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sp? hybridization, m bands crossing
the neutrality point

‘ — @ Neglecting intervalley scattering:
FIG. 2: (color online) Band structure of a single graphene maSSleSS DIraC fermlons

layer. Solid red lines are o bands and dotted blue lines are 7
bands.
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1.Chiral tunneling
Tudorovkiy, Reijnders, MIK, Phys. Scr. T 146, 014010 (2012);
Reiljnders, Tudorovskiy, MIK, Ann. Phys. (NY) (2013)

2.Electron Veselago lenses and caustics
Reijnders, MIK, Phys. Rev. B 95, 115310 (2017);
Reijnders, MIK, Phys. Rev. B 96, 045305 (2017);

3.Electron optics in 2D case
Reijnders, Minenkov, MIK, Dobrokhotov, Ann. Phys.(NY) 397, 65 (2018)

4.Chiral tunneling in bilayer graphene
Kleptsyn, Okunev, Schurov, Zubov, MIK, Phys. Rev. B 92, 165407 (2015)

See also Koen Reijnders thesis (Nijmegen, 2019)
Semiclassical dynamics of charge carriers in graphene
https://repository.ubn.ru.nl/handle/2066/204183
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Ultrarelativisic

Nonrelativistic




Tiransmission propability
Barrier width 100 nm

Electron concentration
outside barrier 0.5x10%% cm:>2

Hole concentration
iInside barrier 1x101% cm=
(red) and 3x10%° cm2 (blue)




week ending

PRL 102, 026807 (2009) PHYSICAL REVIEW LETTERS 16 JANUARY 2009

Evidence for Klein Tunneling in Graphene p-r Junctions

N. Stander, B. Huard, and D. Goldhaber-Gordon™
Department of Physics, Stanford University, Stanford, ifornia 94305, USA
(Received 13 June 2008; published 16 January 2009)

Transport through potential barriers in graphene is investigated using a set of metallic gates capacitively
coupled to graphene to modulate the potential landscape. When a gate-induced potential step is steep
enough, disorder becomes less important and the resistance across the step is in quantitative agreement
with predictions of Klein tunneling of Dirac fermions up to a small correction. We also perform
magnetoresistance measurements at low magnetic fields and compare them to recent predictions.

ngire, LETTERS
p ySlCS PUBLISHED ONLINE: 1 FEBRUARY 2009/ DOI:10.1038/NPHYS1198

Quantum interference and Klein tunnelling in
graphene heterojunctions

Andrea F. Young and Philip Kim*

[n,| 10" cm™2)



One-dimensional potential

Px :1.13 Y ) +u(x/1) — E} V=0
C

—thd/dx, py = py/pPo, h = h/pol, &t = u/vpo




Reduction to exact Schrodinger equations for complex
potential

(‘PE +p ‘El —v(x)* —ihoyv'(x) W =0

Schrodinger equation with complex potential



Classical dynamics is described by the Hamiltonian

for electrons and holes

Electron and hole Hamiltonians
coincide for normal incidence:

Turning points BRI

P, 2

Squared Hamiltonian equations: [HRNERGIER I by




Exact equations (continued to the complex plane x — 2)




Fundamental semiclassical solutions




The semiclassical solutions are divergent at the turning points

The matching of solutions in various regions can be done in
complex plane when we can go around the turning point at some
safe distance

~ —1/ {i " ! I R \
fi(z0.2) = q ““exp(ﬁ ] dz’ q"%(z ))q

20

fr(z0.2) = q 1;4exp( h ]

Z0



Anti-Stokes lines: the function s is real. Both fundamental solutions
are comparable in their amplitude at these lines.

(Stokes lines: the function s Is imaginary — less important)

INECECRIERIRSICICERINECIN |/ (2) = C, f1(20, 2) + C, fo(20, 2)

Stokes phenomenon: there are jumps in the coefficients (and
they are roughly associated to Stokes lines)

So, the exact solution has different representations in
different sectors of the complex plane



Scafttering problem: connecting propagating (not evanescent!)
In different regions, that is, transition from one anti-Stokes

line to the other anti-Stokes line, that is, calculation of connection
matrix

Figure 2.5: The Stokes diagram for two simple turning points zy and z;. The blue arrows
show the direction in which the action s(zg, z) increases and the wavy lines depict the
branch cuts. The division of the different sectors in dominant or subdominant is performed
with respect to zp. In diagram (a), we consider n (z) = nT (z) along v and in diagram (b)

we consider 1y (z) =n7 (z) along .




