.� − �3�

j,j�

�bl,j
+ al+1,j� + H.c.� ,

�5�

where am,i
+ �bm,j� annihilates an electron on sublattice A�B�,

in plane m= l , l+1, at site R �see the atomic structure in Fig.
1�. Thus, the second layer in BLG is rotated with respect to
the first one by +120°. For the third layer there are two
options: either the third carbon layer will be rotated with
respect to the second layer by −120° �than it will be exactly
under the first layer� or +120°. In the first case we have
ABA-stacked trilayer graphene, and in the second we have
ABC-stacked �rhombohedral� graphene. The atomic struc-
tures of the ABA- and ABC-stacked trilayer graphene are
shown in Fig. 1. These stacked sequences can be extended to
multilayers, i.e., the direct extension of ABA- and
ABC-stacked sequences from trilayer to quartic layer are
ABAB and ABCD. The spin degree of freedom contributes
only through a degeneracy factor and, for simplicity, is omit-
ted in Eq. �1�.

The density of states is obtained by Fourier transforma-
tion of the wave function at time zero and time t

���� =
1

2�
	

−�

�

ei�t���0�
��t��dt , �6�

where 
��0�� is an initial random superposition state of all
the basis states and 
��t��=e−iHt
��0�� is calculated numeri-
cally according to the time-dependent Schrödinger equation
�we use units with �=1�. A detailed description of this
method can be found in Refs. 63 and 64. The charge density
is obtained by the integral of the density of states, i.e.,
ne�E�=�0

E����d�.
The static �dc� conductivity is calculated by using the

Kubo formula

� = −
1

A
Tr� � f

�H
	

0

�

dt
1

2
�JJ�t� + J�t�J� , �7�

where J is the current operator and A is the sample area. The
main idea of the calculation is to perform the time evolution

FIG. 1. Atomic structure of bilayer, ABA- and ABC-stacked trilayer graphene.
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of 
��0��. Then, we can extract not only the DOS but also the
quasieigenstates 
	����,63 which are superpositions of de-
generated energy eigenstates. The conductivity at zero tem-
perature can be represented as

� =
����

V
	

0

�

dt Re�e−i�t���0�
JeiHtJ
��� , �8�

where 
�� is defined as


�� =
1


���0�
	����


	���� . �9�

The accuracy of the numerical results is mainly deter-
mined by three factors: the time interval of the propagation,
the total number of time steps, and the size of the sample. In
the numerical calculations, the integrals in Eqs. �6� and �8�
are calculated using the fast Fourier transform �FFT�. Ac-
cording to the Nyquist sampling theorem, employing a sam-
pling interval 
t=� /maxi
Ei
, where Ei are the eigenener-
gies, is sufficient to cover the full range of eigenvalues. In
practice, we do not know maxi
Ei
 exactly but it is easy to
compute an upperbound �for instance, the 1-norm of H� such
that 
t can be considered as fixed.

In the present paper, the time evolution is calculated by
the Chebyshev polynomial method, which has the same ac-
curacy as the machine’s precision independent of the value
of time interval 
t. Alternatively, one could use Suzuki’s
product formula decomposition of the exponential operators

for the tight-binding Hamiltonian,66 introducing another time
step that has to be �much� smaller than 
t to obtain accurate
results.64 In both cases, the accuracy of the energy eigenval-
ues is determined by the total number of the propagation
time steps �Nt�, that is, the number of the data items used in
the FFT. Eigenvalues that differ less than 
E=� /Nt
t can-
not be identified properly. However, since 
E is proportional
to Nt

−1 we only have to extend the length of the calculation
by a factor of two to increase the accuracy by the same
factor.

The third factor which determines the accuracy of our
numerical results is the size of the sample. A sample with
more sites in the real space will have more random coeffi-
cients in the initial state 
��0��, providing a better statistical
representation of the superposition of all energy eigenstates.
This, however, is not a real issue in practice as it has be
shown that the statistical fluctuations vanish with the inverse
of the dimension of the Hilbert space,64 which for our prob-
lem, is proportional to the number of sites in the sample. A
comparison of the DOS calculated from different samples
size was shown in Ref. 63, which clearly shows that larger
sample size leads to better accuracy, and the result calculated
from a SLG with 4096�4096 lattice sites matches very well
with the analytical expression.63 More details on the numeri-
cal method itself can be found in Ref. 63. The values of
conductivity presented in this paper are normalized per layer
and are expressed in units e2 /h.

