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Complexity

Schrédinger: life substance is “aperiodic crystal” (modern formulation — Laughlin,
Pines and others — glass)

Intuitive feeling: crystals are simple, biological structures are complex

Origin and evolution of life: origin of complexity?



Complexity (“patterns”) in inorganic world
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Do we understand this? No, ot, at least, not completely



Magnetic patterns

Example: strip domains in thin ferromagnetic films
PHYSICAL REVIEW B 69, 064411 (2004)

Magnetization and domain structure of bee Feg;Ni,o/ Co (001) superlattices

R. Brucas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjorvarsson
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FIG. 2. The MFM 1images of the 420 nm thick FegNijq/Co superlattice at different externally applied in-plane magnetic fields:

(a)—virgin (nomnaguetized) state; (b). (c), (d)—increasing field 8.3, 30, and 50 mT; (e), (f). (g)—decreasing field 50, 30, 8.3 mT: (h)—in
remanent state.
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Magnetic patterns 11

Europhys. Lett., 73 (1), pp. 104-109 (2006)
DOI: 10.1209/epl1/i2005-10367-8

Topological defects, pattern evolution, and hysteresis
in thin magnetic films

P. A. PrupDkovskii!, A. N. RuBtsov! and M. I. KATSNELSON?2

H= (%) + %

+Q [ [m.(r) (Ir ] \/dgﬂlr_r,)Q)mz(r’)dzrdg'r’.

2
(a_m) — 5m2 — hmy) d?r +

Competition of exchange interactions (want homogeneous
ferromagnetic state) and magnetic dipole-dipole interations
(want total magnetization equal to zero)



Magnetic patterns 111

Classical Monte Carlo simulations

Fig. 2 — Snapshots of the stripe-domain system with the two-component order parameter at several
points of the hysteresis loop for 3 = 1. The magnetic field is h = 0, h = 0.3, and h = 0.6, from left
to right. The inset shows the color legend for the orientation of local magnetization.

We know the Hamiltonian and it is not very complicated

How to describe patterns and how to explain patterns?



What is complexity?

 Something that we immediately recognize when we
see it, but very hard to define quantitatively

“I know it when | see it” (US Supreme Court Justice Potter
Stewart, on obscenity)

e S. Lloyd, “Measures of complexity: a non-exhaustive
list” — 40 different definitions

* Can be roughly divided into two categories:
- computational/descriptive complexities (“ultraviolet”)
- effective/physical complexities (“infrared” or inter-scale)



Our definition: Multiscale structural complexity

Multi-scale structural complexity of natural
patterns PNAS 117, 30241 (2020)

Andrey A. Bagrov®™12, llia A. lakovlev™?, Askar A. lliasov®, Mikhail I. Katsnelson®", and Vladimir V. Mazurenko®

The idea: Complexity is dissimilarity at various scales

f(z) multidimensional pattern fa(z) its coarse-grained version

Complexity is related to distances between fa(z) and faaa(z)

1 A (f(@)lg(2)) = [p dzf(x)g(x)
5 ((fa(@)|fa(z)) + (fa+an(@)[fa+da(z))) | =
21 C= ZdAAA /|(%|% |dA, as dA — 0

51{fa+an (@) = fa(2)| fa+an(z) = Fal2));



Multiscale structural complexity 11

Solution of ink drop in water: Magnetic patterns
Entropy should grow but complexity is not = 5 _ 78,8, —DY S, x S| - ¥ BS:
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FIG. 7. The evolution of the complexity during the process
of dissolving a food dye drop of 0.3 ml in water at 31°C. FIG. 4. (a) Magnetic field dependence of the complexity ob-
tained from the simulations with spin Hamiltonian containing
. . . . DM interaction with J = 1, |D| =1, T' = 0.02. The error bars
And many Other appllcatlons lnC1ud1ng are smaller than the symbol size. (b) Complexity derivative

we used for accurate detection of the phases boundaries.

biology and psychology
Nucleic Acids Research, 2024, 52, 11045-11059 CTH - Derivative detects Changes Of regime

https://doi.org/10.1093/nar/gkae745
Advance access publication date: 28 August 2024
Genomics

Long range segmentation of prokaryotic genomes by gene
age and functionality

Yuri I. Wolf©7, llya V. Schurov ©2, Kira S. Makarova ©', Mikhail I. Katsnelson ©2 and
Eugene V. Koonin ©1-*



