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We solve the time-dependent Schrödinger equation for the combination of a spin system interacting
with a spin bath environment. In particular, we focus on the time development of the reduced density
matrix of the spin system. Under normal circumstances we show that the environment drives the reduced
density matrix to a fully decoherent state, and furthermore the diagonal elements of the reduced density
matrix approach those expected for the system in the canonical ensemble. We show one exception to the
normal case is if the spin system cannot exchange energy with the spin bath. Our demonstration does not
rely on time-averaging of observables nor does it assume that the coupling between system and bath is
weak. Our findings show that the canonical ensemble is a state that may result from pure quantum
dynamics, suggesting that quantum mechanics may be regarded as the foundation of quantum statistical
mechanics.
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1. Introduction

Statistical mechanics is one of cornerstones of modern
physics but its foundations and basic postulates are still
under debate.1–21) There is a common believe that a generic
‘‘system’’ that interacts with a generic environment evolves
into a state described by the canonical ensemble. Experience
shows that this is true but a detailed understanding of this
process, which is crucial for a rigorous justification of
statistical physics and thermodynamics, is still lacking. In
particular, in this context the meaning of ‘‘generic’’ is not
clear. The key question is to what extent the evolution to the
equilibrium state depends on the details of the dynamics of
the whole system.

Earlier demonstrations that the system can be in the
canonical ensemble state are based on showing that time-
averages of the expectation dynamical variables of the
system approach their values for the subsystem that is the
thermal equilibrium state2–5) or do not consider the dynamics
of the system but assume that the state of the whole system
has a special property called ‘‘canonical typicality’’6–12) in
which case it is as yet unclear under which conditions the
whole system will evolve to the region in Hilbert space
where its subsystems are in the thermal equilibrium state. A
very different setting to study nonequilibrium quantum
dynamics is to start from an eigenstate of some initial
Hamiltonian and push the system out of this state by a sudden
change of the model parameters.13–19) To the best of our
knowledge, it has not yet been shown that this approach leads
to the establishment of the canonical equilibrium distribu-
tion. Finally, we want to draw attention to the fact that a
demonstration of relaxation to the canonical distribution
requires a system with at least three different eigenenergies
because a diagonal density matrix of a two-level system can
always be represented as a canonical distribution.20,21)

The main result of this paper is that we show, without
any time-averaging procedure or any approximation, that

systems embedded in a closed quantum system generally
evolve to their canonical distribution states. This result
complies with the fact that if we make a real measurement
of a thermodynamic property, we observe its equilibrium
value without having to perform time averaging. Further-
more, we show that the relaxation to the canonical
distribution is not limited to the regime of weak coupling
between system and environment, an assumption that is
often used.1,6–12)

2. General Theory

In general, the state of a closed quantum system is
described by a density matrix.22,23) The canonical ensemble
is characterized by a density matrix that is diagonal with
respect to the eigenstates of the system Hamiltonian, the
diagonal elements taking the form expð��EiÞ where � ¼
1=kBT is proportional to the inverse temperature (kB is
Boltzmann’s constant) and the Ei’s denote the eigenenergies.
The time evolution of a closed quantum system is governed
by the time-dependent Schrödinger equation (TDSE).22,23) If
the initial density matrix of an isolated quantum system
is non-diagonal, then, according to the TDSE, its density
matrix remains nondiagonal and never approaches the
thermal equilibrium state with the canonical distribution.
Therefore, in order to thermalize the system S, it is necessary
to have the system S interact with an environment (E), also
called heat bath. Thus, the Hamiltonian of the whole system
(Sþ E) takes the form H ¼ HS þ HE þ HSE, where HS and
HE are the system and environment Hamiltonian, respec-
tively and HSE describes the interaction between the system
and environment.

The state of system S is described by the reduced density
matrix e��ðtÞ � TrE �ðtÞ; ð1Þ

where �ðtÞ is the density matrix of the whole system at time t

and TrE denotes the trace over the degrees of freedom of the
environment. The system S is in its thermal equilibrium state
if the reduced density matrix takes the form�E-mail: s.yuan@science.ru.nl
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b�� � e��HS

TrS e��HS
; ð2Þ

where TrS denotes the trace over the degrees of freedom of
the system S. Therefore, in order to demonstrate that the
system S, evolving in time according to the TDSE, relaxes to
its thermal equilibrium state one has to show that e��ðtÞ � b��
for t > t0 where t0 is some finite time.

