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We present a computer simulation model that is a one-to-one copy of a quantum eraser experiment
with photons (P. D. D. Schwindt et al., Phys. Rev. A 60, 4285 (1999)). The model is solely based on
experimental facts, satisfies Einstein’s criterion of local causality and does not require knowledge
of the solution of a wave equation. Nevertheless, the simulation model reproduces the averages
as obtained from the wave mechanical description of the quantum eraser experiment, proving that
it is possible to give a particle-only description of quantum eraser experiments with photons. We
demonstrate that although the visibility can be used as a measure for the interference, it cannot
be used to quantify the wave character of a photon. The classical particle-like simulation model
renders the concept of wave-particle duality, used to explain the outcome of the quantum eraser
experiment with photons, superfluous.
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1. INTRODUCTION

According to wave-particle duality, a concept of quan-
tum theory (QT), photons exhibit both wave and particle
behavior depending upon the circumstances of the
experiment.1 The wave and particle behavior of photons is
believed to be complementary. When we know (observe)
the which-way (WW) information (particle behavior),
there is no interference pattern (wave behavior).2 Param-
eters quantifying the interference and the WW informa-
tion are the visibility � and the path distinguishability �,
respectively. According to the complementarity relation of
QT, � 2+�2 ≤ 1.3�4

In 1982, Scully and Drühl proposed a photon interfer-
ence experiment, called “quantum eraser,” 5 in which the
photons are labelled by WW markers (three-level atoms).
In this experiment, we know (but not observe) the WW
information of the photons and then we expect that there is
no interference. However by erasing the WW information
afterwards by a “quantum eraser,” the interference pattern
can be recovered.5 The interference pattern can even be
recovered after the data have already been recorded and
saved in a file.6

Quantum eraser experiments have been described “as
one of the most intriguing effects in quantum mechanics,”

∗Author to whom correspondence should be addressed.

but have also been regarded as “the fallacy of delayed
choice and quantum eraser.” 7 Clearly, they challenge the
point of view that the wave and particle behavior of pho-
tons are complementary: The observation of interference,
commonly associated with wave behavior, depends on the
way the data is analyzed after the photons have passed
through the interferometer.
The question that we answer in the affirmative in this

paper is: “Can we simulate a quantum eraser experiment
without invoking concepts of quantum theory and without
first solving the wave mechanical problem?”

1.1. Quantum Eraser with Photons

1.1.1. Experimental Realization

The quantum eraser has been implemented in several dif-
ferent experiments with photons, atoms, etc.6�8–13 Although
much more difficult to realize experimentally, quantum
erasers may also be realized with quantum dots14�15 and
mesoscopic electromechanical devices.16

In Ref. [8], Schwindt et al. reported an experimental
realization of a quantum eraser in which the polarization of
the photons has been used to encode the WW information.
In this paper, we focus on this particular experiment. The
experimental setup (see Fig. 1) consists of a linearly polar-
ized single-photon source (not shown), a Mach-Zehnder
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interferometer (MZI) of which the length of Path1 (see
Fig. 1) can be varied, inducing a relative phase shift �
between Path0 and Path1, an adjustable analysis system
which is a combination of a quarter-wave plate (QWP), a
half-wave plate (HWP) HWP1, and a calcite prism operat-
ing as a polarizing beam splitter (PBS). Another adjustable
HWP, HWP0, is inserted in Path0 of the MZI to entangle
the photon’s path with its polarization.
According to Ref. [8] the pictorial description of the

experimental observations is as follows. If a photon,
described by a pure, vertically polarized state V is injected
into the interferometer with the HWP0 set to 45�, then
the photon that arrives at the second beam splitter (BS)
of the MZI carries a WW marker: The photon is in the
horizontally polarized state H if it followed Path0 and it
is in the V state if it followed Path1. If the optical angle
of HWP1 is zero, there will be no interference (� = 0)
and the detectors give us the full WW information of each
detected photon (�= 1). If the optical angle of HWP1 is
nonzero, the H and V states interfere (0 < � ≤ 1) and
the WW information of each photon will be partially or
completely “erased” (0 ≤ � < 1). Thus, by varying the
optical angle �HWP1 of HWP1, the illusion is created that
the character of the photon in the MZI “changes” from
particle to wave and vice versa. If photons described by a
completely mixed, that is an unpolarized, state are emit-
ted, then no WW information can be obtained and also no
interference can be observed (�=� = 0), independent of
the orientation of HWP0. However, varying �HWP1 can still
lead to a recovery of interference (0 < � ≤ 1). For pho-
tons described by a partially mixed state, a state that can
we expressed as containing a completely mixed compo-
nent and a pure component, partial WW information can
be obtained. Since the completely mixed component con-
tains no WW information and displays no interference, the
maxima of � and � are smaller than one and numeri-
cal equal to the state purity. Also in this case complete
visibility can be recovered by varying �HWP1.

1.1.2. Event-by-Event Simulation Model

It is important to realize that the counter-intuitive features
of quantum eraser experiments result from attempts to

BS
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Fig. 1. Schematic diagram of the experimental setup for the quantum
eraser experiment with photons studied in Ref. [8]. BS: beam split-
ter; PBS: polarizing beam splitter; HWP0 and HWP1: half-wave plates;
QWP: quarter-wave plate; D0, D1: detectors; �: phase shift introduced in
Path1.

apply the concepts and the formalism of QT to a descrip-
tion of the experimental results in terms of individual
events.1 Logically speaking, there are two possibilities:
(1) We accept the postulate that it is fundamentally impos-
sible to give a logically consistent description of the exper-
imental results in terms of individual events, that is we
accept that there is no explanation that goes beyond the
quantum theoretical description in terms of averages over
many events.
(2) We search for an explanation of the experimental facts
that goes beyond a description in terms of averages.

