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Van der Waals heterostructures: Introduction

Phase synchronization and commensurate —
incommensurate transition in general

Graphene on hBN: (1) atomic reconstruction; (2) effect
on electronic structure; (3) transport; (4) nonlinear
optics

Graphene on graphite and/or twisted bilayer graphene:
(1) atomic reconstruction and vortex lattice formation;
(2) description in terms of misfit dislocations; (3)
pseudomagnetic field and electronic structure
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Topical Review

Germanene: the germanium analogue of
graphene
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PHYSICAL REVIEW B 95, 081407(R) (2017)

Electronic properties of single-layer antimony: Tight-binding model, spin-orbit coupling, and the
strength of effective Coulomb interactions

A. N. Rudenko."* M. I. Katsnelson,' and R. Rolddn?

The same buckled structure as for silicene or germanene

Energy (eV)

I
Holes Electrons
Method E;E E;r mp omi mr my%  omy  mg
DFT 1.26  1.57 0.08 0.45 0.09 0.14 0.45 0.39
B .15 1.40 0.06 0.44 0.06 0.13 042 0.36
DFT+SO 0.99 1.25 0.10  0.19 0.08 0.14 0.46 0.40
TB+SO 092 1.14 0.09 0.11 0.06 0.13 043 0.37

PIY| K [ DOS

Semiconductor. Strong spin-otbit coupling

A =0.34eV



2D Magnets
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pubs.acs.org/NanoLett

Perspective

D. Soriano,* M. I. Katsnelson, and ]. Fernandez-Rossier
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Magnetic Two-Dimensional Chromium Trihalides: A Theoretical

FLN

suo‘-““m%
de—ce (A)  a(®) Ten (K) type of anisotropy
Crl, 4.026 97.5 45" (68)> easy axis (z)
CrBry 3.722 94.9 27" (37)> easy axis (z)
CrCL? 3.491 95.5 10548 17°%¢ (17)°7 easy plane (xy)

CrBrs: correlation effects are important

PHYSICAL REVIEW B 104, 155109 (2021)

Electronic structure of chromium trihalides beyond density functional theory

Swagata Acharya®,"" Dimitar Pashov.” Brian Cunningham®.* Alexander N. Rudenko®.! Malte Rosner®,' Myrta Griining,*
Mark van Schilfeaarde,”” and Mikhail 1. Katsnelson®'



Van der Waals Heterostructures

y il’ “Van der Waals heterostructures”
G Geim & Grigorieva, Nature 2013
MoS, ‘
we, G Combination of 2D materials
Fluorographene ‘

create new physical systems and
open ways for new application
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Twisted bilayer graphene:
Flat bands and all that

Correlated insulator behaviour at half-filling in
magic-angle graphene superlattices

Yuan Cao', Valla Fatemi', Ahmet Demir', Shiang Fang”, Spencer L. Tomarken', Jason Y. Luo', Javier D. Sanchez- Yamagishi’,

Unconventional superconductivity in
magic-angle graphene superlattices

Kenji Watanabe?, Takashi Taniguchi", Efthimios Kaxiras®#, Ray C. Ashoori! & Pablo Jarillo- Herrero! Yuan Cao', Valla Fatemi', Shiang F&mg—z. Kenji Watanabe?, Takashi Temigus.‘hi“. Efthimios Kaxiras”! & Pablo Jarillo-Herrero'
5 APRIL 2018 | VOL 556 | NATURE | 43
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Quantum dot-like plasmonic modes in twisted bilayer graphene

supercells

Tom Westerhout

Example of what we are doing:
Plasmonic quantum dots

2D Mater. 9 (2022) 014004

, Mikhail I Katsnelson

and Malte Rosner”

Quantization of plasmon spectrum
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Figure 5. (a) Plasmonic dispersion for a supercell with
diameter d ~ 150A (11 028 atoms). (b), (¢) Plasmonic
dispersion for a supercell with diameter d &~ 80 A (3252
atoms) together with tull EELS(w). Annotations in panel
(¢) reter to subplots of figure 6.