Obviously, computer memory and CPU time evidently
limit the size of the graphene system that can be simulated.

FIG. 2. �Color online� Top panel: DOS of bilayer graphene ��1=�3=0.1t� with different concentrations of resonant impurities ��d=
−t /16, V=2t� added on both layers. Middle panel: comparison of the conductivity of the BLG �line� and SLG �square� with the same
concentration of resonant impurities. Bottom panel: comparison of the conductivity of bilayer graphene ��1=�3=0.1t� with the same amount
of resonant impurities ��d=−t /16, V=2t� added on both layers �line, ni� or only one layer �triangle, n1i�. Each layer in BLG contains
4096�4096 carbon atoms, and SLG contains 6400�6400 carbon atoms.
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The required CPU time is mainly determined by the number
of operations to be performed on the state of the system but
this imposes no hard limit. However, the memory of the
computer does. In the tight-binding approximation, a state

�� of a sample consisting by Nc atoms is represented by a
complex-valued vector of length D=Nc. For numerical accu-
racy �and in view of the large number of arithmetic operators
performed�, it is advisable to use 13–15 digit floating-point
arithmetic �corresponding to 8 bytes per real number�. Thus,
to represent the state 
�� we need at least Nc�24 bytes. For
example, for Nc=4096�4096=1.6�107 we need 256 MB
of memory to store a single arbitrary state 
��. This amount
of memory is not a problem for the calculation of DOS on a
modest desktop PC or notebook but it limits the calculation
of the dc conductivity on such machines. To calculate one
value of ���� one needs storage of the corresponding quasie-
igenstate 
��, and with typically 64 of such quasieigenstates
in our simulations, a sample of Nc=4096�4096 sites re-
quires at least 16 GB memory for the storage, which is still
reasonable for present-day computer equipment.

III. RESONANT IMPURITIES

Resonant impurities are introduced in reality by the for-
mation of a chemical band between a carbon atom from
graphene sheet and a carbon atom from an adsorbed organic
molecule �CH3, C2H5, CH2OH�, as well as H atoms;62 va-
cancies are another option but in natural graphene their con-
centration seems to be small. The adsorbates are described

by the Hamiltonian Himp in Eq. �1�. From ab initio density-
functional theory calculations,62 it follows that the band pa-
rameters for various organic groups �and for hydrogen at-
oms� are almost the same: V�2t and �d�−t /16. The
hybridization strength V being a factor 2 larger than t is in
accordance with the hybridization for hydrogen adatoms
from Ref. 61 but the on-site energies �d are significantly
smaller than the value �d=1.7 eV used for H in Ref. 61
which makes our results for the transport properties in SLG
qualitatively different.62,63 The adoption of these band pa-
rameters successfully explained the resonant scattering in
SLG �Refs. 62 and 63� and we continue to use them in the
modeling of BLG and TLG.

In Refs. 62 and 63, we used the algorithm presented in the
previous section to calculate the dc conductivity of SLG with
resonant impurities or vacancies. We found that there is pla-
teau of the order of the minimum conductivity67 4e2 /�h in
the vicinity of the neutrality point, in agreement with theo-
retical expectations.68 Beyond the plateau, the conductivity is
inversely proportional to the concentration of the impurities
and approximately proportional to the carrier concentration
ne. This is consistent with the approach based on the Boltz-
mann equation, which in the limit of resonant impurities with
V→�, yields for the conductivity49,56,61,62

� � �2e2/h�
2

�

ne

ni
ln2�EF

D
� , �10�

where ne=EF
2 /D2 is the number of charge carriers per carbon

atom and D is of order of the bandwidth. Note that for the

FIG. 3. �Color online� Comparison of the DOS and conductivity of the SLG, BLG, TLG, and QLG with the same concentration of
resonant impurities �ni=0.5%, �d=−t /16, V=2t�. �1=�3=0.1t in top panels and �1=0.5t , �3=0.1t in bottom panels. SLG contains
6400�6400 carbon atoms, each layer in BLG, TLG, and QLG contains 4096�4096, 3200�3200, and 2400�2400 carbon atoms,
respectively.
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case of the resonance shifted with respect to the neutrality
point the consideration of Ref. 49 leads to the dependence