Certification of quantum states

Certification of quantum states with hidden structure of their
bitstrings npj Quantum Information (2022)8:41

O. M. Sotnikov ‘, I. A. lakovlev ], A. A. IIiasovZ, M. . Katsnelson 2, A. A. Bagrov %3 and V. V. Mazurenko (3
a Quantum circuit b ] o d Renormalization
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o) — u, ( _ \ overlaps
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Fig. 1 Protocol for computing dissimilarity of a quantum state. a First, one prepares a state on a quantum device and chooses the
measurement basis by applying rotational gates U, to individual qubits. b In this paper, we work with ¢® and random bases whose Bloch
sphere representations are shown in the picture. We say that the set of measurements is performed in a random basis if, for each shot of
measurement, a random vector belonging to the highlighted sector of the Bloch sphere is uniformly sampled and the corresponding
parameters of gate Uy are applied. ¢ A number of measurements is performed and their outcomes — bitstrings of length N — are then stacked
together in a one-dimensional binary array of length N x N1 that serves as a classical representation of the quantum state. d The array is
coarse-grained in several steps (indexed with k). Different schemes can be employed, but here we use plain averaging with fixed filter size A.
In the picture, blue and white squares in the top line correspond to ‘0" and ‘1’ bits in the array shown in (c), and black rectangles depict the
blocks where averaging occurs at every step of coarse-graining. Overlap-based dissimilarities Dy between subsequent arrays are computed
and summed up to the overall dissimilarity D. See Methods section for more details.

First make at least two complementary measurements, then analyze
the measurement results (relation to Boht’s complementarity principle)



Certification of quantum states Il

Two-dimensional map can be used to characterize the type of quantum
states
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Fig. 10 Dissimilarity map. Low-dimensional representation of the
16-qubit quantum states studied in this work with respect to their
dissimilarity calculated in 0 and random bases. ¥, ¥, WHaar denote
the trivial [0)“Y, the singlet and the random quantum states,
respectively.



Certification of quantum states I/

One can characterize a type of quantum states and, again, find
(quantum) critical point

Ising in transverse field H=1J). S,Z Sf +h). ST
if i

1D chain; quantum critical point at h. = 0.5|/|

a 05 F

LE B ™

-

‘-'
.s

045 zbasis TTt.,

04 -

D 035 - random basis

[} |
03 il
.l
I.-
025 = imy
] lllll.llllll

02 1 1 1 1

0.2 0.4 0.6 0.8



Certification of quantum states IV

The way to detect topological phases — I8 498 855
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Competing interactions and self-induced spin
olasses

Special class of patterns: “chaotic” patterns

Hypothesis: a system wants to be
modulated but cannot decide in which

PHYSICAL REVIEW B 69, 064411 (2004) . .
direction

I’T:‘\‘\"’“A'"::..Jl: !-l:’

i
1
lr—r'| V(r—r')*+D?

TN
1—e P
§ :2772 mgi _gq , (13)
q q

E,= J J drdr'm(r)m(r'")

" : : : :
0 .3 where mg is a two-dimensional Fourier component of the
Y magnetization density. At the same time, the exchange en-
h ergy can be written as
' 1 R |
) Ee_xch—gan g mgn _g., (14)
1
1m so there is a finite value of the wave vector ¢g=¢* found

from the condition

d|, 1—e™® 1 . 15
Elbﬂ 7 +5(lq = (15)




Selt-induced spin glasses 11

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

PHYSICAL REVIEW B 93, 054410 (2016)

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject

Stripe glasses in ferromagnetic thin films to Long-Rense Interactions

. . ek - - A QQs et 1 a1 atenels
Alessandro Prmc1p1 and Mikhail I. Katsnelson Alessandro Principi and Mikhail I. Katsnelson

Development of idea of stripe glass, J. Schmalian and P. G. Wolynes, PRL 2000

Glass: a system with an energy landscape characterizing by
infinitely many local minima, with a broad distribution of batriets,
relaxation at “any” time scale and aging (at thermal cycling you
never go back to exactly the same state)
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Picture from P. Charbonneau et al,

DOI: 10.1038/ncomms4725

Intermediate state between
equilibrium and non-equilibrium,

opportunity for history and
memory (“stamp collection”)