Examples of plasmonic eigenmodes
for different misorientation angles

0000

bottom top
layer layer

Figure 7. Plasmonic eigenmodes in real space for various twisting angles & = 0°, 10°, 20°, 30°. Columns show evolution of
difterent modes: (a) ‘dark’ dipole, (b) ‘bright’ dipole, (¢) ‘dark’ 1s, (d) ‘bright’ 1s.
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Chen & Qin, JPCC 8, 12085 (2020)

Graphene

Dean et al, Nature 497, 598 (2013)

Example: Graphene on hBN

Graphene and hexagonal boron nitride (hBN)
have the same crystal structure but slightly
different interatomic distances (roughly, 0.142 nm
vs 0.145 nm). In hBN they are 1.8% larger
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Figure 1| Schematic representation of the moiré pattern of graphene (red)
on hBN (blue). a Relative rotation angle between the crystals ¢ =0°.

b Relative rotation angle between the crystals ¢ =3°~ 0.052rad. The
mismatch between the lattices is exaggerated (~10%). Black hexagons
mark the moiré plaquette.

Woods et al, Nature Phys. 10, 451 (2014)



Graphene on hBN: Motivation

Graphene at hBN has much higher electron mobility than graphene
at any other substrates or freely suspended graphene — why?

Ripples and puddles

Freely suspended graphene has strong thermal fluctuations (intrinsic ripples)

Gibertini, Tomadin, Polini, Fasolino & MIK, PR B81, 125437 (2010)

The PhyS|CS Atomic displacements at room temperature

FIG. 2. (Color online) Average displacements u(r) calculated as
discussed in Sec. I A. The color scale represents the Z component
of the average displacements, varying from —3.0 A (blue) to
+3.0 A (red). The arrows, whose length has been multiplied by a
factor ten for better visibility, represent the in-plane components of
the average displacements.




Graphene on hBN: Motivation Il
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FIG. 3. (Color online) Left panel: color plot of the scalar potential V(r) (in units of meV) calculated using Eq. (2) with g;=3 eV.

Central panel: the real part of the potential V,(r) (in units of meV) calculated using Eq. (3). Right panel: the imaginary part of the potential
V,(r) (in units of meV).
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FIG. 4. (Color online) Top panel: fully self-consistent electronic
density profile én(r) (in units of 1012 cm’z) in a corrugated
graphene sheet. The data reported in this figure have been obtained
by setting g;=3 eV, a..=0.9 (this value of a,. is the commonly
used value for a graphene sheet on a Si0, substrate), and an average
carrier density i7,=0.8 X 10" c¢m™. Bottom panel: same as in the
top panel but for e..=2.2 (this value of a.. corresponds to sus-

pended graphene).
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FIG. 9. (Color online) One-dimensional plots of the
self-consistent  density profiles (as functions of x in nm
for  vy=21.1 nm) for different  values of  doping:

T,=0.8x 10" cm™ (circles), ,=3.96x10"> cm™ (triangles),
and ,==3.17 X 10" em™? (squares). The data reported in this fig-
ure have been obtained by setting g, =3 eV and a,.=2.2. The inset
shows &n(r) (in units of 10" ¢cm™2) at a given point r in space as a
function of the average carrier density 7, (in units of 10'% cm™2).



Graphene on hBN: Motivation Il

Gibertini, Tomadin, Guinea, MIK & Polini PR B 85, 201405 (2012)

Graphene on S10, , ,
Experimental STM data: V.Geringer et al (M.Morgenstern group)

0.24
0.16
0.08
0.00
—0.08
—0.16
—0.24

2 (nm)

FIG. 3: (Color online) Fully self-consistent induced carrier-
density profile 6n(r) (in units of 10'* cm™?) in the corrugated
graphene sheet shown in Fig. 1. The data reported in this
figure have been obtained by setting g1 = 3 eV, aee = 0.9,
and an average carrier density fic &~ 2.5x 10" em™2. The thin
solid lines are contour plots of the curvature Vih(r). Note
that there is no simple correspondence between topographic
out-of-plane corrugations and carrier-density inhomogeneity.