In this paper, we demonstrate that the second option is a
viable one. Thus, we adopt the point of view that although
QT correctly predicts averages of many detection events,
it has nothing to say about individual events.1

We propose an event-by-event simulation model that is
a one-to-one copy of the quantum eraser experiment
reported in Ref. [8]. The simulation model describes a
particle-like, classical, local and causal dynamical system.
Each component of the laboratory experiment such as the
single-photon source, the BS, HWP, QWP, and PBS are
simulated by corresponding algorithms. By connecting the
output(s) of one component to the input(s) of another one,
we construct the simulation equivalent of the experimental
setup depicted in Figure 1. By construction this network
of dynamical systems satisfies Einstein’s criterion of local
causality. The data is analyzed by counting the detection
events, just as in the real experiment.
We demonstrate that our model reproduces the results

of QT, that is the averages predicted by QT and confirmed
by experiment,8 without first solving a wave equation. In
fact, we show that it is possible to give an entirely clas-
sical, particle-only description for the single-photon quan-
tum eraser experiment reported in Ref. [8]. We show that
the interference patterns, commonly associated with wave
behavior, can be built up by many particles having full
WW information (we can always track the photons during
the simulation) that arrive one-by-one at a detector.
The work of this paper builds on earlier work17–29 that

demonstrates that quantum phenomena can be simulated
on the level of individual events without first solving a
wave equation and even without invoking concepts of
QT, wave theory or probability theory. Specifically, in
our earlier work we have demonstrated that it is pos-
sible to simulate event-by-event, a single-photon beam
splitter and Mach-Zehnder interferometer experiments,
Einstein-Podolsky-Rosen-Bohm experiments with pho-
tons, Wheeler’s delayed choice experiment with single
photons, the double-slit and two-beam interference, quan-
tum cryptography protocols, and universal quantum com-
putation. The latter proves that in principle we can perform
an event-by-event (particle-like) simulation of any quan-
tum system.30 Some interactive demonstration programs
are available for download.31–33

2 J. Comput. Theor. Nanosci. 7, 1–12, 2010
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1.2. Irrelevance of Bell’s Theorem

It is not uncommon to find in the recent literature, state-
ments that it is impossible to simulate quantum phenomena
by classical processes. Such statements are thought to be
a direct consequence of Bell’s theorem34 but are in con-
flict with other work that has pointed out the irrelevance of
Bell’s theorem.35–57 A survey of the literature suggests that,
roughly speaking, physicists can be classified as those who
believe in the reasonableness of Bell’s arguments, those
who advance logical and mathematical arguments to show
that a violation of Bell’s (and related) inequalities does not
support the far-reaching conclusions of the former group
of physicists and those who do not care about Bell’s theo-
rem at all. The authors of this article belong to the second
group.
Although we expect discussions of philosophical or

metaphysical aspects of Bell’s theorem to continue forever,
as explained in a review article that has appeared in this
journal,24 from the viewpoint of simulating quantum phe-
nomena on a digital computer, Bell’s no-go theorem is of
no relevance whatsoever.
This conclusion is supported by several explicit exam-

ples that prove that it is possible to construct algorithms
that satisfy Einstein’s criteria for locality and causality,
yet reproduce exactly the two-particle correlations of a
quantum system in the singlet state, without invoking any
concept of quantum theory.21–24�26�58 It is therefore an
established fact that purely classical processes can produce
the correlations that are characteristic for a quantum sys-
tem in an entangled state, thereby disposing of the mysti-
cism that is created by Bell’s no-go theorem.
The key point is to realize that QT or the probabilistic

models proposed by Bell cannot, on a fundamental level,
address the (non)existence of algorithms, that is of well-
defined processes, that give rise to the distributions of the
events, described by these theories/models.
The philosophy behind our simulation approach is very

simple: If we can construct an algorithm that
(1) does not rely on the solution of a wave equation,
(2) satisfies the elementary criteria of locality and causal-
ity as formulated by Einstein,
(3) produces data of the same type as the data collected in
the laboratory experiment,
(4) by analyzing the simulated data according to the pro-
cedure used to analyze the experimental data leads to the
same conclusion, namely that certain averages of the raw
data agree with the quantum theoretical description of the
whole experiment,
(5) contains algorithms that simulate the various compo-
nents (beam splitter, etc.) of the experiment and can, with
no change, be re-used to simulate other experiments,

then we may conclude that we have built a simulation
model for the laboratory experiment.

Loosely speaking, if the experimenter would be unable
to distinguish between data recorded in a genuine experi-
ment and data provided by the simulation algorithm, then
the experiment has been “de-mystified” in the sense that
we have found a process that offers a description of the
observed phenomena on the level of individual events and
without invoking (concepts of) wave theory.
To avoid possible misunderstandings, the work pre-

sented in this paper is not concerned with an interpretation
or an extension of QT nor does it affect the validity of QT
as such. QT describes the collective result of many events,
that is averages of many events, extremely well but does
not provide a description on the level of individual clicks
of a detector.1

1.3. Structure of the Paper

Section 2 reviews the standard concepts of QT that are
needed to give a quantum theoretical treatment of the
quantum eraser experiment.8 Section 3 discusses the gen-
eral ideas that underpin our event-by-event simulation
approach. We address the fundamental problem of recon-
ciling the observation of “clicks” with a wave mechan-
ical theory from the viewpoint of algorithms, processes
and computation. We show that in general, it is impossi-
ble to attribute “clicks” to individual wave amplitudes and
explain how our simulation approach circumvents this fun-
damental problem. Section 4 explains how the pure and
mixed states of a quantum systems can be represented in
our simulation approach. In Section 5, we specify the sim-
ulation model in full detail. Data of event-by-event simu-
lations of the quantum eraser experiment are presented in
Section 6. We show that our classical, particle-like sim-
ulation model reproduces all the results of QT for this
experiment. Our conclusions can be found in Section 7.