Self-induced spin glasses 111

One of the ways to describe: R. Monasson, PRL 75, 2847 (1995)

Hylm,Al = Hlm,A] + g ] dr[m(r) — ¥ ()]

The second term describes attraction of our physical field m(r)

to some external field ¥ (r)

If the system an be glued, with infinitely small interaction g, to macroscopically
large number of configurations it should be considered as a glass

Then we calculate F, = f ,I?z)ng[gz:; g‘” and see whether the limits

Fog =limy_ oo lim, 0 F, and F=lm, olimy_, F, are different

No disorder is needed (contrary to

If yes, this is self-induced glass .. ) )
traditional view on spin glasses)



Self-induced spin glasses IV

PHYSICAL REVIEW B 93, 054410 (2016) Hm,\] = /dr{J[a,-mj(r)F _ sz(r) —2h(r) - m(r))

Stripe glasses in ferromagnetic thin films

+g/drdr'm:(r)
2

Alessandro Principi”* and Mikhail I. Katsnelson

I 1 ,
) [Ir T i = ,-f|2]'":(’ :
4 / dr((r)m(r) — 11). (1)

Self-consistent screening approximation for spin propagators
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Glassiness without disordet?
Giorgio Parisi, Nobel Prize in physics 2021 e ————

"for the discovery of the interplay of disorder
and fluctuations in physical systems from atomic
to planetary scales."

Actually, disorder may be not needed, frustrations are enough
(self-induced spin glass state in Nd)

Can we have something more or less exactly solvabler! — Yes!

PHYSICAL REVIEW B 109, 144414 (2024)

Frustrated magnets in the limit of infinite dimensions: Dynamics and disorder-free glass transition

Achille Mauri®" and Mikhail L. Katsnelson®”
Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

M (Received 16 November 2023; accepted 27 March 2024; published 18 April 2024)

The prototype theory: dynamical mean-field theory (DMFT) for strongly
correlated systems (Metzner, Vollhardt, Georges, Kotliar and others)



(Glassiness in infinite dimensions

Frustrations are necessary H = —— Z J&’j S“S + Z V
§2 = SeSe =1 .

The limit of large dimensionality 4 ./ f.'ﬁ — [ f af (E / \/ Qdﬂ e.g.

fol(a) = I3 I e 0 a4 It means
a3

I = Jé”ﬁéij + l—,—fq:j + 2 Z Liklrj
2d 2d k

L]

Cirtit :
12 Z tkbkl l'm mj
4d k.l,m

The simplest frustrated model: fmj (E) = 505-5]?(6) f(E) = J(€2 — 1)

Mean-field ordering temperature tends to zero at ([ — o¢© in this model



Glassiness in infinite dimensions 11

Cavity construction and mapping on effective single impurity

Purely dissipative Langevin dynamics Si = —5; x (S; x (N; +v;))
= N; +v; —Si(S; - (N; + 1))
oH

B B L a3 o3 N o
Ni=—5g =bi+F b = > . Ji7S; Fe(S) = —av(s,) /oS,

W () () = 2kpT6“56;.6(t —t')

J

Exactly mapped to a single-impurity dynamics with nonlocal in time “memory function”

Edwards-Anderson criterion of glassiness (local spin-spin correlation function tends
to nonzero value in the limit of infinite time difference)

3qea(T) = limp_y |00 (S(1)S7(t))



Glassiness in infinite dimensions 111

Isotropic model f(E) — .](52 — 1)

nonzero below the glass transition temperature

T, = 0.0103|J|/kp

First-order transition dEA (Tg) ~ (.2575

1.0 -
0.8 -\

0.0 1 I 1 1
0.0000 0.0025 0.0050 0.0075 0.0100

ken /||

Glassiness without disorder is
theoretically possible!