The difference between the state e��ðtÞ and the canonical
distribution b�� is most conveniently characterized by the two
quantities �ðtÞ and �ðtÞ defined by

�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

e��iiðtÞ � e�bðtÞEi

�XN
i¼1

e�bðtÞEi

 !2
vuut ; ð3Þ

with

bðtÞ ¼

X
i<j;Ei 6¼Ej

½lne��iiðtÞ � lne��jjðtÞ�=ðEj � EiÞX
i<j;Ei 6¼Ej

1
; ð4Þ

and

�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

i¼1

XN
j¼iþ1

je��ijðtÞj2
vuut : ð5Þ

Here N denotes the dimension of the Hilbert space of system
S and e��ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e�� in the representation that diagonalizes HS. As the
system relaxes to its canonical distribution both �ðtÞ and �ðtÞ
vanish, bðtÞ converging to �. As �ðtÞ is a global measure for
the size of the off-diagonal terms of the reduced density
matrix, �ðtÞ also characterizes the degree of coherence in
the system: If �ðtÞ ¼ 0 the system is in a state of full
decoherence.

3. Model and Simulation Method

To study the evolution to the canonical ensemble state
in detail, we consider a general quantum spin-1/2 model
defined by the Hamiltonians

HS ¼ �
XnS�1

i¼1

XnS
j¼iþ1

X
�¼x;y;z

J�i; jS
�
i S
�
j ; ð6Þ

HE ¼ �
Xn�1

i¼1

Xn
j¼iþ1

X
�¼x;y;z

��
i; jI

�
i I
�
j ; ð7Þ

HSE ¼ �
XnS
i¼1

Xn
j¼1

X
�¼x;y;z

��
i; jS

�
i I
�
j : ð8Þ

Here the S�’s and I�’s denote the spin-1/2 operators of the
system and environment respectively (we use units such that
h� and kB are one). Analytic expressions for �ðtÞ can only be
obtained for very special choices of the exchange integrals
J�i; j, ��

i; j, and ��
i; j but it is straightforward to solve the TDSE

numerically for any choice of the model parameters. Here,
we numerically solve the TDSE for H ¼ HS þ HE þ HSE

using the Chebyshev polynomial algorithm.24–27) These
ab initio simulations yield results that are very accurate (at
least 10 digits), independent of the time step used.28)

The state, that is the density matrix �ðtÞ of the whole
system at time t is completely determined by the choice of

the initial state of the whole system and the numerical
solution of the TDSE. In our work, the initial state of the
whole system (Sþ E) is a pure state. This state evolves in
time according to

j�ðtÞi ¼ e�iHtj�ð0Þi ¼
X2ns
i¼1

X2n
p¼1

cði; p; tÞji; pi; ð9Þ

where the states fji; pig denote a complete set of orthonormal
states. In terms of the expansion coefficients cði; p; tÞ, the
reduced density matrix reads

e��ðtÞi; j ¼ TrE
X2n
p¼1

X2n
q¼1

c�ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
X2n
p¼1

c�ði; p; tÞcð j; p; tÞ; ð10Þ

which is easy to compute from the solution of the TDSE.
Another quantity of interest that can be extracted from the
solution of the TDSE is the local density of states (LDOS)

LDOSðEÞ �
1

2�

Z þ1
�1

dt e�iEth�ð0Þje�iHtj�ð0Þi

¼
XD
k¼1

jh�ð0Þj’kij2�ðE � EkÞ

¼
X2ns
i¼1

X2n
p¼1

c�ði; p; 0Þcði; p; tÞ; ð11Þ

where D ¼ 2nþnS , fj’kig, and fEkg denote the dimension
of the Hilbert space, the eigenstates and eigenvalues of
the whole system, respectively. The LDOS is ‘‘local’’ with
respect to the initial state: It provides information about the
overlap of the initial state and the eigenstates of H.