1. E < up, [pyl < up — E: Klein tunneling regime, or tunneling through a
barrier supporting hole states

2. E>up, [pyl < E—up: above-barrier scattering

3. E<up and |py| >up —E, or E > up, [py| > E—up: conventional tunneling
regime, tunneling through a barrier without hole states.

Difference between conventional case and Klein tunneling for real
Dirac particles




N AN



Figure 2.3: Stokes diagrams for the three different regimes outlined in section 2.2: (a)
Klein tunneling, (b) above-barrier scattering and (c) conventional tunneling. Bold points
show the turning points, the solid lines correspond to anti-Stokes lines and the wavy
lines designate branch cuts of the function (z — zg )1/2 . This figure was created using the

potential u(z) = —z?.

Klein tunneling — four real turning points; above-barrier scattering

four complex turning points




o0
d;{; + R(z, II)I/I(Z) =0 R(z, h) = Z{;Rn (Z)h”
n=

Map it to a related equation ChV(p) =0

which we can hope to solve (Q will be specified later)

Uz, h) = (¢ ()" 2V (¢p(z)) P (2) is non-singular, i.e. ¢’ does not vanish

’-_2 = A . . L ., ’ I 2 R q ’ _ O
| (4 (9?2 29 ) Q(@. W) ()" + Rz, h)



00
Q (¢, h) = Z Q, (¢)h" and compare term by term:
n=0

o0
Pz, h) = Z ¢n(z)h". Qo(¢po)(¢g)” = Ro(2)

n=0

Qo(¢o) and Ry(z) have the same number of turning points

Q1 (o) () + Qg (o)1 (dy)* + 2Qo o)y = Ry (2)

etc., term by
term




Suppose R, has zeros (turning points) of the order m; at z = z,

Then, Q can be choosen as a polynomial:

N
QO ((/‘) ) — }”;1 0 l_['( (f) o (f) 0 (Z ] ) ) i
=0

o (2) N ) . |
] ds | [ls — goz1™” :] dz' [0 Ro(2)]"/2

$0(z0)  j=0 4y

Putting we find all constants [2€48 except one

We will consider quadratic polynom (Egs. for Weber functions)



The expression for scattering matrix for n-p and p-n junctions:

",

K K K
+ — — —1In (—)

h Th mh



Transmission probability

- .E -}-lp _,I"l II_

e Bpn,r?_ —iL/h

- B-I_n‘.«'fli' — 21 L #h—l—lﬂ' 9”1— "ill_qp.n_




Magic angles with 100% transmission survives only for symmetric
barriers (except normal incidence)

1

I‘TI‘F‘.":‘. — T 1 1~ 11 1~ 1
[res| cosh(K,,,/h — K, /1)

Kup/h>1, K,, >1

| | U
u(x/ly) = —= [1 + tanh ( 10

_f
=

The angular dependence of the transmission coefficient for a particle of energy
80 meV incident on an n-p-n junction of height 200 meV. The barrier width
1, = 250 nm and the n-p and p-n regions have characteristic lengths 1; = 150 nm
and 13 = 50 nm, respectively. The blue line shows the numerical results for 99
steps, while the red line shows the uniform approximation (5.77).

