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I. Van der Waals heterostructures: Introduction
II. Phase synchronization and commensurate –

incommensurate transition in general
III. Graphene on hBN: (1) atomic reconstruction; (2) effect 

on electronic structure; (3) transport; (4) nonlinear 
optics

IV. Graphene on graphite and/or twisted bilayer graphene: 
(1) atomic reconstruction and vortex lattice formation; 
(2) description in terms of misfit dislocations; (3) 
pseudomagnetic field and electronic structure



Zoo of 2D materials
Plenty of  2D materials 
starting from graphene

Semimetals (graphene), semiconductors,
metals, superconductors, broad-gap

insulators... 

Graphene

Silicene, germanene
Buckling



Zoo of 2D materials - semiconductors

Antimony

The same buckled structure as for silicene or germanene

Strong spin-orbit coupling

InSe

Flat band, strong elctron-phonon coupling



Zoo of 2D materials – Magnetic materials

CrX3

CrSBr (highly anisotropic)

Fe3GeTe2 (metallic)



Van der Waals Heterostructures
“Van der Waals heterostructures”
Geim & Grigorieva, Nature 2013

Combination of  2D materials
create new physical systems and
open ways for new application



Twisted bilayer graphene: 
Flat bands and all that



Example: Graphene on hBN

Woods et al, Nature Phys. 10, 451 (2014)Dean et al, Nature 497, 598 (2013) 

Chen & Qin, JPCC 8, 12085 (2020)

Graphene and hexagonal boron nitride (hBN)
have the same crystal structure but slightly
different interatomic distances (roughly, 0.142 nm
vs 0.145 nm). In hBN they are 1.8% larger



Graphene on hBN: Motivation
Graphene at hBN has much higher electron mobility than graphene 

at any other substrates or freely suspended graphene – why? 

Ripples and puddles
Freely suspended graphene has strong thermal fluctuations (intrinsic ripples)

Gibertini, Tomadin, Polini, Fasolino & MIK, PR B81, 125437 (2010)

Atomic displacements at room temperature



Graphene on hBN: Motivation II
Scalar potential Vector potential



Graphene on hBN: Motivation III
Graphene on SiO2

Gibertini, Tomadin, Guinea, MIK & Polini PR B 85, 201405 (2012)
Experimental STM data: V.Geringer et al (M.Morgenstern group)

hBN is atomically flat: suppresses thermal ripples and
no ripples due to roughness of  substrate



Phase locking (synchronization)

Oliveira & Melo, Sci Rep 2015

Discovered by Huygens, XVII century)

If  you have two coupled
oscillators with slightly 

different frequencies they 
can be synchronized

Bifurcation of  torus (with
two incommensurate 

frequencies) into limit circle
(with one common period)

Llibre et al, J. Dyn. Dif. Eq. (2018)

E.g., string pendulum, frequency
ratio close to 1:2



Phase locking (synchronization) II

String pendulum, frequency
ratio close to 1:2

Hypothesis on the role of  phonon phase locking in
development of  structural instabilities (including

melting) in solids

Two limit circles with different total phases
and thermally induced transitions between them



Misfit dislocations

Tang & Fu, Nature Phys. 10, 964 (2014)

Interface of  different semiconductors (e.g. PbTe/PbSe)

Energy of  interlayer interaction (second term) wants
that interatomic distances are equal but then one pays
for the energy of  elastic deformation (the first term)

Very roughly: When 𝑊𝑊 > 𝜇𝜇(𝑏𝑏 − 𝑎𝑎)2 then two layers will be mostly commensurate, and the whole
misfit will be concentrated via narrow ‘solitons’, and in the opposite limit the system will not even try

To reach synchronization of  periods, that is, commensurability

Commensurate – incommensurate transition is expected!



Commensurate-incommensurate 
transition

Moire patterns with periodicity 8 nm (left) and 
14 nm (right)

When misorientation angle (in radians) is
smaller with misfit,  synchronization happens

Atomistic simulations

Distribution of  bond length in 
commensurate (left) and 

incommensurate (right) regimes



Consequences for electronic structure

Relaxed structure (B green, C yellow, N red)

V corresponds to the minimal energy (max. 
cohesion)

B on the top of  C, N in the middle of  hexagon
Sublattices are no more equivalent → locally 
energy gap is open (mass term in Dirac eq.)