The notation to specify the initial state is as follows:
jGROUNDiS is the ground state or a random superposition
of all degenerated ground states of the system; jRANDOMiS
denotes a random superposition of all possible basis states;
jUUiS is a state in which all spins of the system are up
meaning that in this state, the expectations value of each spin
is one; jUDiS is a state in which two nearest-neighbor spins
of the system are antiparallel implying that in this state, the
correlation of their z-components is minus one; and jRRiS
denotes the product state of random superpositions of the
states of the individual spins of the system. The same
notation is used for the spins in the environment, the
subscript S being replaced by E.

As we report results for many different types of spin
systems it is useful to introduce a simple terminology to
classify them according to symmetry and connectivity. The
terms ‘‘XY’’, ‘‘Heisenberg’’, ‘‘Heisenberg-type’’, and ‘‘Ising’’
system refer to the cases Jxi; j ¼ J

y
i; j ¼ J and Jzi; j ¼ 0, Jxi; j ¼

J
y
i; j ¼ Jzi; j ¼ J, Ji; j uniform random in the range ½�jJj; jJj�,

and Jxi; j ¼ J
y
i; j ¼ 0 and Jzi; j ¼ J, respectively. The same

terminology of symmetry is used for the Hamiltonian HE of
the environment and for the interaction Hamiltonian HSE. In
our model, all the spins of the system interact with each spin
of the environment. To characterize the connectivity of spins
within the system (environment), we use the term ‘‘ring’’ for
spins forming a one-dimensional chain with nearest-neighbor
interactions and periodic boundary conditions, ‘‘triangular-
lattice’’ if the spins are located on a two-dimensional
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triangular lattice with nearest-neighbor interactions, and
‘‘maximum-connectivity-system’’ when all the spins within
the system (environment) interact with each other.

4. Results

In earlier work, it was found that a frustrated spin glass
(Heisenberg-type maximum-connectivity-system) environ-
ment is very effective for creating full decoherence (�! 0)
in a two-spin system.29–31) As �! 0 is a necessary
condition for the state of the system to converge to its
canonical distribution, we have chosen spin glass environ-
ments, which have no obvious symmetries, for further
exploration.

First, we consider a system (HS: Heisenberg-ring)
interacting (HSE: Heisenberg-type) with an environment
(HE: spin glass). The system has four distinct eigenvalues
(E1 ¼ �2, E2{4 ¼ �1, E5{11 ¼ 0, and E12{16 ¼ 1) and
sixteen different eigenstates. The environment has 218

eigenstates. During the time-integration of the TDSE, the
reduced density matrix of the system is calculated every
� ¼ �=10. Following the general procedure described ear-
lier, the values of the diagonal elements b��ii yield an estimate
for the effective inverse temperature bðtÞ, the error �ðtÞ for
this estimate and the measure �ðtÞ for the deviation from
a non-diagonal matrix. We also monitor the energy ESðtÞ ¼
TrSb��ðtÞHS, of the system.

From the simulation results, shown in Fig. 1, it is clear
that for t > 50�, each diagonal element b��ii of the reduced
density matrix converges to one out of four stationary
values, corresponding to the four non-degenerate energy
levels of the system. This convergence is a two-step process.
First the system looses all coherence, as indicated by the
vanishing of �ðtÞ for t > 50�. The time dependence of �ðtÞ
fits very well to an exponential law

�ðtÞ ¼ �1 þ Ae�t=T2 ; ð12Þ

with �1 ¼ 0:00128, A ¼ 0:602, and T2 ¼ 8:01�. Likewise,
the vanishing of �ðtÞ on the same time-scale indicates that the
density matrix of the system converges to the canonical
distribution. The effective temperature bðtÞ and the energy of
the system ESðtÞ also fit very well to the exponential laws

bðtÞ ¼ �þ Be�t=T1 ; ð13Þ
EðtÞ ¼ E1 þ Ce�t=T1 ; ð14Þ

with � ¼ 0:0962, B ¼ �0:900, and T1 ¼ 13:3� and E1 ¼
�0:0745, C ¼ �0:952. The estimated values for T1 and T2

change very little if we choose different random realizations
for the initial state of the environment or for the model
parameters ��

i; j and ��
i; j (data not shown) but if we change

their range, T1 and T2 also change, as naively expected.
The simulation demonstrates that the system first looses

all coherence and then, on a longer time-scale, relaxes to its
thermal equilibrium state with a finite temperature. In terms
of the theory of magnetic resonance,32) T1 and T2 are the
times of dissipation and dephasing, respectively. Note that in
contrast to the cases considered in the theory of nuclear
magnetic resonance, in most of our simulations, HS, HE, and
HSE are comparable so the standard perturbation derivation
of � and E does not work. In the case of very small HE, one
should expect, instead of an exponential decay of � and E, a
Gaussian decay, as observed in our earlier work.29–31)