Very nice agreement with numerics



If refraction index is negative the flat interface works like lens

Group velocity

In electron region:

Ve = v(Ccos ¢, sin )

k = k(cos ¢,sin g

In hole region:

—

ek

i = v(cos O, sin )| = —q(cos 0, sin ()
0 = —0

Graphene with p-n junction as electronic

NEEIEICEE]

IS negative



CIEERRIGBEIIMN [vro -p+ UX)11]G(x.x0) = EG(X,X9) + §(x — Xo) 12

Wave function from initially polarized source EaS3ks O{...Kaﬂs..l(m)

electrons holes

sing

sinf#



Classical Hamiltonian Hff = +|p| + U(x)

Classical action

Classical trajectories

Singular points (caustics):g

They form the lines (caustics) where
density of trajectories Is divergent



1.0
x/L

FIG. 1. The cla
junction at x =0

envelope of the classical trajectories, and separates the region where each point lies on a single trajectory from the region where each point

lies on three trajectories. It consists of twofold lines meeting into a cusp point at (Xgup.0). (a) For Uy > 2L, the cusp point Xeygp =
the left-most point of the caustic. (b) When Uy < 2E. the cusp point Xeup < —X; is the right-mos
trajectories are focused into a single point.

U, = 2E Is an exceptional case, n = - 1, ideal focus
(the caustics shrink to a single point)



FIG. 7. The density |[[W| for the dimensionless parameters Uy = 2.5 and h = 0.000639. For graphene, these numbers correspond to
E = 100 meV. Uy = 250 meV, and L = 10* nm. (a) The exact result obtained by numerically evaluating the exact wave function (16). (b)




This is equal to[[NACIRIBIR oy if el

(Pseudo)spin polarization breaks the mirror symmetry!
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Figure 3.2: The density ||¥| computed by numerically evaluating the exact wavefunc-
tion (1.78) for the dimensionless parameters Uy = 2.5 and h = 0.0639. For graphene, these
numbers correspond to E = 100 meV, Uy = 250 meV and L = 100 nm. We consider three
different polarizations. (a) For (a7, a2) = (1,1)/4/2, the density is symmetric about the
x-axis. (b) When («;,xy) = (1,0), this symmetry is no longer there and the maximum
lies at y < 0. (¢) For (x7, x2) = (1,—1)/ V2, the density is symmetric again, but the central
resonance has disappeared. The maximum of the color scale equals (a) 70, (b) 55 and
(c) 22.



V(x,y) = // G(x,y.xo0,¥0)J (X0, yo)dxodyo

Green's function

. pi(0—0)/2  o—i(o+0)/2
G(x,¥,%0,¥0) X | ——= | :(srpy/ Ca_0)/
, Y5 X0, 10 \ gi(0+0)/2  o—i(¢—0)/2

_——_—f
Amplitude f(py) Action Spp

Sap(X, Y5 X0, Y0) = [%0]\/E? — pg —x\/(Uo — E)? — p7 +(y —y0)p

h is small: we need to calculate fastly oscillating integrals

) e"Sn;J(x,y,xo,yo),"h




02S

CLUCIEELHN et A (xp, 1) = det ———
onion; |

_ fxomo)  imsgn(Alxomo)) /4
VI det A(xo,no )l

x eiSxomo)/h (14 O(h))

In QM it corresponds to WKB approximation

Does not work near caustics or cusps!



2
(xo,Mo )




Iooh) = | dntlxnoles” 0/ om/3),

— 00

| 13/ Zh 1

21/3
XAL| ————7%
h2/3q3"




The answer:

- | .l 2h 1 |
I(._X! h] — Zﬂf(XO;T]O] {— exp [1 ((10 + <b0! Z>]]
a3 h

22;3h2;3a;/3

w Ai ( 2<b1,Z> ) _I_O(hZ/S

Does not work near cusp!



Near cusp, third derivative disappears as well

olz)+qi1(z)B+
+GI3.( z)
6

GI4( z)

A B 0B

[D




Expand action up to 4" order around py = 0 (not at ideal focus)

6 — X 24
W h1/4f / cusp 4 1 %, h1/4 )
(X’y) > h|34| Uo — h3|34 + )

845np

apy py_o
X=Xcusp

Pi(“a v) = /d’f?exp +in* + iun? +ivn), ag =

Works only at small h but position of the main maximum is good

-50h"® o 50n"® 100n"® -10n""® o 10h"8 200" 30H"8
h = 0. 0006:39 NUMETICS s 1ol 'h =0. 063.‘9 NUMENCS s
B 0.4} i Semiclassics -] o L 1.‘ Semiclassics ----]
S e s | a |
T ' T
s 0.2 -