2. QUANTUM THEORY

In QT, a system is described by the state ���, a vector in
a Hilbert space.59 This vector can be written as a linear
combination of a complete set of orthonormal basis states
�i� for i = 1� � � � � d where d denotes the dimension of the
Hilbert space. These basis states are chosen such that they
facilitate the formulation of the model. The amplitude for
a quantum system to go from a state ��� to another state
��� is given by ����� =∑d

i=1���i��i���. With respect to
the basis states ��i��, the optical apparatus T is defined
through its transition matrix elements �i�T �j�. If the opti-
cal apparatus T induces a transition from the state ��� to
the state ���, the amplitude for this transition is given by
���T ��� =∑d

i� j=1���i��i�T �j��i���. Finally, the probabil-
ity Prob	���
 for this transition to occur is related to the
amplitude through the Born rule

Prob	���
= ����T ����2 (1)

J. Comput. Theor. Nanosci. 7, 1–12, 2010 3
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According to the above scheme, we can easily calculate the
predictions of QT for the experiment shown in Figure 1.
The basis states correspond to H or V polarized photons
that travel along Path0 or Path1. The transition matrices
of the optical components such as the BS, PBS, HWP and
QWP can be found in Ref. [60] and in the appendix. In the
appendix, we also give the quantum theoretical expressions
for the visibility for the experiment depicted in Figure 1
that will be used for the comparison with our simulation
results.
The above formulation assumes that the quantum system

is in the pure state.59 Some of the experiments reported in
Ref. [8] require a description in terms of a mixed state.59

A system is in a mixed state if it is in one of its m pure
states ��1�� ��2�� � � � � ��m� with probability p1� p2� � � � � pm,
respectively.59 A quantum system in a mixed state is con-
veniently described through the density matrix59

�=
m∑
j=1

pj ��j���j � (2)

where it is assumed that
∑m

j=1 pj = 1, pj ≥ 0 for j =
1� � � � �m, and that the states ��j� are normalized such that
Tr� = 1. According to QT, for a system in a mixed state
�, the expectation value of the operator � is given by59

��� = Tr��=
m∑
j=1

pj��j ����j� (3)

3. EVENT-BY-EVENT SIMULATION

Our event-based simulation approach is unconventional in
that it does not require knowledge of the wave ampli-
tudes obtained by first solving the quantum theoretical
problem nor do we first calculate the quantum potential
(which requires the solution of the Schrödinger equation)
and then compute the Bohm trajectories of the particles.
Instead, the detector clicks are generated event-by-event
by locally causal, adaptive, classical dynamical systems.
Our approach employs algorithms, that is we define pro-
cesses, that contain a detailed specification of each indi-
vidual event which, as we now show, cannot be derived
from a wave theory such as QT.
To understand the subtleties that are involved, it is help-

ful to consider a simple example. Let us consider the MZI
unit of the quantum eraser and omit the polarization label
of the photons. According to QT, the amplitudes b0 and b1
to observe a photon in Path0 or Path1 after the second BS
are related to the input amplitudes a0 and a1 by61(

b0

b1

)
= 1

2

(
1 i

i 1

)(
ei�0 0

0 ei�1

)(
1 i

i 1

)(
a0

a1

)

≡ ABA

(
a0

a1

)
(4)

Let us assume that a0 = 1 and a1 = 0, meaning that the
photons enter the MZI through Path0 only. The probabili-
ties P0 (P1) for a click in detector D0 (D1) are given by

Pk =
∣∣∣∣ ∑
j=0�1

∑
i=0�1

Ak�jBj� iAi�0

∣∣∣∣
2

� k = 0�1 (5)

Using Eqs. (4) and (5) a simple calculation yields a closed
form expression for Pk. Once we know Pk, it is trivial to
use it as input for a process that generates clicks of the
detectors D0 and D1. This approach relies on what we call
the “solution” of the quantum theoretical problem. It is
irrelevant whether we have a closed form expression for
Pk or only know Pk in tabulated form. The point is that we
analytically worked out the sums over the indices i and j
in Eq. (5). Let us now assume that we do not know how
to perform the sums over the indices i and j in Eq. (5)
by ourselves and that there is some “magical process” that
carries out the sum for us. In other words, we assume that
we do not know P0 and P1.
In practice, any process that performs the sums in

Eq. (5) by selecting (one-by-one) the pairs 	i� j
 from the
set S = 	0�0
� 	1�0
� 	0�1
� 	1�1
 defines a sequence of
“events” 	i� j
. The key question now is: Can we identify
the selection of the pairs with “clicks,” events registered
by a detector? We now prove that this is impossible.
A characteristic feature of all wave phenomena is that

not all contributions to the sums in Eq. (5) have the same
sign: In wave theory, this feature is essential to account for
destructive interference. But, at the same time this feature
forbids the existence of a process of which the “events”
can be identified with the clicks of the detector.
This is easily seen by considering a situation for which,

for instance, P0 = 0. In this case, the detector D0 should
never click. However, according to Eq. (5), the process
that samples from the set S produces “events” such that
the sums over all these “events” vanishes. Therefore, if
we want to identify these “events” with the clicks that we
observe, we run into a logical contradiction: To perform
the sums in Eq. (5), we have to generate events that in the
end cannot be interpreted as clicks since in this particular
case no detector clicks are observed.
Thus, the conclusion is that the individual terms in

expression Eq. (5) do not contain the ingredients to define
a process that generates the clicks of the detectors that we
observe.
The crux of our event-by-event simulation approach is

that we do not start from expression Eq. (5) but construct
a process that converges to Eq. (5) while generating events
that correspond to the observed events. To grasp this idea,
consider the well-known Metropolis Monte Carlo (MMC)
method for solving statistical mechanical problems.62�63

