
Semiclassical dynamics of charge 

carriers in graphene

Mikhail Katsnelson

In collaboration with Koen Reijnders,

Timur Tudorovskiy, Sergey Dobrokhotov, 

Dima Minenkov, and Victor Kleptsyn



Carbon, an elemental solid

Graphite

Diamond

Fullerenes Nanotubes
Graphene

Crystal lattices



Mother of all graphitic forms

Fullerenes Nanotubes Graphite



Honeycomb lattice (graphene)

Two equivalent sublattices, 

A and B (pseudospin)



Massless Dirac fermions in graphene

sp2 hybridization, π bands crossing

the neutrality  point 

Neglecting intervalley scattering:

massless Dirac fermions

Symmetry protected (T and I)
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Massless Dirac fermions in 

condensed matter physics

1. d-wave superconductors

2. Vortices in superconductors and in superfluid helium-3

3. Topological insulators

4. Graphene

Gap in high-Tc cuprates

Electronic structure on 

surface of Bi2Se3



Outline
1.Chiral tunneling 

Tudorovkiy, Reijnders, MIK, Phys. Scr. T 146, 014010 (2012); 

Reijnders, Tudorovskiy, MIK, Ann. Phys. (NY) (2013)

2.Electron Veselago lenses and caustics

Reijnders, MIK, Phys. Rev. B 95, 115310 (2017); 

Reijnders, MIK, Phys. Rev. B 96, 045305 (2017);

3.Electron optics in 2D case

Reijnders, Minenkov, MIK, Dobrokhotov, Ann. Phys.(NY) 397, 65 (2018)

4.Chiral tunneling in bilayer graphene

Kleptsyn, Okunev, Schurov, Zubov, MIK, Phys. Rev. B 92, 165407 (2015)

See also Koen Reijnders thesis (Nijmegen, 2019)

Semiclassical dynamics of charge carriers in graphene

https://repository.ubn.ru.nl/handle/2066/204183



Electronics: heterostructures (p-n-p junctions etc.)

Chiral tunneling and Klein paradox
MIK, Novoselov, Geim, Nat. Phys. 2, 620 (2006)

(C) Florian Sterl



Klein paradox II

Ultrarelativisic

Nonrelativistic

Tunnel effect: momentum and coordinate 

are complementary variables, kinetic and potential

energy are not measurable simultaneously

Relativistic case: even the coordinate itself is not 

measurable, particle-antiparticle pair creation



Klein paradox III

Transmission probability

Barrier width 100 nm

Electron concentration

outside barrier 0.5x1012 cm-2

Hole concentration

inside barrier 1x1012 cm-2 

(red) and 3x1012 cm-2 (blue)



Klein tunneling: Experimental 

confirmation



One-dimensional barrier

T. Tudorovskiy, K. Reijnders & MIK, 2012, 2013

One-dimensional potential

Skipping tildes: the Hamiltonian



One-dimensional barrier II
Reduction to exact Schrödinger equations for complex

potential

Schrȍdinger equation with complex potential



Classical equations

Classical dynamics is described by the Hamiltonian

for electrons and holes

Turning points
Electron and hole Hamiltonians

coincide for normal incidence:

Squared Hamiltonian equations:



Semiclassical theory
Exact equations (continued to the complex plane x → z)

Semiclassical solution



Semiclassical theory II

Fundamental semiclassical solutions



Stokes diagrams 
The semiclassical solutions are divergent at the turning points

The matching of solutions in various regions can be done in

complex plane when we can go around the turning point at some

safe distance

General complex WKB:

Fundamental semiclassical solutions 



Stokes diagrams II

Anti-Stokes lines: the function s is real. Both fundamental solutions

are comparable in their amplitude at these lines. 

(Stokes lines: the function s is imaginary – less important) 

At each anti-Stokes lines

Stokes phenomenon: there are jumps in the coefficients (and

they are roughly associated to Stokes lines)

So, the exact solution has different representations in

different sectors of the complex plane



Stokes diagrams III

Scattering problem: connecting propagating (not evanescent!)

waves in different regions, that is, transition from one anti-Stokes

line to the other anti-Stokes line, that is, calculation of connection

matrix



Different cases

Difference between conventional case and Klein tunneling for real 

Dirac particles



Different cases II

Classical mechanics:

Effective Hamiltonian

The case of Klein tunneling



Different cases III

Klein tunneling – four real turning points; above-barrier scattering –

four  complex turning points 



Method of comparison equations

Map it to a related equation 

which we can hope to solve (Q will be specified later)



Method of comparison equations II

and compare term by term:

etc., term by 

term 



Method of comparison equations III

Suppose R0 has zeros (turning points) of the order mj at z = zj

Then, Q can be choosen as a polynomial:

Putting we find all constants except one

We will consider quadratic polynom (Eqs. for Weber functions)



Application to Dirac equation

The expression for scattering matrix for n-p and p-n junctions:



p-n-p junction

Comparison equation with four turning points is too complicated,

and no  analytical solution is known, therefore we consider

p-n and n-p junctions separately

Transmission probability

x1,2 are turning points 



Fabri-Perot resonances

Magic angles with 100% transmission survives only for symmetric

barriers (except normal incidence)  