Results for systems (HS) with different symmetries and
connectivities that interaction with the same type of
environments (HE) via the same type of couplings (HSE)
are shown in Fig. 2. The systems used are an XY-ring,
a Heisenberg-ring, an Ising-ring, a Heisenberg-triangular-
lattice, and a spin glass. From Fig. 2, it is clear that
independent the internal symmetries and connectivity of the
system and independent the initial state of the whole system
[except for case (f) in which the environment is initially

Fig. 1. (Color online) Simulation results for the diagonal elements

�i � b��iiðtÞ of the density matrix of S, the energy ES � ESðtÞ, the effective

inverse temperature b � bðtÞ and its variance � � �ðtÞ, and � � �ðtÞ
which is measure for the decoherence in S, as obtained by solving the

TDSE for the whole system with Heisenberg-ring HS (J ¼ �1, nS ¼ 4),

Heisenberg-type HSE (� ¼ 0:3), spin glass HE (� ¼ 1, n ¼ 18), and

� ¼ �=10. The initial state of the whole system is a product state of jUDiS
and jRANDOMiE .

Fig. 2. (Color online) Simulation results for the energy ES � ESðtÞ, the

effective inverse temperature b � bðtÞ, its variance � � �ðtÞ, and the

deviation from a diagonal matrix � � �ðtÞ as obtained by the solution of

the TDSE for a variety of different systems S coupled to a spin glass HE

via a Heisenberg-type HSE. The systems used are (a) XY-ring, (b and f)

Heisenberg-ring, (c) Ising-ring, (d) Heisenberg-triangular-lattice, and

(e) spin glass (Heisenberg-type maximum-connectivity-system). The

initial states of the whole system are (a) jGROUNDiS � jRANDOMiE ,

(b) jUDiS � jRANDOMiE , (c) jUUiS � jRRiE , (d) jUUiS � jRANDOMiE ,

(e) jGROUNDiS � jUDiE , and (f) jUDiS � jGROUNDiE . The numbers of

spins in the system are nS ¼ 8 for cases (a)–(c) and nS ¼ 6 for cases

(d)–(f). The numbers of spins in the environment is n ¼ 16 for all cases.

The model parameters are J ¼ �1, � ¼ 0:3 and � ¼ 1, except for case

(e) in which � ¼ 1.
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in its ground state], all systems relax to a state with full
decoherence. Notice that in case (b), � vanishes exponen-
tially with time, whereas in other cases (a, c, d, e), � initially
increases and then vanishes exponentially with time, due to
the entanglement between the system and the environment.
This observation is in concert with our earlier work.29–31)

Furthermore, in all cases except (f), the system always
relaxes to a canonical distribution (�! 0) as soon as it is in
the state with full decoherence (�! 0), indicating that the
time of decoherence (T2) and the thermalization is almost
the same. In agreement with the results depicted in Fig. 1,
the decoherence time T2 is shorter than the typical time scale
T1 on which the system and environment exchange energy
and the effective inverse temperature bðtÞ reaches its
stationary value.

The case (f) is easily understood in terms of the local
density of states. In Fig. 3 we show the LDOS for the cases
(b) and (f), the only difference between these two cases
being the initial state of the environment. Up to a trivial
normalization factor, the LDOS curve for case (b) is
indistinghuisable from the density of states (data not shown)
calculated from the solution of the TDSE using the
technique described in ref. 33. This suggests that if the
environment starts from the random superposition of all its
states, all states of the whole system may participate in the
decoherence/relaxation process. In contrast, the LDOS
curve for case (f) has a very small overlap with the density
of states (the curve of which coincides with the solid line in
Fig. 3). Therefore, starting with an environment in the
ground state, only a relatively small number states partic-
ipates in the decoherence process, as confirmed by the
results for �ðtÞ shown in Fig. 2(f).

