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We study the decoherence of two ferro- and antiferromagnetically coupled spins that interact with a frus-
trated spin-bath environment in its ground state. The conditions under which the two-spin system relaxes from
the initial spin-up–spin-down state toward its ground state are determined. It is shown that the two-spin system
relaxes to its ground state for narrow ranges of the model parameters only. It is demonstrated that the symmetry
of the coupling between the two-spin system and the environment has an important effect on the relaxation
process. In particular, we show that, if this coupling conserves the magnetization, the two-spin system readily
relaxes to its ground state, whereas a nonconserving coupling prevents the two-spin system from coming close
to its ground state.
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I. INTRODUCTION

The foundations of nonequilibrium statistical mechanics
are still under debate �for a general introduction to the prob-
lem, see, e.g., Ref. �1�; see also a very recent discussion �2�
and references therein�. There is a common belief that a ge-
neric “central system” that interacts with a generic environ-
ment evolves into a state described by the canonical en-
semble �in the limit of low temperatures, this means
evolution to the ground state�. Experience shows that this is
true, but a detailed understanding of this process, which is
crucial for a rigorous justification of statistical physics and
thermodynamics, is still lacking. In particular, in this context
the meaning of “generic” is not clear. The key question is
how the evolution to the equilibrium state depends on the
details of the dynamics of the central system itself, on the
environment, and on the interaction between the central sys-
tem and the environment.

In one of the first applications of computers to a basic
physics problem, Fermi et al. attempted to simulate the re-
laxation to thermal equilibrium of a system of interacting
anharmonic oscillators �3�. The results obtained appeared to
be counterintuitive, as we know now, due to complete inte-
grability �in the continuum medium limit� of the model they
simulated �4�.

Bogoliubov �5� has considered in a mathematically rigor-
ous way the evolution to thermal equilibrium of a classical
harmonic oscillator �central system� connected to an environ-
ment of classical harmonic oscillators which are already ther-
malized �for a generalization to a nonlinear Hamiltonian cen-
tral system with one degree of freedom, see Ref. �6��. Also,
for quantum systems this “bosonic bath” is the bath of

choice, starting with the seminal works by Feynman and Ver-
non �7� and Caldeira and Leggett �8� �for a review, see Ref.
�9��. On the other hand, as we know now, the bosonic envi-
ronment differs in many ways from, say, a spin-bath environ-
ment �such as nuclear spins� that dominate the decoherence
processes of magnetic systems at low enough temperatures
�10�. The evolution of quantum spin systems to the equilib-
rium state has been investigated in Refs. �11–13�, for a very
special class of spin Hamiltonians.

In terms of the modern decoherence program, quantum
systems interacting with an environment evolve to one of the
robust pointer states, the superposition of the pointer states
being, in general, not a pointer state �14,15�. The decoher-
ence program is supposed to explain the macroscopic quan-
tum superposition �“Schrödinger cat”� paradox, that is, the
inapplicability of the superposition principle to the macro-
world. Indeed, it is confirmed in many ways that, for the case
where the interaction with the environment is strong in com-
parison with typical energy differences for the central sys-
tem, the classical Schrödinger cat states are the pointer
states. At the same time, some less trivial pointer states have
been found in computer simulations of quantum spin systems
for some range of the model parameters �16–18�. In fact, the
evolution of quantum spin systems to equilibrium is still an
open issue �see also Refs. �19–21��. Recently, the effect of an
environment of N�1 spins on the entanglement of the two
spins of the central system has attracted much attention
�16–18,22–30�.

The relationship between the pointer states and the eigen-
states of the Hamiltonian of the central system is of special
interest for the foundations of quantum statistical mechanics.
The standard scenario assumes that the density matrix of the
system at equilibrium is diagonal in the basis of these eigen-
states. Paz and Zurek �31� have conjectured that pointer
states are the eigenstates of the central system if the interac-
tion of the central system with each degree of freedom of the
environment is a perturbation, relative to the Hamiltonian of
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the central system. In view of the foregoing, it is important to
establish the conditions under which this conjecture holds
and to explore situations in which the interaction with the
environment can no longer be regarded as a perturbation
with respect to the Hamiltonian of the central system.