The MMC method generates states S, events in our termi-
nology, with a probability density62�63

P	S
= e−E	S
/kBT∑
S e

−E	S
/kBT
(6)

4 J. Comput. Theor. Nanosci. 7, 1–12, 2010



R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Jin et al. Event-by-Event Simulation of a Quantum Eraser Experiment

where E	S
 denotes the energy of the state S, kB is Boltz-
mann’s constant and T is the temperature. At first sight,
sampling from Eq. (6) is impossible because in all but
a few nontrivial cases for which the partition function∑

S e
−E	S
/kBT is known, we do not know the denomina-

tor. MMC solves this problem by constructing a Markov
chain that generates a sequence of events S such that
asymptotically these events are distributed according to the
(unknown) probability density Eq. (6).62�63

The analogy with our event-by-event simulation
approach is the following. Although very different in all
technical details, our event-based method uses a determin-
istic process of which the sampling distribution converges
to the unknown (by assumption) probability distribution Pk

for k = 0�1. Initially, the system does not know about this
limiting probability distribution and hence, during a short
transient period, the frequencies with which events are gen-
erated may not correspond to this distribution. However, for
many events, which is the situation described by QT, these
first few “wrong” events disappear in the statistical fluctua-
tions and are therefore irrelevant for the comparison of our
event-based simulation results with QT. It should be clear
that the foregoing does not depend on the specific example
that we used for the purpose of illustration.
Let us now discuss the general aspects of our simulation

approach. The simulation algorithms that we construct are
most easily formulated in terms of events, messages, and
units that process these events and messages. Taking the
quantum eraser experiment as an example, in a pictorial
description, the photon is regarded as a messenger, carry-
ing a message that represents its time-of-flight (phase) and
polarization. In this pictorial description, we may speak of
“photons” generating the detection events. However, these
so-called photons, as we will call them in the following,
are elements of a model or theory for the real laboratory
experiment only. The only experimental facts are the set-
tings of the various apparatuses and the detection events.
What happens in between activating the source and the
registration of the detection events belongs to the domain
of imagination.
The processing units mimic the role of the optical

components in the experiment and the network by con-
necting the processing units represents the complete exper-
imental setup. The standard processing units consist of an
input stage, a transformation stage and an output stage.
The input (output) stage may have several channels at
(through) which messengers arrive (leave). Other process-
ing units are simpler in the sense that the input stage is
not necessary for the proper functioning of the device.
A message is represented by a set of numbers, convention-
ally represented by a vector. As a messenger arrives at an
input channel of a processing unit, the input stage updates
its internal state, represented by a vector, and sends the
message together with its internal state to the transforma-
tion stage that implements the operation of the particular

device. Then, a new message is sent to the output stage
which selects the output channel through which the mes-
senger will leave the unit. At any given time, there is only
one messenger being routed through the whole network.
There is no direct communication between the messen-
gers. From this general description, it should already be
clear that the process that is generated by the collective of
classical dynamical systems is locally causal in Einstein’s
sense. Our simulation approach does not rely on concepts
of probability theory but instead, it generates events by
way of classical, dynamical processes, the frequencies of
events of which converge to the quantum theoretical results
as the dynamical system relaxes to its stationary state.

4. SIMULATION OF PURE AND
MIXED STATES

In QT, the pure state is a description of the whole exper-
iment, not of the individual events that are recorded by
the detectors.1�59 In our simulation approach, the messages
carried by the messengers represent the pure state, corre-
sponding to a density matrix of the form � = ��k���k�,
that is pj = 0 for all j 	= k and pk = 1. In our simulation
approach, the messages are constructed such that a large
collection of them yields the same averages as those we
obtain from quantum theory. Loosely speaking, we may
say that a set of N (N sufficiently large) messages of a
certain type correspond to a pure state.
In the more general case, QT describes the whole

experiment through the mixed state Eq. (2). We simu-
late the mixed state by the following procedure. Given
p1� � � � � pm, we pick an index k ∈ �1� � � � �m� using a
pseudo-random number and then send Nk messages of type
k (corresponding to the pure state ��k�) through the net-
work of processing units that represent the quantum sys-
tem. The precise value of Nk is unimportant, as long at it is
large enough to let the classical dynamical system mimic
the pure state ��k�.
For the case at hand, the quantum eraser, the source can

emit a pure state, a linear combination of V and H polar-
ized photons, or it can produce a mixed state of the two.8

Thus, we have m= 2 and it what follows we will label the
N ’s by the subscripts V and H to facilitate the comparison
with the terminology used in the experiment.8 Although
not essential, in our simulation we simply choose NV =NH

and denote the probabilities for the V - and H -polarized
photons in a mixed state by pV and pH , respectively.

5. SIMULATION MODEL

As explained earlier, our simulation algorithm can be
viewed as a message-processing and message-passing
process: It routes messengers, representing the photons,
through a network of message-processing units, playing

J. Comput. Theor. Nanosci. 7, 1–12, 2010 5
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the role of the optical components in the laboratory exper-
iment. In what follows we give a detailed description of
each of the components of the network representing the
complete experimental setup of the quantum eraser exper-
iment, schematically depicted in Figure 1.