1.4 1.5 1.6 1.7




Exact

Pearcey
(in ellipse)

Airy
(between
dashed
lines);
WKB
(outside)

The density ||W] for the dimensionless parameters Uy = 2.5 and h = 0.000639
three different polarizations (o ,«>), to wit (1,1)/\/5; (1,0) and (1,— 1)/\/5




Pearcey function symmetric: include corrections

\U(X) = /f(py)efsnp(xayspy)/h g/(f(o) 4+ f!(o)py)eis
o it/ (f(o) PE(a, B) + W4 £(0) P35 (cv, B) + o(hl/z))

f’(lf‘-’)(xfyfp}’)/hdpy

Expand P to 2"¥ order in 3, consider the cusp point (o = 0)

h a1 —as restore hVF a1 — o
2E a1 + ap  units 2E a1 + ap

Maximum of ||W||? at Ymax = —

| —— Numerics | Or Numerics — ] ! Numerics —
Semiclassics 3 [ Semiclassics -=-- L Semiclassics ---- ]
20 50 100 200 ' 102 10°  10°

E (meV) L (nm)




For Dirac fermions and U, = 2E
Ideal focus

It is unstable in view of
catastrophe theory

Trigonal warping: correction to the linear spectrum of graphene

Eri: = :|:(|p| + Cli[_.,{.|p|2 CoS [3(Op + 9)}). n<Ll a==£1

a is opposite for different valleys, 6 depends on crystallographic
orientation (6 = 0 corresponds to zigzag edges along x —direction)

Figure 1.4: (a) Zigzag edges along the x-axis (8 = 0). (b) Armchair edges along the x-axis
(0 = 7t/6).




Veselago lens with trigonal warping produces valley polarization?;
In particular, the maxima of wave function are shifted

Semiclassical analysis similar to Dirac case + numerical TB simulations

K. J. A. REIJNDERS AND M. I. KATSNELSON PHYSICAL REVIEW B 96, 045305 (2017)

B—

X!L-]

FIG. 1. (a) Simulation setup with an injector and collector lead (red) and drain leads on each side (blue). (b) Classical trajectories for
the massless Dirac Hamiltonian at Uy = 2E. (¢)—(g) Classical trajectories (red) and caustics (black) for the Hamiltonian including trigonal
warping. Unless otherwise indicated. E = 0.4 eV. (¢) K valley. Uy = 0.8 eV. # = 0: (d) K’ valley. Uy = 0.8 eV. # = 0: (e) section of the
butterfly caustic. K’ valley, E = 0.6 eV, Uy = 1.18 eV. 0 = 0: (f) K’ valley, Uy = 0.795eV. 60 = 7 /12: (g) Uy = 0.8 eV. 0 = 71 /6.




0. 10 15 20 25 30
E (eV) Orientation 6 (degree)

FIG. 2. (a)~(c) Results of the tight-binding simulations with L; = 100 nm. The density |¥,, | is averaged over sublattices and summed
over lead modes in valley «. (a) K’ valley, E = 0.6 eV, Uy = 2E, W; = 7.5 nm; (b) K’ valley, E =0.6 eV, Uy = 1.18 eV, W; = 7.5 nm; cf.
the classical trajectories in Fig. 1(e): (¢c) K’ valley, E = 0.4 eV, Up = 2E. W; = 40 nm. (d)—(f) Position, on the x axis, of the caustic (dashed
and dashed-dotted lines), semiclassical maximum (solid lines), and simulated maximum (symbols) for varying energy E. lattice orientation €,
and L;. The dashed gray lines indicate the Dirac result. The parameters equal (e).(f) £ = 0.4 eV, (d),(f) 6 =0, (d).,(e) L; = 100 nm, (d).(f)
W; = 40 nm, and (e) W; = 50 nm. In all cases Uy = 2E.