In our Letter �22�, we reported a first collection of results
for an antiferromagnetic Heisenberg system coupled to a va-
riety of different environments. Our primary goal was to es-
tablish the conditions under which the central system relaxes
from the initial spin-up–spin-down state toward its ground
state, that is, the maximally entangled singlet state. We found
that environments that exhibit some form of frustration, such
as spin glasses or frustrated antiferromagnets, may be very
effective in producing a final state with a high degree of
entanglement between the two central spins. We demon-
strated that the efficiency of the decoherence process de-
creases drastically with the type of environment in the fol-
lowing order: spin glass and random coupling of all spins to
the central system; frustrated antiferromagnet �triangular lat-
tice with nearest-neighbor interactions�; bipartite antiferro-
magnet �square lattice with nearest-neighbor interactions�;
one-dimensional ring with nearest-neighbor antiferromag-
netic interactions �22�.

Competing interactions, frustration, and glassiness pro-
vide a very efficient mechanism for decoherence whereas the
difference between integrable and chaotic systems is less im-
portant �18�. Furthermore, we observed that for a fixed sys-
tem size of the environment and in those cases for which the
decoherence is effective, different realizations of the random
parameters do not significantly change the results. However,
maximal entanglement in the central system was found for a
relatively narrow range of the couplings between the envi-
ronment spins and the interaction between the central spins
and those of the environment.

Having established that the decoherence caused by cou-
pling to a frustrated, spin-glass-like environment can be very
effective, it is of interest to study in detail the time evolution
of the central system coupled to such an environment. In this
paper, we consider as the central system two ferro- or anti-
ferromagnetically coupled spins that interact with a spin-
glass environment. The interactions between each of the spin
components of the latter are chosen randomly and uniformly
from a specified interval centered around zero, making it
very unlikely that there are conserved quantities in this three-
component spin glass. For the interaction of the central sys-
tem with each of the spins of the environment we consider
two cases.

In the first case, the couplings between the three compo-
nents are generated using the same procedure as used for the
environment. In the second case, the central system interacts
with the environment via the z components of the spins only.
This implies that both the Hamiltonians that describe the
central system �isotropic Heisenberg model� and the interac-
tion between the central system and the environment com-
mute with the total magnetization of the central system;
hence the latter is conserved during the time evolution. In
contrast to the naive picture in which the presence of con-
served quantities reduces the decoherence, we find that the
presence of a conserved quantity may affect significantly the
nature of the stationary state to which the central system
relaxes.

II. MODEL

The model Hamiltonian that we study is defined by

H = Hc + He + Hce,

Hc = − JS1 · S2,

He = − �
i=1

N−1

�
j=i+1

N

�
�

�i,j
���Ii

�Ij
�,

Hce = − �
i=1

2

�
j=1

N

�
�

�i,j
���Si

�Ij
�, �1�

where the exchange integrals J and �i,j
��� determine the

strength of the interaction between the spins Sn= �Sn
x ,Sn

y ,Sn
z�

in the central system �Hc�, and the spins In= �In
x , In

y , In
z� in the

environment �He�, respectively. The exchange integrals �i,j
���

control the interaction �Hce� of the central system with its
environment. In Eq. �1�, the sum over � runs over the x, y,
and z components of spin-1 /2 operators S and I. The ex-
change integral J of the central system can be positive or
negative, the corresponding ground state of the central sys-
tem being ferromagnetic or antiferromagnetic, respectively.

In the following, we will use the term “Heisenberg-like”
Hce �He� to indicate that �i,j

��� ��i,j
���� are uniform random

numbers in the range �−� �J � ,� �J � � ��−� �J � ,� �J � �� for all
�’s, and use the expression “Ising-like” Hce �He� to indicate
that �i,j

�x,y�=0 ��i,j
�x,y�=0�, and that �i,j

�z� ��i,j
�z�� are dichotomic

random variables taking the values ±� �±��. The parameters
� and � determine the maximum strength of the interac-
tions.