5.1. Messenger

A messenger has its own internal clock, the hand of which
rotates with frequency f . When the messenger is created,
the hand of the clock is set to time zero. As the messenger
travels from one position in space to another, the clock
encodes the time-of-flight modulo the period 1/f . The
message, the position of the clock’s hand, is most conve-
niently represented by a two-dimensional unit vector el =
	e0� l� e1� l
 = 	cos
l� sin
l
, where 
l = 2�ft, the sub-
script l≥ 0 labeling the successive messages. The messen-
ger travels with a speed c/n where n is the refractive index
of the medium in which the messenger moves and c is the
light velocity. Clearly, this messenger is the event-based
equivalent of a classical, linearly polarized electromagnetic
wave with frequency f : The messenger corresponds to the
light ray with wave vector k	k = 2�f /c
 and the clock
mimics one of the electric field components in the plane
orthogonal to k.64 Adding another clock to the messen-
ger suffices to model the second electric field component
orthogonal to the first one, and hence the fully polarized
wave.27

Thus, each messenger carries a message represented by
a six-dimensional unit vector

yk� l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
H
k� l

sin
H
k� l

cos
V
k� l

sin
V
k� l

cos�k� l

sin �k�l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

where the superscript H (V ) refers to the horizontal
(vertical) component of the polarization and 
H

k� l, 

V
k� l, and

�k� l represent the time of flight and polarization of the
photon, respectively. It is evident that the representation
used here maps one-to-one to the plane-wave description
of a classical electromagnetic field,64 except that we assign
these properties to each individual messenger, not to a
wave. The subscript l ≥ 0 numbers the consecutive mes-
sages and k = 0�1 labels the channel of the BS at which
the message arrives (see below).

5.2. Beam Splitter

Here we construct a processing unit that acts as a BS,
not by calculating the amplitudes according to QT, but
by processing individual events (see Fig. 2). It consists

cosψH
1,n
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Fig. 2. Diagram of a DLM-based processing unit that performs an
event-based simulation of a beam splitter (BS). The processing unit con-
sists of three stages: An input stage (DLM), a transformation stage (T)
and an output stage (O). The solid lines represent the input and output
channels of the BS. The presence of a message is indicated by an arrow
on the corresponding channel line. The dashed lines indicate the data
flow within the BS. The transformation matrix T is given in Eq. (15).

of an input stage, a simple deterministic learning machine
(DLM),17–20�27 a transformation stage (T), an output stage
(O) and has two input and two output channels labeled
by k = 0�1. We now define the operation of each stage
explicitly.
• Input stage: The DLM receives a message on either
input channel 0 or 1, never on both channels simultane-
ously. The arrival of a message on channel 0 (1) is named
a 0 (1) event. The input events are represented by the vec-
tors vl = 	1�0
 or vl = 	0�1
 if the lth event occurred
on channel 0 or 1, respectively. The DLM has six inter-
nal registers YH

k� l = 	CH
k� l� S

H
k� l
, Y

V
k� l = 	CV

k� l� S
V
k� l
, Y

P
k� l =

	CP
k� l� S

P
k� l
 and one internal vector xl = 	x0� l� x1� l
, where

x0� l+x1� l = 1 and xk� l ≥ 0 for k= 0�1 and all l≥ 0. These
seven two-dimensional vectors are labeled by the message
number l to indicate that their values may change every
time the DLM receives a message. The DLM has storage
for no more than fourteen numbers.

Upon receiving the lth input event, the DLM performs the
following steps: It stores the first two elements of message
yk� l in its internal register YH

k� l = 	CH
k� l� S

H
k� l
, the middle

two elements of yk� l in YV
k� l = 	CV

k� l� S
V
k� l
, and the last two

elements of yk� l in YP
k� l = 	CP

k� l� S
P
k� l
. Then, it updates its

internal vector according to the rule

xl = �xl−1+ 	1−�
vl (8)

where 0<� < 1. Note that by construction x0� l+x1� l = 1,
x0� l ≥ 0 and x1� l ≥ 0, and the DLM stores information
about the last message only. The information carried by
earlier messages is overwritten by updating the internal

6 J. Comput. Theor. Nanosci. 7, 1–12, 2010
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registers. From the solution of Eq. (8),

xl = �lxl−1+ 	1−�

l−1∑
j=0

�l−j−1vj+1 (9)

the fact that in practice the sequence �v1�v2� � � � �vK� is
finite, and the usual trick to assume a periodic continuation
of the sequence, we have

xmK = �Kx	m−1
K + 	1−�

mK−1∑

j=	m−1
K

�mK−j−1vj+1

= �Kx	m−1
K + 	1−�

K−1∑
j=0

�K−j−1vj+1+	m−1
K

= �Kx	m−1
K + 	1−�
fK (10)

where

fK =
K−1∑
j=0

�K−j−1vj+1 (11)

and m≥ 0. From Eq. (10) we find

xmK = �mKx0+ 	1−�

1−�mK

1−�K
fK (12)

and hence

lim
m→�xmK = 1−�

1−�K

K−1∑
j=0

�K−j−1vj+1 (13)

such that

lim
�→1−

lim
m→�xmK = 1

K

K−1∑
j=0

vj+1 (14)