hBN is atomically flat: suppresses thermal ripples and
no ripples due to roughness of substrate



Phase locking (synchronization)

If you have two coupled
oscillators with slightly
different frequencies they
can be synchronized

] s

—

E.g, string pendulum, frequency
ratio close to 1:2

Bifurcation of torus (with
two Incommensurate
frequencies) into limit circle
(with one common period)

o

S . M1 ‘ﬁ ~'n‘- 4 »
ey || ) 4 R =

Oliveira & Melo, Sci Rep 2015 Llibre et al, J. Dyn. Dif. Eq. (2018)




Phase locking (synchronization) Il

Resonance phenomena in a phonon subsystem
in connection with anomalies of the structural

Hypothesis on the role of phonon phase locking in
state of metals . . ) ]
ML 1L Katsnel'son and A.V. Trafilov development of structural instabilities (including
éeﬁliuiig::ninjﬁgﬁz{itsjf_p:;'lc;EUn;g, Moscow; Institute of Metal Physics, Ural Science mel Ung) lﬂ SOh ds

(Submitted 2 April 1987)

Pis’'ma Zh. Eksp. Teor. Fiz. 45, No. 10, 496-498 (25 May 1987) . L .
Stochastic resonance between limit cycles. Spring
pendulum in a thermostat

n
=

Yu. N. Gornostyrev, D. |. Zhdakhin, and M. |. Katsnel'son

Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences,
620219 Ekaterinburg, Russia

Dl t A. V. Trefilov

-~ Russian Science Center *‘Kurchatov Institute,”” 123182 Moscow, Russia

— (Submitted 18 March 1999)
Pis’ma Zh. Eksp. Teor. Fiz. 69, No. 8, 585-589 (25 April 1999)

String pendulum, frequency

ratio close to 1:2 104
L 1 2-
Two limit circles with different total phases .
and thermally induced transitions between them 1 JJW AN
Y i Y

t+nm/l) 7 ] i % i E : | E

s(1)=Q, x“(1")y(t" )cos(4Q ot )dt’ [INR R ER . A
t—nw/{) I Lo

150 200 250

FIG. 2. s(r) (see the expression (4)) for the same parameters as in Fig. 1. The sections corresponding to phase
synchronization (limit cycles) are designated by I, and the sections corresponding to fast transitions between
limit cycles are designated by II.



Misfit dislocations

One-dimensional dislocations. Interface of different semiconductors (e.g. PbTe/PbSe)
I. Static theory Ezqqzz:z .

1

By F. C. FRANK AND J. H. VAN DER MERWE = B
H. H. Wills Physical Laboratory, University of Bristol 1 !

i)

mim]m
JC

(Communicated by N. F. Mott, F.R.S.—Received 22 December 1948—
Revised 25 March 1949—Read 19 May 1949)

N-1 N-1
W=3%u “Zo (X1 —Tp+a—b)2+3W u§0 (1 —cos 2mz,[a)

. . . Tang & Fu, Nature Phys. 10, 964 (2014
Energy of interlayer interaction (second term) wants s : 201

that interatomic distances are equal but then one pays
for the energy of elastic deformation (the first term)

Very roughly: When W > u(b — a)? then two layers will be mostly commensurate, and the whole
misfit will be concentrated via narrow ‘solitons’; and in the opposite limit the system will not even try
To reach synchronization of periods, that is, commensurability

Commensurate — incommensurate transition is expected!



