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1. Original idea (P. W. Anderson, 1970): Kondo problem for a

single magnetic impurity

2. Anisotropic Kondo problem (scattering by tunneling centers in

metallic glasses

3. Infrared divergences: scattering by crystal-field-split centers

4. Infrared divergences: scattering by local phonons

5. Kondo lattices: Interplay of  Kondo effect and spin dynamics
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Single-impurity Kondo problem I
Resistivity minimum

in noble metals at low T

(1930th) 

Attributed to magnetic

impurities (Kondo 1964)



Single-impurity Kondo problem II

The simplest model: s-d exchange model (Vonsovsky 1946)

At AFM I (I < 0) for one impurity: perturbation theory in I is divergent

(Kondo 1964); a formation of  Suhl-Abrikosov resonance (1965). At 

low temperatures: singlet ground state (Anderson – Hamann – Yuval 1970 

and local Fermi liquid theory (Nozieres 1974)   

To be specific; this is valid for S = n/2 (n number of  scattering

channels); for S > n/2 undercompensated regime (S → S – n/2)

For S < n/2 overcompensated regime and NFL behavior (Blandin

and Nozieres, 1980)

Exact solution (Wiegmann 1980; Andrei 1980, and further work)



Poor man’s scaling: Idea
A single-site scattering theory:

Interaction: anisotropic s-d exchange 

coupling

Truncation of  unperturbed Hamiltonian

and thus base Green’s function

Exact Green’s function and T-matrix:



Poor man’s scaling: Idea II

Changing cutoff  Ec

(approximate, small V)



Poor man’s scaling: Idea III
For our model (anisotropic s-d exchange model):

Simplifications for S = ½:



Poor man’s scaling: Idea IV
Shift of  the ground-state energy

Pass to the differential equations:



Poor man’s scaling: Idea V
Solution of  the equations

FM (J > 0): effective coupling constant tends to zero, nothing interesting 

AFM (J < 0): effective coupling constant diverges at 

We cannot say what happens in the strong-coupling regime but we can

find “Kondo energy”, i.e. the border of  strong-coupling regime



Two-level states in metallic glasses

Atoms in double-well potentials in metallic glasses

or highly anharmonic crystals

Crossing bands (dynamic Jahn-Teller

effect)
Spin up – atom left, spin down – atom right



Two-level states in metallic glasses II

General equations of  poor man’s scaling

W is the cutoff  parameter

Solution of  the equations To be specific,



Two-level states in metallic glasses III

Total cross section

“Kondo temperature” (strong-coupling region) is determined

by the condition



Two-level states in metallic glasses IV

Allows to solve eqs. explicitly

Resistivity

Contrary to simple Kondo

problem can be nonmonotonous



Interaction with local excitations 

Crystal-Field Splitting excitations 

(e.g. 4f  elements)

Nondegenerate electron bands

Second-order perturbation

results for the electron self-

energy



Interaction with local excitations II
Average over electron states

but not on pseudospin – operator

in pseudospin states!

Separating log divergences in perturbation expansion at 



Interaction with local excitations III 
Equations Solution

Always weak coupling regime!

Logarithmic singularity weakens to

the (positive) power-law 



Interaction with local phonons
(the same paper)

Dispersionless (local) phonon, anharmonic coupling

Perturbative (well-known) result:

The same procedure: Green’s finction average on electron but not

on phonon operators (operator in phonon space)

Operator structure of  T-matrix



Interaction with local phonons II

Within this approximation



Interaction with local phonons III

Solution:



Interaction with local phonons IV
Conditions of  strong-coupling regime

Singularity on one side is much stronger

than on the other (check by STM?!) 

For phonons

Effective splitting

Ground-state energy



Kondo effect and spin dynamics

No need to add intersite exchange by hand,

it arises in the model (RKKY) – but convenient!  

Electron Green’s function – equation of  motion (EOM) approach



Kondo effect and spin dynamics II
Treating spin-dynamics exactly, representation of  exact (multispin) eigenstates of  Hf, |n> 



Kondo effect and spin dynamics III

In PM phase, no “Kondo” (logarithmically divergent) contributions to the self-energy

The answer

Without spin-dynamics it gives exactly

the original (Kondo) logarithmically divergent

contribution in the third-order in I



Kondo effect and spin dynamics IV
Spin diffusion approximation

Logarithmic singularity is smeared, that is, Kondo effect in suppressed

Renormalization of  magnetic susceptibility

Second-order in I



Kondo effect and spin dynamics V

In spin-diffusion approximation

Back effect: renormalization of  spin dynamics

One needs to calculate inhomogeneous susceptibility and come to 

the real space

Exchange integrals contain Kondo logarithms – one needs to do

everything self-consistently



Scaling theory of Kondo lattices



Scaling theory of Kondo lattices II

Without interaction of  different spins and at I < 0

Kondo temperature (border of  strong coupling)

Alternative model: SU(N) Coqblin - Schrieffer model

Three phases considered: FM, AFM, and PM, different spin dynamics



Scaling theory of Kondo lattices III
PM phase: renormalization of  effective coupling constant

Second-order expression  in I for electron self-energy

Third-order expression with spin dynamics

(for s-d model N = 2)



Scaling theory of Kondo lattices IV
PM phase: renormalization of  magnetic moment



Scaling theory of Kondo lattices V
PM phase: renormalization of  spin dynamics



Scaling theory of Kondo lattices VI
Magnetically ordered phases: renormalization of  effective 

coupling constant

Second order in I

Important: in magnetically ordered phase “Kondo-like” logarithms

arise already in the second order (in PM phase: only in third)



Scaling theory of Kondo lattices VII
RG equation for coupling constant (FM phase as an example)

Split the integration region over the layers

Averaging over Fermi surface

“Debye” model for magnons



Scaling theory of Kondo lattices VIII
The most cumbersome part: calculation of  spin Green functions and

renormalization of  spin frequencies and effective moments

The same trick: calculations of  the contributions for specific layers of  

electron states

FM as example

If  we assume NN approximation for J

it is constant!



Scaling theory of Kondo lattices IX
General RG equations (also added magnetic anisotropy)



Scaling theory of Kondo lattices X

It follows from RG equations that we 

need to solve only one equation, other

quantities follow from this solution

(D = 3 for PM and FM)

Examples of  the functions



Scaling theory of Kondo lattices XI



Scaling theory of Kondo lattices XII
Either at some cutoff  coupling constant is divergent (Kondo regime

with renormalized Kondo temperature) or  remains always finite 



Conclusions
Anderson suggested a very simple and efficient trick to build RG

equations for infrared divergences in solids (like Kondo problem,

X-ray edge singularity, orthogonality catastrophe…)

It is not as general and as controllable as quantum-field RG but if

it works this is the simplest way to the answer

Applicable not only to local problems!