�  �q0 � kF ln kFR�2, �11�

where � corresponds to electron and hole doping, respec-
tively, and R is the effective impurity radius. The Boltzmann
approach does not work near the neutrality point where
quantum corrections are dominant.57,67,69 In the range of con-
centrations, where the Boltzmann approach is applicable, our
numerical results of the conductivity of SLG as a function of
energy fits very well to the dependence given by Eq.
�11�.62,63

Electron scattering in BLG has been proven to differ es-
sentially from SLG in Ref. 17. For a scattering potential with
radius much smaller than the de Broglie wavelength of elec-
trons, the phase shift in s-wave scattering �0 tends to a con-
stant as k→0. Therefore, within the limit of applicability of
the Boltzmann equation, the conductivity of a bilayer should
be just linear in ne, instead of sublinear dependence �Eq.

�11�� for SLG. The difference is that in SLG, due to vanish-
ing DOS at the Dirac point, the scattering disappears at small
wave vectors as �0�k�1 / ln kR �with ln2 kR on the order of
tens for typical amounts of doping� for resonant and as
�0�k�kR for the nonresonant impurities. In contrast, in
BLG there are no restrictions on the strength of the scattering
and even the unitary limit ��0=� /2� can be reached at k=0.

However, these conclusions are based on the use of an
approximate parabolic spectrum for the bilayer which is
valid for the energy interval


E
 � 
�1
 . �12�

In the opposite case


E
 � 
�1
 �13�

the effects of the interlayer hopping are negligible and one
should expect a behavior of the conductivity similar to that
of SLG.

Our first set of numerical calculations of BLG are per-
formed for similar concentrations of resonant impurities �ni
� �0.1%,2%�� as those used for SLG in Refs. 62 and 63. The
interlayer hopping parameters are taken as12 �1=�3=0.1t. As
shown in Fig. 2, finite concentrations of the resonant impu-
rities lead to the formation of a low-energy impurity band
�see increased DOS at low energies in Fig. 2�. The impurity
band can host two electrons per impurity, and for impurity
concentrations in the range of �0.1%,2%�, this leads to a
plateau shaped minimum of width 2ni in the conductivity vs
ne curves around the neutrality point. As one can see from
the DOS in Fig. 2, even for ni=0.1%, the width of the im-
purity band around the neutrality point is comparable to the
limits of applicability of the parabolic approximation for the
spectrum �Eq. �12��, therefore for the concentrations of the
impurities presented in Fig. 2 one cannot use the theory.17

For small electron concentrations we are beyond the limit of
the Boltzmann theory at all, and for the larger electron con-
centration we are, rather, in the regime �Eq. �13�� so one
could expect a sublinear behavior similar to that in SLG.
Indeed, the conductivity of BLG as a function of charge
density ne follows almost exactly the same dependence as for
the SLG �see the direct comparisons of conductivities in Fig.
2�. That is, the density dependence of conductivity in BLG is

FIG. 4. �Color online� Comparison of the DOS of bilayer
graphene with different interlayer interactions: �1=0.1t, 0.2t, and
0.5t ��3 is fixed as 0.1t�. Inner panel: normalized DOS and energy
in units of 1 /�1 and �1. Each layer in BLG contains 4096�4096
carbon atoms.

FIG. 5. �Color online� DOS and conductivity of bilayer graphene with resonant impurities ��d=−t /16, V=2t� added on both layers. The
interlayer parameter �1 is fixed as 0.5t, and �3=0 �black line�, 0.1t �red dashed line�, and 0.5t �green dot line�. Each layer contains 4096
�4096 carbon atoms.
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not linear but sublinear �Eq. �11�� as in SLG. Actually, as
shown in Fig. 3, the sublinear dependence is quite general
for multilayer graphene, i.e., it is also true for trilayer and
quartic-layer graphene �QLG� with the same concentration of
resonant impurities, independent of the stacking sequence,
which is, of course, not surprising assuming that the condi-
tion �Eq. �13�� holds. Here for the trilayer �quartic layer� we
consider two types of stacking sequence: ABA �ABAB� and
ABC �ABCD�. This general property of the conductivity can
be easily understood by comparison of their DOS in Fig. 3.
The DOS of single-layer, bilayer, trilayer, and quartic-layer
graphene are exactly the same except near the edge of the
spectrum, indicating the similar band structure, independent
of the number of layers and stacking sequence. In fact, since
the couplings between the carbon atoms and organic admol-
ecules are 20 times larger than the interlayer coupling �V
=20�1� in our model, the unique bonds generated by the
relevant weaker interlayer interactions are more easily to be
destroyed by the impurity bonds generated by the much
stronger adsorbed resonant impurities.

