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Honeycomb lattice (graphene)

Two equivalent sublattices, 

A and B (pseudospin)



Massless Dirac fermions in graphene

sp2 hybridization, π bands crossing

the neutrality  point 

Neglecting intervalley scattering:

massless Dirac fermions

Symmetry protected (T and I)
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Effective Hamiltonian in magnetic 

field: Peierls

Exact formulation

Simplifications:

magnetic length
up to 10,000 T – OK!
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Solution

Zero-energy solution: 

Complete spectrum:



E =0N =0

N =2

N =1

N =4
N =3

EN =[2ev2B(N + ½  ½)]1/2
E =vk

E =0

pseudospin

The lowest Landau level is at ZERO energy

and shared equally by electrons and holes

ωC

Anomalous Quantum Hall Effect

(McClure

1956)



Anomalous QHE in single-layer graphene

Single-layer: half-integer quantization since zero-

energy Landau level is equally shared by electrons and 

holes (Novoselov et al 2005, Zhang et al 2005)



Quantum capacitance measurements

Yu et al, PNAS 2013

Graphene on hBN: one can see many-body effects etc.



Half-integer quantum Hall effect 

and “index theorem”

0/=− −+ NN

Atiyah-Singer index theorem: number of chiral

modes with zero energy for massless Dirac 

fermions with gauge fields

Simplest case: 2D, electromagnetic field

(magnetic flux in units of the flux quantum)

Magnetic field can be inhomogeneous!!!



Zero-mass lines: motivation (Graphene on 

hBN) 

Relaxed structure (B green, C yellow, N 

red)

V corresponds to the minimal energy (max. 

cohesion)

B on the top of C, N in the middle of hexagon

Sublattices are no more equivalent → locally

energy gap is open (mass term in Dirac eq.)



Commensurate-incommensurate 

transition

Moire patterns with periodicity 8 nm (left) and 

14 nm (right)

When misorientation angle (in radians) is

smaller with misfit,  synchronization 

happens

Atomistic simulations

Distribution of bond length in 

commensurate (left) and 

incommensurate (right) regimes



Linear dispersion modes

Straight zero-mass line (y=0)

Try the solution

Linear-dispersion mode

(LDM)

Allowed if m is positive for positive y and negative for negative y

Well known “zero modes” in 1D (supersymmetric QM, fractional 

charge and solitons in polyacetilene, etc).

T. Tudorovskiy & MIK, Phys. Rev. B 86, 045419 (2012)



Tunneling between zero-mass lines

LDM as models for 

counterpropagating edge 

states in TI, QHE, SQHE...

Effective potentials



Tunneling between zero-mass lines II

Tunneling splitting

General case, ZML at y = a1,a2

proportional to

It does not matter whether m(y) is symmetric or not – you always

have a tunneling (in contrast with the standard two-well problem),

due to existence of zero mode for any m(y), px=0 (supersymmetry)

Tunneling between edges determines accuracy of quantization in

QHE (QSHE) in ideal situation (zero temperature, etc.)  



Bent zero-mass line
Parametrization of the line

New variables near the line

τ - coordinate along the line, ξ - normal to the line 

Jacobian k - curvature

The new Hamiltonian

(exact) 



Bent zero-mass line II

Smooth line: 

We use adiabatic approximation and construct semiclassics

Symbol of the operator

in adiabatic approximation



Quantization rule for the bent line

Quantization condition

n integer, w winding #

The linear dispersion mode, line length l



Consequences for electronic transport

In commensurate phase average gap is non zero, 

and system can be insulating

Woods et al, Nature Phys. 10, 451 

(2014)

For incommensurate phase, the average gap is zero,

and there are electron states along zero-mass lines

Model of percolation along zero-mass lines

Classical model is correct if the moiré period is larger than

ħv/Δ (in reality, this parameter is not very large but acceptable)



Consequences for electronic transport II

2D percolation: mathematically

rigorous theory exists (Smirnov)

Critical percolation cluster is

“thick” and fractal



Consequences for electronic transport III

Landauer formula for conductance

Exact result for 2D percolation (Cardy)

Exact minimal conductivity

in percolation model



Aharonov-Bohm effect and spectral 

flow
Persistent current in a ring 

If the flux through the ring is integer (in units of flux quantum)

the spectrum returns to the initial point



Aharonov-Bohm effect and spectral 

flow II
Dirac fermions: does coincidence of the spectrum means

coincidence of each eigenvalue separately? 

No, if the spectrum is from – ∞ to + ∞ (e.g., n → n+1, n integer)

For Dirac fermions – the situation may be nontrivial!!!

# of eigenvalues crossing some

value from below to above minus

# of eigenvalues crossing some

value from above to below



Aharonov-Bohm effect for zero-mass 

loop

Add vector potential

Quantization condition

Magnetic flux

When flux grows it works like n → n+1



Aharonov-Bohm effect and spectral 

flow in graphene rings

Consequences of non-zero spectral flow: positron (hole) states 

will move to electron region (or vice versa) – creation of e-h

pairs from vacuum by adiabatically slow increasing magnetic field

At any Fermi energy, at some flux, one of eigenvalues will coincide

with the Fermi energy – many-body instabilities, etc. 

Conditions of nonzero spectral flow for massless Dirac fermions

(M. Prokhorova 2011, MIK & V. Nazaikinskii 2012): depend on

boundary conditions



Aharonov-Bohm effect and spectral 

flow in graphene rings II

Geometry of the sample

Berry-Mondragon boundary condition

(mass opening at the

Boundary)

B is nonzero real number



Aharonov-Bohm effect and spectral 

flow in graphene rings III

Spectral flow = number of fluxes through the holes with

positive B (flux through the external boundary is taken with

the opposite sign) 



Aharonov-Bohm effect and spectral 

flow in graphene rings IV

The way of realization: ring with opposite signs of masses

at inner and outer boundaries (chemically functionalized 

graphene; quantum wells CdTe/HgTe/CdTe with varying

width; magnetic spots with different signs of magnetization

at the surface of 3D topological insulator)... and you will see

vacuum reconstruction and other nice stuff

In graphene: valley polarization (electrons ->

holes in valley K and holes -> electrons for valley K’



Partial Spectral Flow

For nonzero SF the spectrum

should be unbound from both 

sides – impossible in real solids!

Instead of Dirac operator we

consider the finite-difference

Hamiltonian at honeycomb lattice



Partial Spectral Flow II

Eigenfunctions of the Hamiltonian is separated into two

classes: “living” in the vicinity of point K and “living” in the

vicinity of paint K’ (in some formal sense, via projectors etc.)

the spectral flows of the 

corresponding Dirac operators



Partial Spectral Flow III

Physical picture: when flux is adiabatically changing, some 

hole states near K point go up and simultaneously electron

states  near K’ poins go down, that is, spontaneous formation

of electron-hole pairs from different valleys

Despite total spectral flow is zero, all physical conclusions

remain the same

Important: we deal with continuos models in quantum field 

theory but what if they are limits of some lattice theories?

Topology is totally different! – But some concepts have analogs!



Conclusions

Graphene is a playground for topology and geometry

More than 22,000 citations (Google Scholar, Oct. 2021)

(probably more attention to this theorem than in the whole 

mathematics?!)



What is beyond the talk

Direct visualization of Berry phase and winding number for

electron wave functions in graphene without magnetic field

Via wave-train dislocations in charge

Distributions of electrons around

H adatom (measured by STM) 

M. Berry discovered the wave-train dislocations and claim

that they cannot be observed in quantum systems…

Graphene is still alive, also for mathematical physics