Consequences for electronic structure II
Atomic relaxation in commensurate phase

modulates the Hamiltonian parameters

Very strong effect of  atomic relaxation!
Optical conductivity



Consequences for electronic transport
In commensurate phase average gap is non zero, 

and system can be insulating

Woods et al, Nature Phys. 10, 451 (2014)

For incommensurate phase, the average gap is zero,
and there are electron states along zero-mass lines
Tudorovskiy & MIK, PRB 86, 045419 (2012)

Straight zero-mass line (y =0):

Linear-dispersion mode exists with



Consequences for electronic transport II
This mode survives if  the line is curved:

k is curvature

Tunneling between two lines:
Probability is proportional to



Consequences for electronic transport III
Model of  percolation along zero-mass lines

Landauer formula

Exact result for 2D percolation (Cardy)

Exact minimal conductivity
in percolation model

Valid if  the distance between lines is larger than typical ħ/mv and tunneling is negligible

Fractal properties of  percolation
cluster



Optical second-harmonic generation
In commensurate phase inversion symmetry in broken due to nonequivalence of  sublattices →

second-harmonic generation (SHG) is allowed by symmetry

Electron-hole symmetry should be also
broken → either final doping or NNN

hopping t’

Contributions to nonlinear optical conductivity



Optical second-harmonic generation II
Analytic expressions



Optical SHG III



Optical SHG IV

b – incommensurate
phase, only hBN signal

is visible; 
d – commensurate, one

can see graphene 

Commensurate – incommensurate transition was induced by
ieating and clearly detected via SHG



Graphene on graphite
Atomistic simulations: graphene

on graphite

Periodicity of  moire structure



Graphene on graphite II



Twisted bilayer graphene

There is a modulation at small angles and some analog of  “incommensurability” 
(small modulations) at larger angles



Description in terms of dislocations
To reproduce vortex structure one can
try three families of  screw dislocations

Displacement field from individual 
dislocation is given by analytic formula

(Frenkel – Kontorova model)

dislocation core splitting



Description in terms of dislocations II



Description in terms of dislocations III
Pseudomagnetic fields

There is an analytic formula for pseudomagnetic field, quite cumbersome but explicit

Description in terms of  vortices is consistent with that in terms of  dislocations

For graphene at hBN one needs to add three families of  edge dislocations, due to lattice misfit



Large-scale TB simulations plus 
experiment

Atomic relaxation
effects are essential

Calculated distribution of  pseudomagnetic
field



Large-scale TB simulations plus 
experiment



Quasicrystals
Unrelaxed moire pattern is periodic if  with integer p and q

incommensurate (quasicrystal) structure

Contrary to conventional 3D quasicrystals graphene quasicrystals are easily tunable!

For so large misorientation angle atomic relaxation is negligible and we are always in
incommensurate phase 



Quasicrystals II

Top view of  twisted bilayer graphene for different misorientation angles 



Quasicrystals III
Using approximants to calculate electronic structure;

elementary cell is huge but doable via tight-binding propagation
method 

Bright features appear only far enough from
the conical point



Quasicrystals IV

Landau levels (Hofstadter batterfly)

Uniaxial pressure moves the singularities closer
to the Fermi energy



Example of what we are doing:
Plasmonic quantum dots

Quantization of  plasmon spectrum

Real-space simulations

Examples of  plasmonic eigenmodes
for different misorientation angles



Main collaborators
Annalisa Fasolino, Merel van Wijk, Guus Slotman, Sasha Rudenko, Malte Rösner, 
Tom Westerhout (Nijmegen)
Kostya Novoselov (Singapore)
Yuri Gornostyrev (Ekaterinburg)
Evgeny Stepanov (Paris)
Shengjun Yuan and Guodong Yu (Wuhan)

Conclusions
- Atomic relaxation is very important for small enough misorientation angles
- Twisted VdW heterostructures are model systems to study physics of  
commensurability and incommensurability in condensed matter
- Description in terms of  vortices, dislocations and other topological effects may be
very suitable
- Second-harmonic generation can be a sensitive experimental tool to study commensurate-
incommensurate transition
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