In order to check the symmetry of the presence of the
impurities, we limit the adsorption of organic admolecules to

one layer of BLG �n1i, case II�. To compare the results of the
adsorption on both sides �ni, case I�, we fix the total number
of resonant impurities and therefore the concentration on one
layer �case II� is doubled �n1i=Nimp /Ncarbon_in_one_layer=2ni�.
We find �see last panel in Fig. 2� that for the low concentra-
tion �ni�0.5%�, the electron-density dependence of the con-
ductivity in BLG follows the same law in both cases; at high
concentration �ni�1%�, the conductivity in case II is larger
than in case I. This is because in case II the difference of
mobility of electron in the two layers, with or without impu-
rities, is larger than in the case of large concentrations of
adsorbed admolecules.

Next, we consider the region of parameters which can be
described by the Boltzmann equation plus parabolic
spectrum.17 In BLG, the approximations of massive valence
and conduction bands with zero gap: E�k�= ��2k2 /2m�,
where the effective mass is given by m�=�1 /2vF

2 , are only
true in the low-energy dispersion close to the neutrality
point. There are two ways to place the impurity bands within
the region of low-energy dispersion �Eq. �12��: decreasing
the concentration ni of impurities or expanding the quadratic
band by increasing �1. Smaller concentration of impurities

FIG. 6. �Color online� Comparison of the DOS and conductivity of the SLG, BLG, and TLG with the same concentration of vacancies
�nx=0.5%�. The parameters of the interlayer coupling are �1=0.5t and �3=0.1t. SLG contains 6400�6400 carbon atoms, each layer in BLG
and TLG contains 4096�4096 and 3200�3200 carbon atoms �sites�, respectively.

FIG. 7. �Color online� Contour plot of the on-site potentials in the central part of a graphene layer �4096�4096� with short-range �

=3t , d=0.65a , Pv=0.5%� or long-range �
=1t , d=5a , Pv=0.1%� Gaussian potential.
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leads to less random states for the averaging in the Kubo
formula of Eq. �8�, which means that it is numerically more
expensive because we need to extend the sample size to keep
the same accuracy. Therefore increasing �1 is computation-
ally more convenient from the point of view of CPU time
and physical memory; one can assume that physical results
should be the same: it is only the ratio ni /�1 which is impor-
tant.

In Fig. 4, we compare numerical results of DOS of BLG
with different band parameter �1: 0.1t, 0.2t, and 0.5t ��3 is
fixed as 0.1t�. One can see that the width of the parabolic
band with the energy-independent local density of states pro-
portional to �1, and the normalized energy �in units of �1�
dependencies of DOS �in the units of 1 /�1� within the para-
bolic band are consistent for different �1 �see the inner panel
of Fig. 4�. Therefore we can simply use �1 with the value of
0.5t instead of 0.1t to extend the width of the parabolic band
approximation without changing the structure of the spec-
trum. The numerical results form a system with m times
larger of �1, are qualitatively comparable to those for a sys-
tem of 1 /m times smaller concentration ni of impurities.

The numerical results for the DOS and conductivities of
BLG and TLG in the presence of resonant impurity with
larger interlayer interactions ��1=0.5t� are shown in Fig. 3.
We see that for an impurity concentration of ni=0.5%, the
impurity band is located around the neutral point and far
from the edge of the quadratic band �
E
�0.5t�. In the region
of the impurity band �
ne
�ni=0.5%�, there is a plateau in
the order of 2e2 /h �per layer� in BLG, as well as in TLG.
This value is slightly larger than the minimum conductivity
4e2 /�h of SLG. It is worthwhile to note that an explanation

of the origin of plateau around the neutrality point is beyond
the applicability of Boltzmann equation, just as in the case of
SLG.62,63 Analyzing experimental data of the plateau width
�similar to the analysis for N2O4 acceptor states in Ref. 70�
can therefore yield an independent estimate of the impurity
concentration, both in single-layer and multilayer graphene.
Within the parabolic band but beyond the impurity band, the
conductivities in BLG and ABA-stacked TLG exhibit very
well the linear dependence on the charge density ne. The
ABC-stacked TLG is different from the others because of its
unique band structures with a cubic touching of the bands3