For completeness, we discuss a two other situations in
which, for fairly obvious reasons, the system cannot relax to
its canonical distribution. Obviously, if the energy of the
system is conserved (½HS;H� ¼ 0), the system cannot
exchange energy with the environment and we should not
expect relaxation to the canonical distribution. In this case,
as shown in Fig. 4, after the system S has reached a state
with full decoherence, its density matrix does not converge
to the canonical state. Likewise, if the range of energies of
the environment E is too small compared to that of the

system (j�j � jJj) as in the example shown in Fig. 4(b),
there is no convergence to the canonical state either. It is
to be noted that in both cases, the interaction with the
environment leads to perfect decoherence (�ðtÞ � 0, see
insets) such that the reduced density matrix converges to a
diagonal matrix. However, from Fig. 4, it follows that S

relaxes to a kind of microcanical state in which the states in
each energy subspace have equal probability, the probabil-
ities to end up in a subspace depending on the initial state.

Disregarding the three cases mentioned earlier, the
simulation results presented in Figs. 1 and 2 suggest that
the state of a system generally relaxes to the canonical
distribution when the system is coupled to an environment of
which the dynamics is sufficiently complex also in the case
that the interaction between system and environment cannot
be regarded as a perturbation. There are exceptions but these
are easily understood: Either there are not enough states
available for the decoherence [Fig. 2(f)] to yield a diagonal
reduced density matrix or the energy relaxation (Fig. 4) is
not effective in letting the diagonal reduced density matrix
relax to the canonical distribution.

Although we have only presented results for a spin glass
environment HE, our results (not shown) for any of the
choices for HS and HE mentioned earlier, in combination a
Heisenberg-type HSE interaction between system and envi-
ronment, or for HS and HSE in combination Heisenberg-type
HE leads to the same conclusion, namely that the state of a
system relaxes the canonical distribution.
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Fig. 3. (Color online) Simulation results for the local density of states as

a function of the energy. Solid line: Case corresponding to Fig. 2(b). The

initial state is jUDiS � jRANDOMiE; Dashed line: Case corresponding to

Fig. 2(f). The initial state is jUDiS � jGROUNDiE .

a

b

Fig. 4. (Color online) Simulation results for a Heisenberg-ring HS

(J ¼ �5, nS ¼ 4, initial state jUDiS) coupled to a spin glass HE

(� ¼ 0:15, n ¼ 16, initial state jRANDOMiE) via (a) Heisenberg HSE

(� ¼ 0:075) or (b) Heisenberg-type HSE (� ¼ 0:15). Although full

decoherence is observed in both cases, the the system S only relaxes to a

state with equal probabilities within each energy subspace, that is to a

‘‘microcanonical’’ state per energy subspace.
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5. Discussion

The results presented here have been obtained from an
ab initio numerical solution of the TDSE in the absence of,
for instance, dissipative mechanisms, and demonstrate that
the existence of the canonical distribution, a basic postulate
of statistical mechanics, is a direct consequence of quantum
dynamics.

We have shown that if we have a system S that interacts
with an environment E and the whole system Sþ E forms a
closed quantum system that evolves in time according to the
TDSE, S and E can exchange energy, the range of energies
of E is large compared to the range of energies of S, and the
interaction between S and E leads to full decoherence of S,
then the state of S relaxes to the canonical distribution. Note
that only the condition of full decoherence is a nontrivial
requirement.

We emphasize that our conclusion does not rely on time
averaging of observables, in concert with the fact that real
measurements of thermodynamic properties yield instanta-
neous, not time-averaged, values. Furthermore and perhaps a
little counter intuitive, our results show that relatively small
environments (� 20 spins) are sufficient to drive the system
S to thermal equilibrium and that there is no need to assume
that the interaction between the system and environment is
weak, as is usually done in kinetic theory.

In conclusion: The work presented here strongly suggests
that the canonical ensemble, being one of the basic
postulates of statistical mechanics, is a natural consequence
of the dynamical evolution of a quantum system. This
conclusion may be exciting but as quantum mechanics
describes the dynamics of a system and statistical mechanics
gives us the distribution when the system is in the equi-
librium state, these two successful theories should not be in
conflict once the conditions for the system to relax to its
thermal equilibrium are satisfied.
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