The quantum state of the central system is completely
determined by its reduced density matrix, the 4�4 matrix
that is obtained by computing the trace of the full density
matrix over all but the four states of the central system. In
our simulation work, the whole system is assumed to be in a
pure state, denoted by ���t��. Although the reduced density
matrix contains all the information about the central system,
it is often convenient to characterize the state of the central
system by other quantities such as the correlation functions
���t� �S1 ·S2 ���t��, ���t� �S1

zS2
z ���t��, and ���t� �S1

xS2
x ���t��,

the single-spin magnetizations ���t� �S1
x ���t��,

���t� �S2
x ���t��, and M 	���t� � �S1

z +S2
z� ���t��, and the con-

currence C�t��33,34�. The concurrence, which is a conve-
nient measure for the entanglement of the spins in the central
system, is equal to 1 if the state of the central system is
unchanged under a flip of the two spins, and is zero for an
unentangled pure state such as the spin-up–spin-down state.
In Table I, we show the values of these quantities for differ-
ent states of the central system.

As the energy of the central system is given by
−J���t� �S1 ·S2 ���t��, it follows from Table I that the four
eigenstates of the central system Hc are given by

�S� =
�↑↓� − �↓↑�


2
,
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�T0� =
�↑↓� + �↓↑�


2
,

�T1� = �↑↑� ,

�T−1� = �↓↓� , �2�

satisfying

Hc�S� = ES�S�, Hc�T1,0,−1� = ET�T1,0,−1� , �3�

where ES=3J /4 and ET=−J /4.
From Table I, it is clear that the singlet state �S� is most

easily distinguished from the others, as the central system is
in the singlet state if and only if �S1 ·S2�=−3/4. To identify
other states, we usually need to know at least two of the
quantities listed in Table I. For example, to make sure that
the system is the triplet state �T0�, the values of �S1 ·S2� and
�S1

zS2
z� should match with the corresponding entries of Table

I. Likewise, the central system will be in the state �↑ ↑ � if
�S1 ·S2� and M agree with the corresponding entries of Table
I.

In general, we monitor the effects of the decoherence by
plotting the time dependence of the two-spin correlation
function �S1 ·S2� and the matrix elements of the density ma-
trix. We compute the matrix elements of the density matrix in
the basis of eigenvectors of the central system �see Eq. �2��.
If necessary to determine the nature of the state, we consider
all the quantities listed in Table I.

The simulation procedure is as follows. First, we select a
set of model parameters. Next, we compute the ground state
��0� of the environment and, for reference, the ground state
of the whole system also. The spin-up–spin-down state
��↑ ↓ �� is taken as the initial state of the central system. Thus,
the initial state of the system reads ���t=0���= �↑ ↓ �� ��0�
and is a product state of the state of the central system and
the ground state of the environment which, in general, is a
�very complicated� linear combination of the 2N basis states
of the environment.

The time evolution of the whole system is obtained by
solving the time-dependent Schrödinger equation for the
many-body wave function ���t��, describing the central sys-
tem plus the environment. The numerical method that we use

is described in Ref. �32�. It conserves the energy of the
whole system to machine precision.

In our model, decoherence is solely due to the fact that the
initial product state ���0��= �↑ ↓ � evolves into an entangled
state of the whole system. The interaction with the environ-
ment causes the initial pure state of the central system to
evolve into a mixed state, described by a reduced density
matrix �35�, obtained by tracing out all the degrees of free-
dom of the environment �7,9,14,15�. If the Hamiltonian of
the central system Hc is a perturbation, relative to the inter-
action Hamiltonian Hce, the pointer states are eigenstates of
Hce �15,31�. On the other hand, if Hce is much smaller than
the typical energy differences in the central system, the
pointer states are eigenstates of Hc, that is, they may be
singlet or triplet states. In fact, as we will show, the selection
of the eigenstate as the pointer state is also determined by the
state and the dynamics of the environment.