Experimental observation of self-induced spin
olass state: elemental Nd

Self-induced spin glass state in elemental
and crystalline neodymium

Umut Kamber, Anders Bergman, Andreas Eich, Diana lusan, Manuel Steinbrecher,
Nadine Hauptmann, Lars Nordstrom, Mikhail I. Katsnelson, Daniel Wegner*,
Olle Eriksson, Alexander A. Khajetoorians*

Science 368, 966 (2020)

Spin-polarized STM experiment, Radboud University
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Magnetic structure: local correlations
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The most important observation: aging. At thermocycling (or

cyling magnetic field) the magnetic state i1s not exactly reproduced

26
4/28/25




Ab initio: magnetic interactions in bulk Nd

Method: magnetic force theorem (Lichtenstein, Katsnelson, Antropov, Gubanov
JMMM 1987)
Calculations: Uppsala team (Olle Eriksson group)

a hcp
06 m] dth cubic
% dhcp hexagonal
047
>
£ 0.2
= %X
Z ota o g o 8 %F gy
a o
0.2},
1 3

r.la
]

* Dhcp structure drives competing AFM interactions

A\
]

* Frustrated magnetism Lo



ADb initio bulk Nd: energy landscape

 E£(Q) landscape features flat valleys along high
symmetry directions

See A. Principi, M.I. Katsnelson, PRB/PRL 28
(2016)/(2017) 4/28/25
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Spin-glass state in Nd: spin dynamics

1.0
0 Atomistic spin dynamics
. simulations
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3 —tw=020 pS
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To compare: the same for prototype
disordered spin-glass Cu-Mn

B. Skubic et al, PRB 79, 024411 (2009)



Order from disorder

Thermally induced magnetic order from

glassiness in elemental neodymium NATURE PHYSICS | VOL 18 | AUGUST 2022 | 905-911

Benjamin Verlhac!, Lorena Niggli©®", Anders Bergman?, Umut Kamber®’, Andrey Bagrov'?,
Diana lusan? Lars Nordstrém ©2, Mikhail I. Katsnelson®', Daniel Wegner®?, Olle Eriksson*?
and Alexander A. Khajetoorians ©®'X

Glassy state at low T
and long-range order
at T increase

Diamond
g »

Q
3

Figure 2: Emergence of long-range multi-Q order from the spin-Q glass state at elevated

temperature. a,b. Magnetization images of the same region at 7= 5.1 Kand 11 K, respectively (k=
100 pA, a-b, scale bar: 50 nm). ¢,d. Corresponding Q-space images (scale bars: 3 nm™), illustrating

the changes from strong local (i.e. lack of long-range) Q order toward multiple large-scale domains

with well-defined long-range multi-Q order. e,f. Zoom-in images of the diamond-like (e) and stripe-like T _ 51< (a)c) * Spln glas S
(f) patterns (scale bar: 5 nm). The locations of these images is shown by the white squares in b. g,h. JE— d . :
T=11K(b,d): (noncollinear) AFM

Display of multi-Q state maps of the two apparent domains in the multi-Q ordered phase, where (g)



Order from disorder Il

11K
05 " . ) .
f Multi-Q 3 Multi-Q
order 0.04 order

o 0.03}

0.02

T (K)

Phase transition at approx. 8K (seen via “complexity”
measures) — right one is our multiscale structural
complexity!



Frustrations and complexity: Quantum case

Generalization properties of neural network - | (20200111593
approximations to frustrated magnet ground states

Tom Westerhout'™, Nikita Astrakhantsev234* Konstantin S. Tikhonov® >67% Mikhail |. Katsnelson"8 &

Andrey A. Bagrov'8°™

How to find true ground state of the quantum system?

In general, a very complicated problem (difficult to solve even for
quantum computer!)

Idea: use of variational approach and train neural network to find
“the best” trial function (G. Carleo and M. Troyer, Science 355, 602 (2017))

K K
Yos) = D_wilS) = D _slwillS)
i=1 i=1
Generalization problem: to train NN for relatively small basis (K

much smaller than total dim. of quantum space) and find good
approximation to the true ground state



Frustrations and complexity: Quantum case 11

Quantum $=1/2 Hamiltonian H=], Z&a ®6,+/, Z G, ® 6,
NN and NNN interactions (ab) ({a,b))

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J;—J> model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; ¢ spatially anisotropic Kagome lattice. In all cases J> = 0 corresponds to the absence of
frustration.

. . . . 4 6
24 spins, dimensionality of Hilbert space d = C{; >~ 2.7 - 10

Still possible to calculate ground state exactly
Training for K =0.01 d (small trial set)



Frustrations and complexity: Quantum case 111

Square lattice Triangular lattice Kagome lattice
10 -- 4 0 e~ -~ g--r- FEfp--==cnocn== -u-4-o-o-gis
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a-c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J,/J; for square a,
triangular b, and Kagome c lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Note 1. Subfigures d-f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.