Commensurate-incommensurate
transition

C
Commensurate-incommensurate transition in
graphene on hexagonal boron nitride

C.R. Woods, L. Britnell', A. Eckmann?, R. S. Ma®, J. C. Lu?, H. M. Guc®, X. Lin® G. L. Yu',
Y. Cao?, R. V. Gorbachev?, A. V. Kretinin', J. Park®, L. A. Ponomarenka', M. I. Katsnelson®,
Yu. N. Gornostyrev’, K. Watanabe®, T. Taniguchi®, C. Casiraghi?, H-). Gao®, A. K. Geim*

1%
Ll il NATURE PHYSICS Dol:101038/NPHYS2954

When misorientation angle (in radians) is
smaller with misfit, synchronization happens

Moire patterns with periodicity 8 nm (left) and

Atomistic simulations

PRL 113, 135504 (2014) PHYSICAL REVIEW LETTERS e g

26 SEPTEMBER 2014 200
Moiré Patterns as a Probe of Interplanar Interactions for Graphene on h-BN =
M. M. van Wijk, A. Schuring. M. I. Katsnelson, and A. Fasolino™ > 100
. . . . Y
Distribution of bond length in
commensurate (left) and

incommensurate (right) regimes

1.40 A
1.395 A
1
a 4 1.40A
E 413954
L n n 1 1 " n n 1
0 100 200
x (R)
(a)

14 nm (right)

y (A)

200
| 1.40 A
100 -
1.395 A
0 L
F T T q
23 4 1.40A
e 313954
C 1 L s
0 100 200
x (A)



Consequences for electronic structure

PHYSICAL REVIEW B 84, 195414 (2011) O i ’
A ,L
Adhesion and electronic structure of graphene on hexagonal boron nitride substrates ( a) 8 vg D)
‘ , v
B. Sachs,"” T. O. Wehling,":" M. L. Katsnelson,” and A. L. Lichtenstein' 1 . . m

Relaxed structure (B green, C yellow, N red) (b) : ."G! . L ; 'i, \g..?‘v!;:o‘ -

V corresponds to the minimal energy (max.

cohesion) :‘-g; |

I VI V IV lll 11 I
0
(c) IV 11 11 I VI V IV
Eg{meV) . ‘ = 002
O +62 ,;
@ +66 S 004}
B +70 ?_:,
B +75 >
B +79 Z -0.06 -
W +83 5
s
S -0.08

s a5 4 45 5
distance d in A
B on the top of C, N in the middle of hexagon
Sublattices are no more equivalent — locally
‘ energy gap is open (mass term in Dirac eq.)
|

11



PRL 115, 186801 (2015)

Consequences for electronic structure |

PHYSICAL REVIEW LETTERS

week ending

30 OCTOBER 2015

DOS (1/1)

Effect of Structural Relaxation on the Electronic Structure
of Graphene on Hexagonal Boron Nitride

G.J. Slotman,' M. M. van Wijk.l Pei-Liang Zhao,> A. Fasolino,' M. I. Katsnelson," and Shengjun Yuan"
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FIG. 1 (color online).

right, the on-site potential » and the hopping parameters ;. 5, and 3. The color bars are in units of r = 2.7 eV.
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Very strong effect of atomic relaxation!

Atomic relaxation in commensurate phase
modulates the Hamiltonian parameters

=
o
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The moditied TB parameters for a relaxed sample of graphene on hBN with ¢ = 0° (1 = 13.8 nm)
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Consequences for electronic transport

10K
In commensurate phase average gap is non zero, o )
and system can be insulating R
50K a
60K -
70K
5 80K 2r
For incommensurate phase, the average gap is zero, 2 0K
. - 100 K
and there are electron states along zero-mass lines v \ I
Tudorovskiy & MIK, PRB 86, 045419 (2012) ’j/\anmmn
Straight zero-mass line (y =0):  H = o, p, + o, py + o,m(y) 0! . 1
n(x10"em=2)
1 P 1 1
W =P y(y) 1=z ( } ) n + 7 ( 11 ) ;;3 Woods et al, Nature Phys. 10, 451 (2014)
2 2\ 7

Linear-dispersion mode exists with

m =20

E = — Px y
n2(y) = exp [— / d}"'m(}")]
0



Consequences for electronic transport |l

This mode survives if the line is curved:

(x.,y}=R(®) |R(7) =1
{x,v} =R(7) + &n(7)

oR'(1)

H = . ék(r)ﬁr - :'crn(r)g + o,m

ikon(t) ioR'(t)éEK (1)

2l —Ek(T)]  2[1 — Ek(D)?