In the simulations that we discuss in the paper, the inter-
actions between the central system and the environment are
either Ising- or Heisenberg-like. The interesting regime for
decoherence occurs when each coupling of the central sys-
tem with the environment is weak, that is, �� �J�, but there
is of course nothing that prevents us from performing simu-
lations outside this regime. The interactions within the envi-
ronment are taken to be Heisenberg-like, � being a param-
eter that we change.

III. HEISENBERG-LIKE Hce

A. Ferromagnetic central system

In this section, we consider a ferromagnetic �J=1� central
system that interacts with the environment via a Heisenberg-
like interaction �recall that throughout this paper the environ-
ment itself is always Heisenberg-like�.

In Fig. 1, we present simulation results for the two-spin
correlation function for different values of the parameter �
that determines the maximum strength of the coupling be-
tween the N�N−1� /2 pairs of spins in the environment.
Clearly, for case �a�, the relaxation is rather slow, and con-
firming that there is relaxation to the ground state requires a
prohibitively long simulation. For cases �b�–�d�, the results
are in concert with the intuitive picture of relaxation due to
decoherence: The correlation shows the relaxation from the
up-down initial state of the central system to the fully polar-
ized state in which the two spins point in the same direction.

An important observation is that our data convincingly
show that it is not necessary to have a macroscopically large
environment for decoherence to cause relaxation to the
ground state: A spin glass with N=14 spins seems to be more
than enough to mimic such an environment. This observation
is essential for numerical simulations of relatively small sys-
tems to yield the correct qualitative behavior.

Qualitative arguments for the high efficiency of the spin-
glass bath were given in Ref. �22�. Since the spin glasses
possess a huge amount of the states that have an energy close
to the ground-state energy but have wave functions that are
very different from the ground state, the orthogonality catas-
trophe, blocking the quantum interference in the central sys-
tem �14,15�, is very strongly pronounced in this case.

TABLE I. The values of the correlation functions �S1 ·S2�,
�S1

zS2
z�, and �S1

xS2
x�, the total magnetization M, the concurrence C,

and the magnetization �S1
z� for different states of the central system.

��� �S1 ·S2� �S1
zS2

z� �S1
xS2

x� M C �S1
x�

�1/
2���↑ ↓ �− �↓ ↑ �� −3/4 −1/4 −1/4 0 1 0

�1/
2���↑ ↓ �+ �↓ ↑ �� 1/4 −1/4 1/4 0 1 0

�1/
2���↑ ↑ �− �↓ ↓ �� 1/4 1/4 −1/4 0 1 0

�1/
2���↑ ↑ �+ �↓ ↓ �� 1/4 1/4 1/4 0 1 0

�↑ ↓ � −1/4 −1/4 0 0 0 1/2

�↓ ↑ � −1/4 −1/4 0 0 0 −1/2

�↑ ↑ � 1/4 1/4 0 1 0 1/2

�↓ ↓ � 1/4 1/4 0 −1 0 −1/2
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This conclusion is further supported by Fig. 2, where we
show the diagonal elements of the reduced density matrix for
case �b�. After reaching the steady state, the nondiagonal
elements exhibit minute fluctuations about zero and are
therefore not shown. From Fig. 2, it is then clear that the
central system relaxes to a mixture of the �spin-up, spin-up�,
�spin-down, spin-down�, and triplet states, as expected on
intuitive grounds. In case �e�, the characteristic strength of
the interactions between the spins in the environment is of
the same order as the exchange coupling in the central sys-
tem ���J�, a regime in which there clearly is significant
transfer of energy back and forth between the central system
and the environment.

From the data for �b�–�d�, shown in Fig. 1, we conclude
that the time required to let the central system relax to a state
that is close to the ground state depends on the energy scale
��� of the random interactions between the spins in the en-
vironment. As it is difficult to define the point in time at

which the central system has reached its stationary state, we
have not made an attempt to characterize the dependence of
the relaxation time on �.

B. Antiferromagnetic central system

We now consider what happens if we replace the ferro-
magnetic central system by an antiferromagnetic one.

The main difference between the antiferromagnetic and
the ferromagnetic central systems is that the ground state of
the former is maximally entangled �a singlet� whereas the
latter is a fully polarized product state.