Semiclassical (Pearcey) approximation works very well;
gualitatively, the splitting can be understood just from classical
trajectories




Electronic optics in graphene in the
semiclassical approximation Annals of Physics 397 (2018) 65-135

KJ.A. Reijnders **, D.S. Minenkov ”, M.1. Katsnelson ?,
S.Yu. Dobrokhotov *¢

(04

i — (U(x)+m(x) ﬁ1+fcr152‘)
)

—\ pp —iap,  U(x) — m(x

@ = —1 for the K-valley and « = +1 for the K’-valley

Only above-barrier case is considered; even this is quite
demanding, tunneling problem is extremely difficult

(U(x) — E)?* —m(x)* > 0 [{oIgeURs



IS a classical observable dependent on coordinates and

momenta
It can be considered as a symbol of (pseudodifferential)
operator

— J eHPATY/ (T —t)x + ty, p)uly)dydp




(t) _

Oppositely, from operator to symbol:{¢

(0) — (x,p) —1inh/2



Standard quantization: t =0

au(x) = Op1/-"2(a-_]u(?<~_) =a"

"

(x, P, h)u(x)

2




Belov et al., J Eng Math 55, 183 (2006); Littlejohn, Flynn, Phys Rev A 44, 5230

HY = EV¥, where H is an n x n matrix

1s an n-dimensional vecto

We try the solution

1 is an effective scalar wavefunction

L plays the role of the scalar Hamiltonian

Operator equation to solve




R eEanl Ho(x, pxo(x,p) = Lolx, p)xo(x,p)

which means that the principal symbols Ly and xo are the eigenvalues and
eigenvectors, respectively, of the principal symbol of the matrix Hamiltonian H.
Note that Hp is an n x n matrix and x( is an n-dimensional vector.




IS the Berry curvature

As used In the theory of topological matter



P~

U(x) = —Uy exp(—x%/L?) U(X) = —Ug exp(—X?)

Classical trajectories Semiclassical solution

-20 0.0 20 4.0 6.0 8.0
X1/.|’_

0.0 ’

o4 7 . 3 .
05 00 05 10 15 20

- 0.2+ ._:'. X1 (102 nm)
E
S 0.0
= . |¥||? for E = 200 meV, Uy = 100 meV and L = 35.5nm
< 0.2 k,

. Exact numerical solution at the lattice

04l 0

05 00 05 10 15 20
x1 (102 nm)



and classically there is no effect on electron motion.

Only semiclassical phase matters in this situation



40 -20 0.0
x1 (10% nm)

Figure 6.9: (a) Trajectories for an electron in the K’ valley, computed using the modified
equations of motion (6.27). (b) Result of a tight-binding calculation for a zigzag sample with
a width of 4000 ac¢c ~ 568 nm. To produce these figures, we used the same parameters
as in figure 6.8.
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E(cV)

W
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Gapless, parabolic Electric field perp. layers




Trigonal warping, many-body effects and spectrum
reconstruction at small energies

Single-particle Hamiltonian:

Interaction-Driven Spectrum
Reconstruction in Bilayer Graphene

A. S. |"."layor0\n',1 D. C. Elias,* M. |“.’lucha—Kruczynski,2 R. V. Gorbachev,? T. Tudorovskiy,"‘
A. Zhukov,? S. V. Morozov,” M. 1. Katsnelson,® V. I. Fal’ko,? A. K. Geim,? K. S. Novoselov'*

12 AUGUST 2011 VOL 333 SCIENCE



Problem: graphene transistor
can hardly be locked!

Possible solution: use
graphene:

Transmission for bilayer;
parameters are the same as for
previous slide




For symmetric potential V(X)=V(-x): one real equation for magic
angles but not necessarily real solutions

Magic angles are not protected

Example: fast-oscillating
potential

1.75-107% [ "'., E=20.0 meV
| i

| F=225meV
1.50.10°% I". E=25.0 meV

, £=275 meV Very small transmission

E=30.0meV

1.00-107% prObablllty

0.50.107% -:II".II -‘ FrOm an a|ySIS Of O D E tO
st || I AN\ graphene transistor?!

0.00. 107 TSl s
0 10

100 120 140 160




Semiclassical approximation is not only a qualitative tool to
understand numerical data (which is very important
by itself) but also frequently gives you quite accurate
guantitative results

Still open questions:

- Tunneling in more than one dimension,;
- Tunneling In bilayer graphene