Very nice agreement with numerics



Klein tunneling and Veselago lensing
If refraction index is negative the flat interface works like lens

(V.S. Veselago, 1968)

Group velocity

In electron region:

In hole region:

is negative

Graphene with p-n junction as electronic 

metamaterial

Cheianov, Fal’ko, Altshuler, Science 315, 1252 (2007)



Veselago lens for massless Dirac 

fermions
Reijnders & MIK, Phys. Rev. B 95, 115310 (2017) 

Green function

U is just a potential step

Wave function from initially polarized source

Source:



Veselago lens for Dirac fermions II

Classical Hamiltonian

Classical action

Classical trajectories

Singular points (caustics): vanishes

They form the lines (caustics) where 

density of trajectories is divergent



Veselago lens for Dirac fermions III

U0 = 2E is an exceptional case, n = - 1, ideal focus 

(the caustics shrink to a single point)  



Interference patterns

U0>2E



Pseudospin polarization and symmetry

breaking

This is equal to only if

(Pseudo)spin polarization breaks the mirror symmetry!



Pseudospin polarization and symmetry

breaking II

x=xcusp



WKB approximation

h is small: we need to calculate fastly oscillating integrals



WKB approximation II

Main contribution is from stationary points

Generic case: 

In QM it corresponds to WKB approximation

Does not work near caustics or cusps!



Airy approximation I

Fold caustics: Airy approximation

Expand to the higher (third) order:



Airy approximation II

is expressed via Airy function



Airy approximation III

The answer:

Does not work near cusp!



Pearcey approximation

Near cusp, third derivative disappears as well

Pearcey function



Pearcey approximation II

Works only at small h but position of the main maximum is good



Semiclassical approximation

Exact

Pearcey

(in ellipse);

Airy 

(between

dashed 

lines);

WKB

(outside)



Asymmetry in y direction



The effects of trigonal warping

Reijnders & MIK, Phys. Rev. B 96, 045305 (2017) 

For Dirac fermions and U0 = 2E

ideal focus

It is unstable in view of

catastrophe theory

α is opposite for different valleys, θ depends on crystallographic

orientation (θ = 0 corresponds to zigzag edges along x –direction)



The effects of trigonal warping II
Veselago lens with trigonal warping produces valley polarization*;

in particular, the maxima of wave function are shifted

Semiclassical analysis similar to Dirac case + numerical TB simulations

*Garcia-Pomar, Cortijo, Nieto-Vesperinas, Phys Rev Lett 100, 236801 (2008)



The effects of trigonal warping III

Semiclassical (Pearcey) approximation works very well; 

qualitatively, the splitting can be understood just from classical 

trajectories



Two-dimensional case

Only above-barrier case is considered; even this is quite 

demanding, tunneling problem is extremely difficult

for all x



Operators and symbols
is a classical observable dependent on coordinates and 

momenta

It can be considered as a symbol of (pseudodifferential)

operator

Example:

but



Operators and symbols II

Oppositely, from operator to symbol:

Example:



Operators and symbols III
Standard quantization: t = 0 

Weyl quantization: t = 1/2

Symbols are extremely convenient for expansion in h



Semiclassics for matrix Hamiltonians

We try the solution

Operator equation to solve



Matrix Hamiltonians II

In zeroth order in h

First order in h

2D Dirac Hamiltonian



Semiclassical equations of motion

is the Berry curvature (This derivation: Littlejohn & Flynn 1991)

As used in the theory of topological matter 

Xiao, Chang & Niu, RMP 82, 1959 (2010)



Scattering by potential bump  or well

Classical trajectories Semiclassical solution

Exact numerical solution at the lattice



The role of semiclassical phase

Can be rewritten as

(a new “Hamiltonian”, new “energy” = 1)

When we set

and classically there is no effect on electron motion. 

Only semiclassical phase matters in this situation



The role of semiclassical phase II



Bilayer graphene – TB description

(neglecting γ3)

Gapless, parabolic Electric field perp. layers



Bilayer graphene II

Trigonal warping, many-body effects and spectrum 

reconstruction at small energies

Single-particle Hamiltonian:



Chiral tunneling - bilayer

Problem: graphene transistor 

can hardly be locked!

Possible solution: use bilayer

graphene: chiral fermions with

parabolic spectrum – no analogue

in particle physics!

Transmission for bilayer; 

parameters are the same as for 

previous slide



Chiral tunneling – bilayer II

Magic angles are not protected

Kleptsyn, Okunev, Schurov, Zubov & MIK, PRB 92, 165407 (2015)

For symmetric potential V(x)=V(-x): one real equation for magic 

angles  but not necessarily real solutions

Example: fast-oscillating

potential

Very small transmission

probability

From analysis of ODE to 

graphene transistor?!



Conclusions

Semiclassical approximation is not only a qualitative tool to

understand numerical data (which is very important

by itself) but also frequently gives you quite accurate

quantitative results

Still open questions:

- Tunneling in more than one dimension;

- Tunneling in bilayer graphene