In Fig. 3, we present simulation results for the two-spin
correlation function for different values of the parameter �.
In passing, we mention that, in our simulations, we change
the sign of J only, that is, we use the same parameters for Hce
and He as in the corresponding simulations of the ferromag-
netic case. Apart from the change in sign, the curves for all

FIG. 1. �Color online� Time evolution of the
correlation ���t� �S1 ·S2 ���t�� of the ferromag-
netic central system with Heisenberg-like Hce and
He. The model parameters are �=0.15 and �a�
�=0.075; �b� �=0.15; �c� �=0.20; �d� �
=0.30; �e� �=1. The number of spins in the en-
vironment is N=14.

FIG. 2. �Color online� Time evolution of the
diagonal matrix elements of the reduced density
matrix of the central system for �=0.15 and �
=0.15 �case �b� of Fig. 1�. The number of spins in
the environment is N=14.
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cases �a–e� in Figs. 1 and 3 are qualitatively similar. How-
ever, this is a little deceptive.

As for the ferromagnetic central system, in case �a�, the
relaxation is rather slow and confirming that there is relax-
ation to the ground state requires a prohibitively long simu-
lation. In case �e�, we have ���J� and, as already explained
earlier, this case is not of immediate relevance to the ques-
tion addressed in this paper. For cases �b�–�d�, the results are
in concert with the intuitive picture of relaxation due to de-
coherence except that the central system does not seem to
relax to its true ground state. Indeed, the two-spin correlation
relaxes to a value of about 0.65–0.70, which is much further
away from the ground state value −3/4 than we would have
expected on the basis of the results of the ferromagnetic cen-
tral system. In the true ground state of the whole system, the
value of the two-spin correlation in case �b� is −0.7232, and
hence significantly lower than the typical values, reached

after relaxation. On the one hand, it is clear �and to be ex-
pected� that the coupling to the environment changes the
ground state of the central system, but on the other hand, our
numerical calculations show that this change is too little to
explain the apparent difference from the results obtained
from the time-dependent solution.

In Fig. 4, we plot the diagonal matrix elements of the
density matrix �calculated in the basis for which the Hamil-
tonian of the central system is diagonal� for case �b�. From
these data and the fact that the nondiagonal elements are
negligibly small �data not shown�, we conclude that the cen-
tral system relaxes to a mixture of the singlet state and the
�spin-up, spin-up� and �spin-down, spin-down� states, the
former having much more weight �0.9 to 0.05� than the two
latter states. Thus, at this point, we conclude that our results
suggest that decoherence is less effective for letting a central
system relax to its ground state if this ground state is en-

FIG. 3. �Color online� Time evolution of the
correlation ���t� �S1 ·S2 ���t�� of the antiferro-
magnetic central system with Heisenberg-like Hce

and He. The model parameters are �=0.15 and
�a� �=0.075; �b� �=0.15; �c� �=0.20; �d� �
=0.30; �e� �=1. The number of spins in the en-
vironment is N=14.

FIG. 4. �Color online� Time evolution of the
diagonal matrix elements of the reduced density
matrix of the central system for �=0.15 and �
=0.15 �case �b� of Fig. 3�. The number of spins in
the environment is N=14.
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tangled than if it is a product state. Remarkably, this conclu-
sion changes drastically when we replace the Heisenberg-
like Hce by an Ising-like Hce, as we demonstrate next.

IV. ISING-LIKE Hce

In our simulation, the initial state of the central system is
�↑ ↓ �, and this state has total magnetization M =0. For an
Ising-like Hce with Heisenberg-like He coupling, the magne-
tization M of the central system commutes with the Hamil-
tonian �1� of the whole system. Therefore, the magnetization
of the central system is conserved during the time evolution,
and the central system will always stay in the subspace with
M =0. In this subspace, the ground state for antiferromag-
netic central system is the singlet state �S� while for the fer-
romagnetic central system the ground state �in the M =0 sub-
space� is the entangled state �T0�. Thus, in the Ising-like Hce,
starting from the initial state �↑ ↓ �, the central system should
relax to an entangled state, for both a ferro- and an antifer-
romagnetic central system.