�see the difference of DOS in Fig. 3�.
Finally we check the role of �3 in the conductivity of

BLG. Theoretically, the influence of �3 to the band structure
is negligible, and so it is for the conductivity. This is con-
firmed by our numerical results in Fig. 5. For the fixed con-
centration of impurities ni=0.5% with �1=0.5t, the values of
the conductivity corresponding to the same electron concen-
tration ne are quite close for �3=0, 0.1t, and 0.5t.

IV. VACANCIES

A vacancy in a graphene sheet can be regarded as an atom
�lattice point� with an on-site energy v→� or with its hop-
ping parameters to other sites being zero. In the numerical
simulation, the simplest way to implement a vacancy is to
remove the atom at the vacancy site. Introducing vacancies
in SLG will create a zero energy modes �midgap
state�.48,62,63,71,72 The exact analytical wave function associ-
ated with the zero mode induced by a single vacancy in SLG
was obtained in Ref. 71, showing a quasilocalized character

FIG. 8. �Color online� DOS and conductivity of bilayer graphene ��1=�3=0.1t� with short-range �
=3t , d=0.65a� or long-range �

=1t , d=5a� Gaussian potential. Each layer contains 4096�4096 carbon atoms.
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with the amplitude of the wave-function decaying as inverse
distance to the vacancy. SLG with a finite concentration of
vacancies was studied numerically in Refs. 48, 62, 63, and
72–75. It was shown that the number of the midgap states
increases with the concentration of the vacancies,48,62,63,72

and quasieigenstates are also quasilocalized around the
vacancies.63 The inclusion of vacancies brings an increase in
spectral weight to the surrounding of the Dirac point �E
=0� and smears the van Hove singularities.48,62,63,72 The ef-
fect of the vacancies on the transport properties of SLG is
quite similar to that of the adsorbed organic molecules. The
main difference is the position of the impurity band in the
spectrum: its center is located at the neutrality point in the
presence of vacancies, whereas it is biased in the presence of
realistic resonant impurities because of the nonzero on-site
potential on the organic carbon �or hydrogen� atom. The va-
cancy band contributes to the conductivity and leads to a
plateau of minimum conductivity in the midgap region. The

width of the plateau is 2nx �nx is the concentration of the
vacancies� in the conductivity vs ne curves around the neu-
trality point, showing the same dependence �2ni� as the case
of resonant impurities.62,63 For the range of concentrations
where the Boltzmann approach is applicable, the conductiv-
ity of SLG as a function of energy fits very well to the
dependence given by Eq. �11�, with q0=0 for the vacancies
and q0�0 for the resonant impurities.62,63

Previous studies of the vacancies in BLG focused mainly
on the properties of the local DOS �LDOS� around a single
or a pair of vacancies, and it was shown that the LDOS in the
neighboring lattice sites of the impurity site is normally en-
hanced, depending on the lattice site �A or B sublattices� of
the vacancy.76,77 Recently, a new type of zero model state in
BLG is found in Ref. 78, in the absence of a gap it is quasilo-
calized in one of the layers and delocalized in the other, and
in the presence of a gap it becomes fully localized inside the
gap. These observations are different from SLG, where the

FIG. 9. �Color online� DOS and conductivity of bilayer graphene ��1=0.5t , �3=0.1t� with long-range �
=1t , d=5a� or short-range
�
=3t , d=0.65a� Gaussian potential. Each layer contains 4096�4096 carbon atoms.
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impurity state is insensitive to the position of vacancies. The
differences in the spectrum of LDOS around the vacancies in
SLG and BLG lead to different electron-density �Fermi-
energy� dependence of the conductivity. As the vacancies
and resonant impurities have similar effects on the electronic
structure and transport properties in SLG,62,63 it suggests that
their contributions to the bilayer and trilayer graphene should
also be comparable. We consider here the results for the va-
cancies in the range that the Boltzmann approach is appli-
cable. In Fig. 6, we show the numerical results of the DOS
and conductivities of SLG, BLG, and TLG with fixed con-
centration of vacancies �nx=0.5%�. The parameters of the
interlayer coupling are �1=0.5t and �3=0.1t. These results
are directly comparable with the results of the same concen-
tration of resonant impurities represented in Fig. 3, and dem-
onstrate similar density dependence of the conductivities,
just as we expected. For conciseness, we do not discuss these
vacancies as their effect on the transport properties of
graphene are quite similar to those of the resonant impurities.