From Eq. (14), we conclude that as � → 1− the inter-
nal vector converges to the average of the vectors
v1�v2� � � � �vK which represents the relative frequency of
input events at the two channels of the BS 	k= 0�1
. The
parameter � controls the speed of learning and also limits
the precision with which the internal vector can represent
a sequence of constant input messages.17 Disregarding the
fact that according to Eq. (14), we should let � → 1− to
obtain the limiting value of the average of the v’s, it is
the only free parameter in the model. In practice, in the
simulation we fix it once and for all.
• Transformation stage: The second stage (T) accepts the
messages from the input stage, and transforms them into
a new eight-dimensional vector

T= 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CH
0� lC

P
0� l
√
x0� l−SH

1� lC
P
1� l
√
x1� l

CH
1� lC

P
1� l
√
x1� l+SH

0� lC
P
0� l
√
x0� l

CV
0� lS

P
0� l
√
x0� l−SV

1� lS
P
1� l
√
x1� l

CV
1� lS

P
1� l
√
x1� l+SV

0� lS
P
0� l
√
x0� l

CH
1� lC

P
1� l
√
x1� l−SH

0� lC
P
0� l
√
x0� l

CH
0� lC

P
0� l
√
x0� l+SH

1� lC
P
1� l
√
x1� l

CV
1� lS

P
1� l
√
x1� l−SV

0� lS
P
0� l
√
x0� l

CV
0� lS

P
0� l
√
x0� l+SV

1� lS
P
1� l
√
x1� l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

If we rewrite the transformation T using complex numbers,
we find that⎛

⎜⎜⎜⎜⎜⎝

bH
0

bV
0

bH
1

bV
1

⎞
⎟⎟⎟⎟⎟⎠= 1√

2

⎛
⎜⎜⎜⎜⎜⎝

1 0 i 0

0 1 0 i

i 0 1 0

0 i 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

aH
0

aV
0

aH
1

aV
1

⎞
⎟⎟⎟⎟⎟⎠ (16)

which is the unitary transformation in the quantum the-
oretical description of a BS, if 	aH

0 � a
V
0 � a

H
1 � a

V
1 
 and

	bH
0 � b

V
0 � b

H
1 � b

V
1 
 denote the input and output amplitudes

of the photons with polarization H and V in the 0 and 1
channels of a BS, respectively. Note that in our simulation
model there is no need to introduce the (quantum theo-
retical) concept of a vacuum field, a requirement in the
quantum optical description of a BS.
• Output stage: The final stage (O) sends out a messenger
(representing a photon) carrying the message

w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0� l/s0� l

w1� l/s0� l

w2� l/s1� l

w3� l/s1� l

s0� l/s2� l

s1� l/s2� l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

where

w0� l = CH
0� lC

P
0� l
√
x0� l−SH

1� lC
P
1� l
√
x1� l

w1� l = CH
1� lC

P
1� l
√
x1� l+SH

0� lC
P
0� l
√
x0� l

w2� l = CV
0� lS

P
0� l
√
x0� l−SV

1� lS
P
1� l
√
x1� l

w3� l = CV
1� lS

P
1� l
√
x1� l+SV

0� lS
P
0� l
√
x0� l

s0� l =
√
w2

0� l+w2
1� l

s1� l =
√
w2

2� l+w2
3� l

s2� l =
√
w2

0� l+w2
1� l+w2

2� l+w2
3� l (18)

through output channel 0 if s22�l > 2r where 0 < r < 1
is a uniform pseudo-random number. Otherwise, if s22� l ≤
2r , the output stage sends through output channel 1 the
message

z=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z0� l/t0� l

z1� l/t0� l

z2� l/t1� l

z3� l/t1� l

t0� l/t2� l

t1� l/t2� l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)
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where

z0� l = CH
1� lC

P
1� l
√
x1� l−SH

0� lC
P
0� l
√
x0� l

z1� l = CH
0� lC

P
0� l
√
x0� l+SH

1� lC
P
1� l
√
x1� l

z2� l = CV
1� lS

P
1� l
√
x1� l−SV

0� lS
P
0� l
√
x0� l

z3� l = CV
0� lS

P
0� l
√
x0� l+SV

1� lS
P
1� l
√
x1� l

t0� l =
√
z20� l+ z21� l

t1� l =
√
z22� l+ z23� l

t2� l =
√
z20� l+ z21� l+ z22� l+ z23� l (20)

The use of pseudo-random numbers to select the output
channel is not essential.18 We use pseudo-random numbers
to mimic the apparent unpredictability of the experimen-
tal data only. Instead of a uniform pseudo-random number
generator, any algorithm that selects the output channel in
a systematic manner might be employed as well.18 This
will change the order in which messages are being pro-
cessed but the content of the messages will be left intact
and the resulting averages do not change significantly.

5.3. Polarizing Beam Splitter

A polarizing beam splitter (PBS) is used to redirect the
photons on the basis of their polarization (H or V ). The
structure of the event-based processor that simulates a PBS
is identical to the one of the BS and differs in the details
of the transformation stage only. For the PBS, the trans-
formation T reads27

T=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CH
0� l+1C

P
0� l+1

√
x0� l+1

SH
0� l+1C

P
0� l+1

√
x0� l+1

−SV
1� l+1S

P
1� l+1

√
x1� l+1

CV
1� l+1S

P
1� l+1

√
x1� l+1

CH
1� l+1C

P
1� l+1

√
x1� l+1

SH
1� l+1C

P
1� l+1

√
x1� l+1

−SV
0� l+1S

P
0� l+1

√
x0� l+1

CV
0� l+1S

P
0� l+1

√
x0� l+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

5.4. Remaining Optical Components

In contrast to the BS and PBS, in terms of message pro-
cessing the HWP and QWP are passive devices in the
sense that the adaptive unit, the DLM, is not required
for a proper functioning of the devices. As can be seen
from the quantum theoretical description (see Appendix),
a HWP does not only change the polarization of the pho-
ton but also changes its phase and a QWP additionally,
introduces a phase difference between the H and V com-
ponents. In our simulation model, the functionality of these

optical components is implemented through plane rota-
tions of the vectors 	cos�k� l� sin �k� l
, 	cos


H
k� l� sin


H
k� l
,

and 	cos
V
k� l� sin


V
k� l
.