£ 1s curvature

Tunneling between two lines:
Probability 1s proportional to

exp [—f Im(}‘)ld}‘]




Consequences for electronic transport Il

Model of percolation along zero-mass lines

Valid if the distance between lines is larger than typical 4/»v and tunneling is negligible

week ending
PRL 113, 096801 (2014) PHYSICAL REVIEW LETTERS 29 AUGUST 2014

Metal-Insulator Transition in Graphene on Boron Nitride

M. Titov and M. I. Katsnelson

2e?

Landauer formula G = 7 <N line>

3L,
Exact result for 2D percolation (Cardy) (Nyy.) = gL_
}J

Exact minimal conductivity e’
. . o= \/§ —
in percolation model h

exp (In(Ly/L)) = c(L/E)4, & =3¢/2

(Vi) = L2 [— =1/ 2)2],

2L

where p, = ¢(&'/L)** with ¢ ~ 0.7 (see Fig. 3).

2L(Niinc)/(WV/3)

Fractal properties of percolation
cluster

044 046 048 0.5 052 054 0.56



Optical second-harmonic generation

In commensurate phase inversion symmetry in broken due to nonequivalence of sublattices —
second-harmonic generation (SHG) 1s allowed by symmetry

PHYSICAL REVIEW B 99, 165432 (2019)

Electron-hole symmetry should be also

Resonant optical second harmonic generation in graphene-based heterostructures bekal N either ﬁnal dOplﬂg or NNN
M. Vandelli,"* M. I. Katsnelson,"* and E. A. Stepanov'+* h : )
opping 7
10 ] . . e (R
:x H,-j[A]zH;jexp —l—f A(r,t)-dr
) C JR;
i
SN i
I I . . . . . .
sl , Contributions to nonlinear optical conductivity
% (1| band e 0-02
E : : width VAR ~0.02 / gap
L1 ~0.06 .
L1 K ]
r M K r

FIG. 1. Dispersion relation of graphene with (solid line) and
without (dashed line) account for the next-nearest-neighbor hopping
process 1’. Red arrows show optical resonances at the bandwidth
(I" point), van Hove singularity (M point), and band gap (K point).

t=-28¢eV.t'=—0.1tr m=30meV




Optical second-harmonic generation

Analytic expressions
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FIG. 3. The absolute value of 7, (w) for hBN (black line),

1 Gr/SiC (green line), and Gr/hBN (red line) at low (left) and high
1 (right) frequency . The data for Gr/SiC on the right panel is
| multiplied by a factor of 5 and data for Gr/hBN is multiplied by
15 x (mgyysic/marmen ). The data on the left panel 1s shown without
| the multiplication. Labels “1,” “2.” and “3” depict resonances on the
1 band gap, van Hove singularity, and the bandwidth, respectively. The
| frequency w of the applied light is given in units of eV.

0 —
6x101 - B=4T FIG. 5. The absolute value of 7,,,(w) (in a.u.) as the function of
: i JL | the frequency of the applied light @ (in eV) for the case of Gr/SiC
0 = — —A—a——2~ under the effect of the magnetic field B=1T,2T,4T, and 6 T.
S0’ pe - Colors serve as guides to the eye and depict resonances on the same
. . ,JKL ) Landau levels at different values of the magnetic field.
6x10" = B=1T




Optical SHG IV

a

Direct Observation of Incommensurate—Commensurate Transition
in Graphene-hBN Heterostructures via Optical Second Harmonic
Generation

E. A. Stepanov,‘*":' S. V. Semin,” C. R. Woods, M. Vandelli, A. V. Kimel, K. S. Novoselov,
and M. 1. Katsnelson

Cite This: ACS Appl. Mater. Interfaces 2020, 12, 27758-27764 I:I Read Online

< b —incommensurate
= phase, only hBN signal
is visible;