If the initial state of the central system is �↑ ↓ �, it can be
proven �see the Appendix� that

���t��S1 · S2���t��F + ���t��S1 · S2���t��A = −
1

2
, �4�

where the subscript F and A refer to the ferro- and antifer-
romagnetic central systems, respectively. Likewise, for the
concurrence we find CF�t�=CA�t� and similar symmetry re-
lations hold for the other quantities of interest. Of course,
this symmetry is reflected in our numerical data also; hence,
we can limit ourselves to presenting data for the antiferro-
magnetic central system with Ising-like Hce and Heisenberg-
like He.

In Fig. 5, we present simulation results for the two-spin
correlation function for different values of the parameter �.
Notice that, compared to Figs. 1–4, we show data for a time
interval that is three times larger. For the cases �b� and �c�,
the main difference between Figs. 3 and 5 is that for the

latter, unlike for the former, the central system relaxes to a
state that is very close to the ground state. Thus, we conclude
that the presence of a conserved quantity �the magnetization
of the central system� acts as a catalyst for relaxing to the
ground state. Although it is quite obvious that, by restricting
the time evolution of the system to the M =0 subspace, we
can somehow force the system to relax to the entangled state,
it is by no means obvious why the central system actually
does relax to a state that is very close to the ground state.

Intuitively, we would expect that the presence of a con-
served quantity hinders the relaxation and, indeed, that is
what we observe in cases �a� and �b� where the relaxation is
much slower than in cases �a� and �b� of Fig. 1 or of Fig. 3.
Notwithstanding this, in the presence of a conserved quan-
tity, the central system relaxes to a state that is much closer
to the true ground state than the one it would relax to in the
absence of this conserved quantity.

V. ROLE OF �

Now we study the effect of changing the strength � of the
coupling between the central system and the environment.
For a qualitative discussion of this aspect, it suffices to con-
sider the case of Ising-like Hce, as we have seen that then the
central system most easily relaxes to its ground state.

In Fig. 6, we present some representative simulation re-
sults for the two-spin correlation function for different values
of the parameters � and �. By simply comparing the time
intervals of the plots for cases �a�, �b� and �c�, �d�, it is
immediately clear that the speed of relaxation changes dras-
tically with �. For a “slow” environment �small enough ��
the effect is rather trivial, namely, the larger � the faster the
relaxation. In the case �c� the system comes close to the
triplet state in comparison with �d�, probably since the per-
turbation of the ground state of the central system is smaller.

VI. SENSITIVITY OF THE RESULTS TO
CHARACTERISTICS OF THE ENVIRONMENT

Finally, we study the effect of small changes to the initial
state of the environment and of the number of spins in the
environment.

FIG. 5. �Color online� Time evolution of the
correlation ���t� �S1 ·S2 ���t�� of the antiferro-
magnetic central system with Ising-like Hce and
Heisenberg-like He. The model parameters are
�=0.075 and �a� �=0.075; �b� �=0.15; �c� �
=0.30; �d� �=1. The number of spins in the en-
vironment is N=16.
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For the spin glasses, the true ground state is rather diffi-
cult to reach, and there are a lot of states with a very close
energy but essentially different characteristics. To check how
relevant it can be for our observations, we replace the envi-
ronment ground state by one of these states and study the
time evolution of the central system as we did before. In Fig.
7, we show typical results for a ferromagnetic central system
with Heisenberg-like Hce and Heisenberg-like He. In the ini-
tial state, the energy of the environment, Eb=−2.247, which
is a little bit higher than the ground-state energy of the envi-
ronment, Ea=−2.321. The time evolution of the correlation
function of the two central spins for the cases �a� and �b� �see
Fig. 7� clearly demonstrates that, in both cases, the central
system evolves to the ground state, and that the dynamics of
this evolution is also very similar. This confirms that, as long
as the energy of the initial state of the environment is close to
its ground-state energy, the qualitative features of the deco-
herence process remain the same. If, on the other hand, we

prepare the environment in a random state �which, roughly
speaking, corresponds to a very high temperature�, the cen-
tral system does not relax to its ground state but to a mixed
state with a diagonal density matrix, as expected �see Fig. 8�.