5.5. Data Gathering and Analysis Procedure

In the simulation, the data is collected in the same manner
as in the experiment. Detector D0 (D1) registers the output
events at channel 0 (1) (see Fig. 1). During a run of N
events, the algorithm generates the data set

� = �xl�l = 1� � � � �N ����HWP0� �HWP1� �QWP� (22)

where xl = 0�1 indicates which detector fired (D0 or D1),
� denotes the phase shift (proportional to the difference in
time-of-flight of Path0 and Path1) between the two inter-
ferometer arms and �HWP0, �HWP1, �QWP denote the angles
of the optical axis of the respective waveplates with the
laboratory frame. For fixed �HWP0, �HWP1, �QWP and �, the
number of detection events in detector 1 is given by N1 =∑N

l=1 xl and N0 =N −N1 is the number of detection events
in detector 0. The appearance of interference fringes is
conveniently characterized by the visibility64

� = Nmax−Nmin

Nmax+Nmin

(23)

where Nmax and Nmin denote the maximum and minimum
of N0 for all � ∈ �0�2��. Notice that for the experiment
depicted in Figure 1, the visibility is a function of �HWP0,
�HWP1, and �QWP.

6. SIMULATION RESULTS

The processing units that simulate the optical components
are connected in such a way that the simulation setup is an
exact one-to-one copy of the real experiment (see Fig. 1).
The simulation procedure is as follows: For each choice of
� in the range �0�2��, we fix �HWP0, �HWP1 and �QWP and
perform a simulation with 106 events, randomly distributed
over groups of NH = 200 or NV = 200 events (�1 = H
and �2 = V in the notation of Section 4). Then for each
choice of �HWP0, �HWP1, �QWP, we repeat this procedure.
The result of these calculations form the data set � (see
Eq. (22)). From this data set, we compute the visibility
according to Eq. (23). All simulations have been carried
out with � = 0�99.

6.1. Without QWP

In Figure 3 we show our simulation results for the
visibility as a function of 2�HWP1 for the quantum eraser
experiment with the QWP removed (see Fig. 1). First
we consider the case in which the source emits pho-
tons that in QT are described by a pure, vertically polar-
ized (V ) state. Each such photon, after passing through
the first BS, has equal chance to end up in either of

8 J. Comput. Theor. Nanosci. 7, 1–12, 2010
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Fig. 3. Visibility as a function of the angle 2�HWP1 for the quantum
eraser experiment with the QWP removed (see Fig. 1). The markers
(squares, bullets) and lines (solid, dashed) represent the event-by-event
simulation data and the quantum theoretical results (see Eqs. (30) and
(31)), respectively. (a) The source emits photons described by the pure
vertically polarized state V and �HWP0 = 45� (red bullets and solid line),
�HWP0 = 10� (black squares and dashed line); (b) The source emits pho-
tons described by the completely mixed state (pV = pH = 1/2) and
�HWP0 = 45�; (c) The source emits photons described by a partially mixed
state with pV = 2/3, pH = 1/3 and �HWP0 = 22�5� (black bullets and solid
line). The red dashed and blue dotted curves represent the quantum theo-
retical results for the pure vertically polarized state V and the completely
mixed state, respectively.

the two arms of the interferometer. In our simulation,
the messenger representing this photon carries the mes-
sage 	0�0� cos
V

0 � sin

V
0 �0�1
 (see Eq. (7)). If the photon

follows Path0, it encounters HWP0, the optical axis of
which makes an angle �HWP0 with respect to the labora-
tory frame. HWP0 rotates the polarization of the photon
by an angle 2�HWP0.

64 The event-by-event simulation data
and the results of QT are shown in Figure 3(a). The simu-
lation data are in quantitative agreement with the averages
calculated from QT and in qualitative agreement with the
experimental data (see Fig. 4(a) in Ref. [8]).
Next, we consider the case where in QT, the input to

the quantum eraser is described by a (completely) mixed

(a)

(b)

Fig. 4. Visibility as a function of the angle 2�HWP1 for the quantum
eraser experiment depicted in Figure 1 with �QWP = 0. The markers
(squares, bullets) and lines (solid, dashed) represent the event-by-event
simulation data and the quantum theoretical results (see Eq. (32)), respec-
tively. (a) The source emits photons described by the pure vertically
polarized state V and �HWP0 = 45� (red bullets and solid line), �HWP0 = 10�

(black squares and dashed line); (b) The source emits photons described
by the pure � = 45�-polarized state and �HWP0 = 22�5�.

state. In QT, a mixed state simply means that photons
emitted by the source are described by an incoherent mix-
ture of horizontally and vertically polarized pure states. In
Section 4, we explained how to implement mixed states
in the event-based simulation approach. The simulation
data for a source emitting photons described by a (com-
pletely) mixed state are shown in Figures 3(b and c). Also
in this case, our simulation data are in quantitative agree-
ment with the averages computed from QT and in quali-
tative agreement with the experimental results reported in
Ref. [8] (see Figs. 4(b and c)).