Figure 1. Sketch of the experiment. Green and yellow hexagonal tiles
represent hBN and graphene, respectively. Red arrows depict the
incident 800 nm light. Blue arrows indicate the SHG response
collected at 400 nm from different parts of the sample. (a) In the
incommensurate phase, the inversion symmetry of graphene is not
broken, and the uniform signal of the SHG comes only from the hBN.
(b) After the structural phase transition to the commensurate state,
strong modification of the SHG response is observed from the
graphene area, where the inversion symmetry breaking is induced by
the aligned hBN substrate.

d — commensurate, one
can see graphene
Commensurate — incommensurate transition was induced by
ieating and clearly detected via SHG
<
=



Graphene on graphite

Relaxation of moiré patterns for slightly misaligned identical lattices:
graphene on graphite 2D Mater. 2 (2015) 034010

M M van Wijk, A Schuring, M I Katsnelson and A Fasolino

Atomistic simulations: graphene
on graphite
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Figure 2. The effects of relaxation are shown for a sample with (n, m) = (82,1),0=1.2°and a,,= 115.3 A. (a) The sample prior to
relaxation, (b) the sample after relaxation. Notice the shrinking of the AA stacked area. (c¢) The displacements of the atoms as the result

of relaxation for asample (n,m) =(17,1),0=5.7°and a,, = 24.5 A. The colour indicates size and the arrow the direction of the
displacements.
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Figure 4. Bond lengths of relaxed configurations for samples where the graphene layer is relaxed in all directions. The supercell is
shown in black. The bottom panels show the bond length along the dashed diagonal line. (a) =2.1°, (n,m) = (47,1), a,, = 66.4 A. (b)
0=1.2° (n,m)=(82,1), a,, = 115.3 A. (c) =0.46°, (n, m) = (216,1), a,, =302.6 A.

35A

35A
3.4A

@ 6=21° (b) 6 =1.2° () 6 =0.46°

Figure 6. Out-of-plane distance for samples where the graphene layer is relaxed in all dimensions. The bottom panels show the out-of-
plane distance along the dashed diagonalline. (a) 0 =2.1° (n,m) = (47,1), a,, = 66.4 A.(b)O=1.2°(n,m)=(82,1), a,, = 1153 A.
(c) 0=0.46° (n,m) = (216,1), a,, = 302.6 A.




Twisted bilayer graphene

1
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Figure 8. Out-of-plane distance for double layer graphene. The bottom four panels show zalong the dashed line in the top figure. The
dashed lines show the z for graphene on graphite as in figure 6.

There is a modulation at small angles and some analog of “incommensurability”
(small modulations) at larger angles



Description in terms of dislocations

PHYSICAL REVIEW B 102, 085428 (2020)

Origin of the vortex displacement field in twisted bilayer graphene

Yu. N. Gornostyrev ©!

<

2 and M. 1. Katsnelson®*?

X

<

B
<

-
<
<
.

FIG. 1. The schematic representation of the dislocation network
used to describe the twist boundary. (a) Network of screw disloca-
tions. (b) Reconstructed network of dislocations. Vectors 1-3 indi-
cate the directions of dislocation lines. The moiré cell is highlighted

by a yellow tetragon.

To reproduce vortex structure one can
try three families of screw dislocations

Displacement field from individual
dislocation is given by analytic formula
(Frenkel — Kontorova model)