V. GAUSSIAN POTENTIAL

The impurities in the Hamiltonian of Eq. �1� are repre-
sented by random on-site potentials. Short-range and long-
range Gaussian potentials are given by

vi = �
k=1

Nimp
v

Uk exp�−

ri − rk
2

2d2 � , �14�

where Nimp
v is the number of the Gaussian centers, which are

chosen randomly distributed on the carbon atoms, Uk is uni-

formly random in the range �−
 ,
� and d is interpreted as
the effective potential radius. The typical values of d used in
our model are d=0.65a and 5a for short- and long-range
Gaussian potential, respectively. Here a is the carbon-carbon
distance in the monolayer graphene. The value of Nimp

v is
characterized by the value Pv=Nimp

v /N, where N is the total
number of carbon atoms of the sample. A typical contour plot
of the on-site potentials in the central part of a graphene
layer with short- or long-range Gaussian potential is shown
in Fig. 7. The sum in Eq. �14� is limited to the sites in the
same layer, i.e., we do not consider the overlapping of the
Gaussian distribution in different layers.

Numerical results of the density of states and dc conduc-
tivities of BLG ��1=�3=0.1t� with short-range �
=3t , d
=0.65a� and long-range �
=1t , d=5a� Gaussian potentials
are shown in Fig. 8. Similar to the case of resonant impuri-
ties, the singularities in the spectrum are also suppressed in
the presence of random potentials, and the conductivity as a
function of charge density follows a sublinear dependence.
The difference is that there is no impurity band around the
neutrality point �see the DOS in Fig. 8�. This leads to totally
different transport properties: no plateau around the Dirac
point in the conductivity vs ne curves.

Similar to the case of resonant impurities, the regime of
parabolic band in BLG expands by increasing �1 from 0.1t to
0.5t, the results being shown in Fig. 9. Now the difference of
transport properties in BLG with short- and long-range
Gaussian potentials are more significant within the parabolic
band: the density dependence of conductivity is sublinear in
the case of short range but linear in the case of long-range
potentials. Actually, these sublinear and linear dependencies

FIG. 10. �Color online� DOS and conductivity of bilayer graphene ��1=�3=0.1t� with short-range �
t= t , dt=0.65a� or long-range
�
t=0.5t , dt=5a� Gaussian hopping. Each layer contains 4096�4096 carbon atoms.
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are also observed in TLG, independent of the stacking se-
quence �see Fig. 9�.

The same value of the minimum conductivity ��min
�2e2 /h� at the charge neutrality point is observed for both
BLG and TLG with �1=0.5t. As we discussed in the case of
resonant impurities, the adoption of larger �1 is equivalent to
the use of smaller disorder, and therefore our results indicate
that the minimum conductivity in order of �min�2e2 /h is
common in BLG and TLG with small concentration of ran-
dom Gaussian potentials. These numerical results are consis-
tent with the analytical result for BLG in Ref. 17.

VI. GAUSSIAN HOPPING

The origin of disorder in the nearest-neighbor coupling
could be substitutional impurities like N or B instead of C, or
distortions of graphene sheet. To be specific, we introduce
the disorder in the hopping by a Gaussian distribution in a

similar way as random Gaussian potential, namely, the dis-
tribution of the nearest-neighbor hopping parameters reads

tij = t + �
k=1

Nimp
t

Tk exp�−

ri + r j − 2rk
2

8dt
2 � , �15�

where Nimp
t is the number of the Gaussian centers, Tk is uni-

formly random in the range �−
t ,
t�, and dt is interpreted as
the effective screening length. Similarly, the typical values of
dt are the same as for the Gaussian potential, i.e., dt=0.65a
and 5a for short- and long-range Gaussian random hopping,
respectively, and the values of Nimp

t are characterized by the
value Pt=Nimp

t /N. Similar as in Eq. �14�, the sum in Eq. �15�
does not include the overlapping of the Gaussian distribution
in different layers.