6.2. With QWP

In Figure 4 we present some simulation data for the case
that the QWP is present, see Figure 1, and �QWP = 0. If
�QWP = 0, the QWP does not change the polarization of the
photons but changes their phase. We only consider the case
that the single-photon source emits photons that in QT, are
described by a pure state. Figure 4(a) shows simulation
data corresponding to incoming V -polarized photons, for
�HWP0 = 45� (red bullets) and �HWP0 = 10� (black squares).
In Figure 4(b) we show the simulation data for the source
that emits photons in a state that QT would character-
ize with � = 45�, and �HWP0 = 22�5�. In our simulation,
this state is represented by messengers that carry the mes-
sage 	cos
H

0 � sin

H
0 � cos


V
0 � sin


V
0 �1/

√
2�1/

√
2
. As in
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all other cases shown, the agreement between the event-
based simulation data and QT is excellent.

7. DISCUSSION

We have demonstrated that our classical, locally causal,
particle-like simulation approach reproduces the results of
the quantum eraser experiment8 and the results of quan-
tum theory describing the averages of these experimental
results.
During the event-by-event simulation of the quantum

eraser experiment we always have full which-way infor-
mation of the photons (messengers) since we can always
track them. Nevertheless, depending on the settings of
the optical apparatuses, the photons build up an inter-
ference pattern at the detector. Although the appearance
of an interference pattern is commonly considered to be
characteristic for a wave, we have demonstrated that, as
in experiment, it can also be built up by many photons.
These photons have full which-way information and arrive
one-by-one at a detector. Hence, even in the case that the
source emits single photons, described by a pure state in
quantum theory, and that � = 1, commonly associated
with full wave character, the photons in our simulation
model have full which-way information. A consequence
of our model is thus that the relation � 2+�2 ≤ 1 cannot
be regarded as quantifying the notion of complementarity:
Our model always allows a particle-only description of the
quantum eraser experiment, independent of the purity of
the state describing the photons in quantum theory.
In summary, concepts of quantum theory applied to indi-

vidual events fail to provide a logically consistent expla-
nation for the experimental observation of single detector
“clicks” building up an interference pattern and leave no
option but to postulate that “this is the way it is.” In con-
trast, our event-based simulation model, a classical locally
causal dynamical system, reproduces the results of quan-
tum theory without making reference to the solution of a
wave equation and provides a simple, particle-based men-
tal picture for what each individual photon experiences as
it travels from the source to the detector. Just like in the
experiments, our model produces data sets Eq. (22) which
can be given to a third party for analysis long after the sim-
ulation has been finished. Because of the strong similarity
between the experimental and simulation data sets the third
party will have a very hard time, if possible at all, to iden-
tify the data sets as originating from a so-called “quantum
experiment” or from a “classical simulation model.”
Finally, we would like to emphasize that the algorithms

used to simulate the optical components of the quan-
tum eraser have not designed to exclusively simulate this
particular example but they can be used to reproduce
the results of many other quantum optics experiments as
well.17–29

Appendix

According to quantum theory (QT), photons in a pure state
are described by the state vector

��� =

⎛
⎜⎜⎜⎜⎜⎝

aH
0

aV
0

aH
1

aV
1

⎞
⎟⎟⎟⎟⎟⎠ (24)

where H and V refer to the horizontal and vertical direc-
tion of polarization and the subscripts refer to the wave in
Path0 and Path1, respectively. Within QT, the action of the
various optical components is defined by the matrices

TBS =
1√
2

⎛
⎜⎜⎜⎜⎜⎝

1 0 i 0

0 1 0 i

i 0 1 0

0 i 0 1

⎞
⎟⎟⎟⎟⎟⎠ (25)

TPBS =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 0 i

0 0 1 0

0 i 0 0

⎞
⎟⎟⎟⎟⎟⎠ (26)

THWP0	�
=−i

⎛
⎜⎜⎜⎜⎜⎝

c s 0 0

s −c 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ (27)

THWP1	�
=−i

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 c s

0 0 s −c

⎞
⎟⎟⎟⎟⎟⎠ (28)

TQWP	�
=
1√
2

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1− ic −is

0 0 −is 1+ ic

⎞
⎟⎟⎟⎟⎟⎠ (29)

where � denotes the angle of the optical axis with respect
to the laboratory frame, c = cos2� and s = sin 2�.
Using these expressions, it is somewhat tedious but

straightforward to calculate the visibility Eq. (23). We list
the expressions for the cases for which we perform event-
based simulations.
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(1) With the QWP removed, see Figure 1, and for incom-
ing photons that are described by a pure state of polariza-
tion �:

� =
∣∣∣∣ 2 sin	�−2�0+2�1
 sin	�−2�1


sin2	�−2�0+2�1
+ sin2	�−2�1


∣∣∣∣ (30)

where �0 = �HWP0 and �1 = �HWP1.
(2) With the QWP removed and for incoming photons
described by a mixed-state photon input with pV /pH =
tan2 �:

V = �	2 sin	2�0−2�1
 sin	2�1


+2 tan2 � cos	2�0−2�1
 cos	2�1



·	sin2	2�0−2�1
+ sin2	2�1


+ tan2 ��cos2	2�0−2�1
+ cos2	2�1
�

−1� (31)

(3) With the QWP present, �QWP = 0�, and for incoming
photons that are described by a pure state of polarization �:

V = �	�sin2 4�1 sin2	2�−2�0


+4�cos2 2�1 sin	�−2�0
 sin �

− sin2 2�1 cos	�−2�0
 cos��
2�1/2


·	cos2 2�1 sin2	�−2�0


+ sin2 2�1 cos
2	�−2�0
+ sin2 2�1 cos

2 �

+ cos2 2�1 sin
2 �
−1� (32)
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