_ 0
uy(x) = g Z {arctan [exp ()L — l"g_ 5/2)i|

i

[ ()c —x! +5/2)“
-+ arctan exp S y

O dislocation core splitting

o 1s the shear modulus
o~ ubly * |
y 1s the stacking fault energy



Description in terms of dislocations Il
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FIG. 3. Displacement u,(r) shown as a vector field for (a) narrow and (c), (d) split dislocation cores (6 = 0.4d). and (e) for the
reconstructed dislocation network. (c¢) and (d) display screw and edge components of the displacement field, respectively, in the case of

split dislocation. (b) and (f) present the distribution of the strain energy density determined by Eq. (9) for cases (a) and (e), respectively. The
value & is equal 0.05d in cases (a)—(c) and 0.15d in cases (e) and (f). Distances along the X, ¥ axes are given in units of L/3/2, where L is

the separation between the moiré coincidence points.
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e I

ok

Pseudomagnetic fields
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FIG. 5. Distribution of PMF calculated by using Eqgs. (10) and (11) for the network of narrow dislocations shown in Fig. 3(a) (left) and for
the reconstructed dislocation network shown in Fig. 3(e) (right). Distances along the X, ¥ axes are given in units of L/3/2, where L is the
separation between the moiré coincidence points.

There is an analytic formula for pseudomagnetic field, quite cumbersome but explicit

Description in terms of vortices is consistent with that in terms of dislocations

For graphene at h BN one needs to add three families of edge dislocations, due to lattice misfit




Large-scale TB simulations plus
experiment

Large-area, periodic, and tunable intrinsic
pseudo-magnetic fields in low-angle twisted

bilayer graphene NATURE COMMUNICATIONS | (2020)11:371

Haohao Shi'2®, Zhen Zhan® 3, Zhikai Qi4, Kaixiang Huang 3 Edo van Veen®, Jose Angel Silva-Guillén® 3, Atomic relaxation
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Large-scale TB simulations plus
experiment
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Fig. 2 Pseudo-Landau levels in the deformed twisted bilayer graphene with 6 = 0.48°. a Linear fit of the equation £y o< v/N(N — 1) and the obtained
pseudo magnetic fields is about 9 T. b Calculated LDOS at AA region under the external magnetic fields, in which we can confirm the splittings of the
pseudo-Landau level due to the break of the valley degeneracy.

o [ ] L] L 0.48°
ol -—2nm——
AA/AB Fig. 5 The fitted pseudo-magnetic field of TBGs with different twisted
°F e 2nm—e9 . —— angles around the region of AA/AB transtion. The obtained PMFs
3 increase with the decreasing twisted angles and the PMF areas are

s _ distributed near the AA regions with its maximum value occuring at the
AA/AB transitions, which is highly consistent with our calculated results.
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Quasicrystals

3 2 .2

Untrelaxed moire pattern is periodic if cos f = (]2 P2 with integer p and ¢
3~ +p

6 = 3(0° incommensurate (quasicrystal) structure

Contrary to conventional 3D quasicrystals graphene quasicrystals are easily tunable!

For so large misorientation angle atomic relaxation is negligible and we are always in
incommensurate phase

Dodecagonal bilayer graphene quasicrystal and its

. npj Computational Materials (2019)5:122
approximants

Guodong Yu(®'?3, Zewen Wu(®'?, Zhen Zhan', Mikhail I. Katsnelson? and Shengjun Yuan (&'

PHYSICAL REVIEW B 102, 045113 (2020) PHYSICAL REVIEW B 102, 115123 (2020)

Pressure and electric field dependence of quasicrystalline electronic states

in 30° twisted bilayer graphene Electronic structure of 30° twisted double bilayer graphene

1.2

Guodong Yu®, Mikhail 1. Katsnelson.” and Shengjun Yuan

12,7 Guodong Yu®,> Zewen Wu®,' Zhen Zhan,' Mikhail I. Katsnelson,” and Shengjun Yuan®!>"



Quasicrys

tals Il

Using approximants to calculate electronic structure;
elementary cell is huge but doable via tight-binding propagation

method
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Bright features appear only far enough from
the conical point




Quasicrystals Il
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Conclusions

- Atomic relaxation 1s very important for small enough misorientation angles

- Twisted VAW heterostructures are model systems to study physics of

commensurability and incommensurability in condensed matter

- Description in terms of vortices, dislocations and other topological effects may be

very suitable

- Second-harmonic generation can be a sensitive experimental tool to study commensurate-
incommensurate transition