Like in the case of Gaussian potentials, the presence of
random Gaussian hopping in BLG and TLG also suppresses

FIG. 11. �Color online� DOS and conductivity of bilayer graphene ��1=�3=0.1t� with short-range �
t= t , dt=0.65a� or long-range
�
t=0.5t , dt=5a� Gaussian hopping. Each layer contains 4096�4096 carbon atoms.
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the Van Hove singularities in the spectrum but does not in-
troduce a new impurity band �midgap states� and there is
also no plateau in the conductivity vs electron-density curves
�see Figs. 10 and 11�. The unique feature characteristic for
the presence of random Gaussian hopping is that in the re-
gion near the neutrality point, the conductivity is always lin-
early dependent on the electron density, with no influence
from the concentration of Gaussian centers �different Pt in
Fig. 10�, range of Gaussian coupling �dt=0.65a or 5a�,
strength of the interlayer coupling ��1=0.1t in Fig. 10 and
0.5t in Fig. 11�, number of layers �bilayer or trilayer� and
stacking sequence �ABA or ABC in TLG�. The differences of
short- or long-range case are only obvious in the energy re-
gion far from the neutrality point �high concentration of
charge density�: the increase in conductivity as a function of
charge density is monotonic only for the long-range disorder.
Furthermore, like in the case of random Gaussian potential, a
common minimum conductivity in the order of 2e2 /h on
charge neutrality point is also observed for both BLG and
TLG.

VII. DISCUSSION AND CONCLUSIONS

We have presented a detailed numerical study of the elec-
tronic transport properties of bilayer and trilayer graphene
within the framework of a noninteracting tight-binding
model. Various realistic types of disorder are considered,
such as resonant impurities, vacancies, random Gaussian on-
site potentials, and random Gaussian hopping between near-
est carbon atoms. Our results give a consistent picture of the
electronic structure and transport properties of bilayer and
trilayer graphene in a broad range of concentration of impu-
rities or other sources of disorder. Linear or sublinear
electron-density-dependent conductivity at high enough den-
sity is observed, depending on the type and strength of the
disorder and the stacking sequence. The minimum conduc-
tivity �min�2e2 /h �per layer� on charge neutrality point is
common for BLG and TLG, independent of the type of the
impurities, but the plateau of minimum conductivity around
the neutrality point is unique when resonant impurities or
vacancies are present.

In the presence of resonant impurities or vacancies, the
dependence of the conductivity as a function of electron den-
sity is affected by the relevant width of the impurity band

and the band created by the interlayer hopping. Using BLG
with vacancies as an example: introducing np�ne��1�
=�0

�1����d� as the density of electrons on the boundary of
the parabolic band, and considering the case that the concen-
tration of vacancies �nx� is smaller than np, i.e., the impurity
band is within the region of the parabolic conduction band,
there are three regions of electron-density dependence of the
conductivity: �i� 
ne
�nx, a central minimum conductivity
plateau �2e2 /h per layer� with width equals to 2nx; �ii� nx
� 
ne
�np, linear dependence, as predicted by the analytical
treatment using the Boltzmann equation for parabolic
spectrum;17 and �iii� nx�np, sublinear dependence, as the
effects of the interlayer hopping are negligible in this region
and one should expect a behavior of the conductivity similar
to that of SLG.

On the opposite case nx�np, region �ii� simply disappears
and therefore we can only observe the minimum conductiv-
ity plateau and sublinear dependence on the high concentra-
tion of electron densities. Actually, the sublinear dependence
beyond the parabolic band is a general property of SLG,
BLG, and MLG with large enough concentration of resonant
impurities or vacancies, independent of the number of layers
and the stacking sequence.

In the presence of random Gaussian on-site potentials, the
electron-density dependences of conductivity of BLG or
TLG are sublinear and linear in the low concentration of
charges, for short- and long-range disorders, respectively, but
are always sublinear in the high concentration. On the other
hand, in the case of random Gaussian carbon-carbon cou-
plings, the density dependence of conductivity in the region
close to the neutrality point is more simple: there is only a
linear dependence, with no effect of the strength and range of
disorder, the number of layers and stacking sequence.

Note added. After this paper was submitted, a paper
which also discusses the effect of resonant scatterers on the
dc conductivity of single-layer and bilayer graphene
appeared,79 with results that are consistent with ours.
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