Frustrations and complexity: Quantum case IV

0d B g m e

e e

5 081 ‘. . It is sign structure
g v which is difficult to
o °
3 061 learn in frustrated
5 casel!l!
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0.2 3 Amplitudes ® E . .

P igns = ; Relation to sign
0.0 , , " lonngany, problem in QMC?!
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JSJ,

Fig. 4 Generalization of signs and amplitudes. We compare generalization
quality as measured by overlap for learning the sign structure (red circles)
and amplitude structure (green squares) for 24-site Kagome lattice for
two-layer dense architecture. Note that both curves decrease in the
frustrated region, but the sign structure is much harder to learn.

"Somehow it seems to fill my head with ideas —only I don't exactly know
what they are!” (Through the Looking-Glass, and What Alice Found There)



Further development

Many-body quantum sign structures as non-glassy Ising models
Tom Westerhout, Mikhail I. Katsnelson, Andrey A. Bagrov

Communications Physics volume 6, Article number: 275 (2023)

The idea: use machine learning to find amplitudes and then

map onto efficient Ising model
K

K
Was) = Z‘l’i|5i> = ZSiIWi”Si)
i—1

i=1

When amplitudes are known the trial ground state energy < W|H|¥ >

is a bilinear function of signs s;, and
we have Ising optimization problem in

- -
-
-

K-dimensional space; K is very big but ) p N
it turns out ;ﬁl% PR ./
that the model is not glassy and can be 0. :
optimized without too UL o
Real lattice  Hilbert space Ising model

serious problems


https://www.nature.com/commsphys

Further development 11

- 16-site Kagome lattice m—
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It turns out that even for initially
frustrated quantum spin models
the effective Ising model 1s not

frustrated, both couplings are small
and optimization is quite
efficient



Sign overlap

Further development I11

1
16—Si|te Kaglome laILttice |
09 + 16-site J;-J9 model
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The quality of optimization is quite
robust with respect to uncertainties
in amplitudes (overlap with the exact
ground state)



Analogies with biological evolution?

Toward a theory of evolution as multilevel learning
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Table 1.

Thermodynamics

Corresponding quantities in thermodynamics, machine learning, and evolutionary biology

Machine learning

Evolutionary biology

X Microscopic physical degrees of Variables describing training Variables describing environment
freedom dataset (nontrainable
variables)
q Generalized coordinates (e.g., Weight matrix and bias vector Trainable variables (genotype,
volume) (trainable variables) phenotype)
H(x,q) Energy Loss function Additive fitness,
H(x,q) = —Tlogf(q)
S(q) Entropy of physical system Entropy of nontrainable variables Entropy of biological system
uiq) Internal energy Average loss function Average additive fitness
Z(T,q) Partition function Partition function Macroscopic fitness
F(T,q) Helmholtz free energy Free energy Adaptive potential (macroscopic
additive fitness)
Q(T, u) Grand potential, Q, (7, .#) Grand potential Grand potential, Qy (T, i)
Tor7F Physical temperature, 7 Temperature Evolutionary temperature, T
1 or . # Chemical potential, .# Absent in conventional machine Evolutionary potential,
learning
Ne or N Number of molecules, N Number of neurons, N Effective population size, Ne
K Absent in conventional physics Number of trainable variables Number of adaptable variables

Energy landscape in physics is

similar to fitness landscape in biology
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Can the change of e.g. biological temperature switch fitness landscape
from a few well-defined peaks to a glassy-like with many directions of
possible evolution?

Australian Journal of Zoology
‘ v latrnirhao +he A T ‘ 1At http://dx.doi.org/10.1071/2013052
1d1. . - A 4 ( |

“Explosio . of Animals The evolution of morphogenetic fitness landscapes:
: conceptualising the interplay between the developmental

Charles R. Marshall and ecological drivers of morphological innovation
Annu. Rev. Earth Planet. Sci.
20006. 34:355-84 Charles R. Marshall

Cambrian Exposion as an analog of magnetic phase transitions
in neodymium?!

Well... for me (as a physicist) it is a good place to stop

MANY THANKS FOR YOUR
ATTENTION