Second, we study the effect of finite size of the environ-
ment on the decoherence process. Some typical results for a
ferromagnetic central system with Heisenberg-like Hce and
Heisenberg-like He with different numbers N of environment
spins are shown in Fig. 9. It looks reasonable to define the
border between a mesoscopic and a macroscopic environ-
ment as the value of N for which the oscillations in the
two-particle correlation are no longer well defined. Thus, on
the basis of the data displayed in Fig. 9, one can say that
N�11 is large enough for the spin-glass environment to
mimic the macroscopic system. Needless to say, this state-
ment is very qualitative, but, in any case, the N dependence
of the results shown in Fig. 9 demonstrates the effectiveness
of the spin glass as a model environment to study decoher-

FIG. 6. �Color online� Time evolution of the
correlation ���t� �S1 ·S2 ���t�� of the antiferro-
magnetic central system with Ising-like Hce and
Heisenberg-like He. �a� �=0.0375 and �=0.15;
�b� �=0.075 and �=0.15; �c� �=0.075 and �
=0.3; �d� �=0.15 and �=0.3. The number of
spins in the environment is N=16.

FIG. 7. �Color online� Time evolution of the
correlation ���t� �S1 ·S2 ���t�� of a ferromagnetic
central system with Heisenberg-like Hce and
Heisenberg-like He with �=0.15 and �=0.3. Ini-
tial state of the environment is �solid line �a��
ground state; �dashed line �b�� close to but not the
same as the ground state. The number of spins in
the environment is N=14.
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ence processes with rather modest requirements as to the
environment size.

VII. SUMMARY

We have presented the results of simulations that address
the question of how a small quantum system evolves to its
ground state when it is brought into contact with an environ-
ment consisting of quantum spins. Our systematic study con-
firms the suggestion of Ref. �22� that the use of a spin-glass
thermal bath is indeed a very efficient way to simulate deco-
herence processes. Environments containing 14–16 spins are
sufficiently large to induce a complete decay of the Rabi
oscillations; this is in sharp contrast to environments that
have a more simple structure, such as spin chains or square
lattices �22�.

In general, it turns out that the relaxation to the ground
state is a more complicated process than one would naively
expect, depending essentially on the ratio between param-
eters of the interaction and environment Hamiltonians. Two
general conclusions are that �i� the central system more eas-
ily evolves to its ground state when the latter is less en-
tangled �e.g., an up-down state compared to a singlet� and
�ii� constraints on the system such as existence of additional
integrals of motion can make the evolution to the ground
state more efficient.

At first sight, the latter statement looks a bit counterintui-
tive since it means that it may happen that a more regular
system exhibits stronger relaxation than a chaotic one. The
reason that it may happen is that the larger is the dimension-
ality of available Hilbert space for the central system, the
more complicated is the decoherence process due to the ap-
pearance of the whole hierarchy of decoherence times for
different elements of the reduced density matrix. A manifes-
tation of this phenomenon has been observed earlier �16�:
Under certain conditions, the same central system as studied
here �4�4 reduced density matrix� displays “quantum oscil-
lations without quantum coherence” whereas, for a single
spin in magnetic field �2�2 reduced density matrix� deco-
herence can, relatively easily, suppress the Rabi oscillations
completely.

We believe that these results can stimulate further devel-
opment and clarification of the decoherence program �15,36�.
Assuming that the interaction with an environment is weak
enough, a hypothesis that the pointer states should be the
eigenstates of the Hamiltonian of the central system was pro-
posed �31�, with the very ambitious aim of explaining the
basic phenomenon of “quantum jumps.” In this paper, we
demonstrate that, apart from just the strength of different
interactions, also their symmetry and the amount of entangle-
ment of the ground state of the central system may play an
essential role. Among the cases that we consider in this pa-
per, there are two situations where the standard decoherence
scenario works as envisaged �31�. If the ground state is not
entangled �as in the case of the up-down state for the case of
ferromagnetic interactions� or if the Hilbert space is re-
stricted due to some conservation laws �as for the singlet
ground state in the Ising-type interaction Hamiltonian�, the
central system clearly evolves to its ground state, supposed
to be the pointer state according to Ref. �31�. However, if the
ground state of the central system is the fully entangled sin-
glet state, and the interaction Hamiltonian is generic, without
symmetries, the system evolves to some mixture of the
ground state and excited states. Of course, the data presented
here are not sufficient to make strong, general statements
about the character of the pointer states, but we hope that, at
least, our work will stimulate further research to establish the
conditions under which the conjecture holds that the pointer
states are the eigenstates of the central system.

APPENDIX

For the Hamiltonian Eq. �1�, if �i,j
�x�=�i,j

�y�=0, Hce is Ising-
like and it is easy to prove that �M ,H�=0, implying that the
magnetization of the central two spins is a conserved quan-

FIG. 8. �Color online� Time evolution of the diagonal elements
�top panel� and the real parts of the off-diagonal elements �bottom
panel� of the reduced density matrix in an antiferromagnetic central
system with Heisenberg-like Hce and Heisenberg-like He ��=0.15
and �=0.15�. The initial state of the central two spins is the up-
down state, and the environment is initially in a random state. The
number of spins in the environment is N=14.

YUAN, KATSNELSON, AND DE RAEDT PHYSICAL REVIEW A 75, 052109 �2007�

052109-8



tity. In our simulations, we take as the initial state of the
central system the spin-up–spin-down state ��↑ ↓ �= ��S�
+ �T0�� /
2�. Hence, because �M ,H�=0, the central spin sys-
tem will always stay in the subspace of M =0. Thus, at any
time t, the state of the whole system can be written as

���t�� = �S���S�t�� + �T0���T0
�t�� , �A1�

where ��S� and ��T0
� denote the states of the environment.

Let us denote by ���i� the complete set of states of the
environment. Within the subspace spanned by the states
��S� ��i� , �T0� ��i�, the Hamiltonian Eq. �1� can be written as

H = ES�S��S� + ET�T0��T0� + He −
1

2�
j=1

N

��1,j
�z� − �2,j

�z����S��T0�

+ �T0��S��Ij
z, �A2�

where we used �S �S1
z �S�= �T0 �S1

z �T0�= �S �S2
z �S�= �T0 �S2

z �T0�
=0, �T0 �S1

z �S�=1/2, and �T0 �S2
z �S�=−1/2.

Introducing a pseudospin 	= �	x ,	y ,	z� such that the ei-
genvalues +1 and −1 of 	z correspond to the states �S� and
�T0�, respectively, Eq. �A2� can be written as

H =
ES − ET

2
+

ES + ET

2
	z + He −

1

2�
j=1

N

��1,j
�z� − �2,j

�z��Ij
z	x,

�A3�

showing that, in the case of an Ising-like Hce, the model Eq.
�1� with two central spins is equivalent to the model Eq. �A3�
with one central spin.

From Eq. �A3�, it follows immediately that the Hamil-
tonian is invariant under the transformation �J ,	z→ �−J ,
−	z. Indeed, the first, constant term in Eq. �A3� is irrelevant,
and we can change the sign of the second term by rotating
the pseudospin by 180° about the x axis. Therefore, if the
initial state is invariant under this transformation also, the
time-dependent physical properties will not depend on the
choice of the sign of J; hence, the ferro- and antiferromag-
netic systems will behave in exactly the same manner.

For the case at hand, the initial state can be written as
��S�+ �T0�� ��0� /
2, which is trivially invariant under the
transformation 	z→−	z. Summarizing, for Ising-like Hce

��i,j
�x�=�i,j

�y�=0� and an initial state that is invariant for the
transformation �S�↔ �T0��, ���t� �A ���t�� does not depend
on the sign of J, for any observable A of the central system
that is invariant for this transformation. Under these condi-
tions, it is easy to prove that Eq. �4� holds and that the
concurrence does not depend on the sign of J.
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