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As for |54], eqn | 53| has Hermite—Gauss solutions
E,(t) = H,(2nt /1, )exp{—(2nt/,)*/2}  [55]
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Since as a rule the gain barely exceeds the loss, this last
relation can be put into a more readable form as

[56]
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which represents the excess gain over the threshold

gain for continuous operation, needed to sustain a
mode-locked Hermite-Gauss pulse of order 7: higher
orders need more gain.

It can be seen that gain saturation leads to the
stability of lowest-order Gaussian pulse, and to the
instability of higher-order solutions. If just the right
net gain is supplied to excite the fundamental solu-
tion, higher-order ones do not have enough gain
to start. If the supplied gain is in excess so that
higher-order solutions can also start, the amplitude
of the lowest order quickly grows to the point that it
saturates the gain which settles it to its steady-state
value, switching off the higher-order solutions.

It is thus seen from [55] that the pulse is Gaussian
in shape; furthermore, from the first of [56] it is seen

Figure 10 Gain and losses in an actively mode-locked laser,
and its generated pulse train. The dotted line sets the net gain of
the laser for continuous operation, and the extra, modulated loss
are shown in full line above it. With periodicity of a round-trip time,
a temporal window is opened in which the net gain is positive, and
the pulses can go through, as shown in full line at the bottom.
Pulse duration not to scale with round-trip time in the figure.

that the pulsewidth has a power dependence on both
the modulation depth and the gain bandwidth.

Figure 10 illustrates qualitatively the interplay of
gain and losses in an actively mode-locked laser, and
its Gaussian envelope pulses.

See also: Nonlinear Optics; Optical Fibers; Optical Sum
Rules and Kramers—Kronig Relations; Photon Statistics
and Coherence Theory.
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Introduction

Crystal lattice dynamics 1s based on the concept of
phonons, that is, weakly interacting waves of atomic

{or ionic) vibrations and corresponding quasiparti-
cles (according to a corpuscular-wave dualism of
the quantum physics, any excitation wave in a sys-
tem can also be described as a particle). Due to
the smallness of typical atomic displacements,
in crystals in comparison with interatomic distances
d, one can pass rigorously from a problem of
strongly interacting “particles” forming the crystal
(atoms, 1ons, or molecules) to a problem of weakly
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interacting “quasiparticles” (phonons). In the leading
order in the smallness parameter y = #/d, the crystal
lattice dynamics and thermodynamics can be de-
scribed in terms of an ideal phonon gas (harmonic
approximation). For the ground state, the harmonic
approximation can be justified rigorously on the ba-
sis of the adiabatic {Born—Oppenheimer) approxi-
mation of quantum mechanics due to the smallness
of the ratio of the electron mass, # to the atomic {or
ionic) mass M. With the increase in temperature T,
the parameter 5 increases as well; however, due to a
semi-empirical Lindemann criterion n=~0.1 at the
melting point T = T,,;, higher-order contributions to
thermodynamic properties are usually small up to the
melting temperature. This statement is true for most
of the average characteristics. At the same time, for
some peculiar modes, the harmonic approximation
can be completely inadequate, especially in the vici-
nity of some structural transformations, such as
ferroelectric phase transitions or martensitic trans-
formations in metals (soft modes). It is not sufficient
also for quantum crystals, such as solid He” and Te®.
Even in a generic case, some phenomena can be un-
derstood only beyond the picture of the ideal phonon
gas, which means beyond the harmonic approxima-
tion. All these phenomena are called anharmonic.
There are anharmonic effects in the crystal lattice
thermodynamics (thermal expansion, temperature
dependences of clastic moduli, erc.), kinetics {pho-
nonphonon scattering processes which are responsi-
ble for the thermal conductivity of insulators), and
dynamics (phonon damping and temperature depen-
dences of the phonon frequencies measured by the
inelastic neutron scattering method).

Formulation of the Problem

In the adiabatic approximation, one can split the
quantum-mechanical problem of the crystal into an
electronic (a solution of the Schrodinger equation for
fixed coordinates of nuclei {r;}) and a nuclear one
which is the base of the theory of crystal lattice prop-
erties. Keeping in mind the smallness of the atomic
displacements 5 << 1, one can expand the energy of the
nuclei V({r;}) into the displacement vectors #;

ri — R;, R; being the equilibrillm lattice positions:
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where 2, are Cartesian indices and the linear term is
absent due to the equilibrium conditions. The har-
monic approximation corresponds to taking into ac-
count only the quadraric term in the expansion [1].
Then the nuclear Hamiltonian, which is the sum of
the potential energy V and the kinetic energy of nu-
clei, can be represented as a sum of the Hamiltonians
of independent oscillators (phonons) by the transfor-
mation

A igR
Zy ZM!N‘)(U, 1€ exp(igR;),

T b 3 [2]

where Ny is the number of unit cells in the crystal, M,
is the mass of the fth nucleus, A= g¢ are the phonon
quantum numbers (g is the wave vector running the
Brillouin zone and ¢ is the polarization index,
—4i— — g¢&), e; is the polarization vector, b, and b:f
are the annihilation and creation phonon operators.
In the phonon representation, the total Hamiltonian
of the crystal lattice has the form
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where Hy is the Hamiltonian of the ideal phonon gas
(the harmonic approximation} and the multiphonon
scattering matrix elements fl)l ) ., are proportional to
the kth derivatives of the putmml energy and the
factors \/h/2M;w;,. These matrix elements describe
the processes of phomm—phonun interaction, such as
a merging of two phonons into one or, vice versa, a
decay of a phonon into two (k = 3}, scattering of two
phonons into two new states (k =4), etc. The anhar-
monic effects connected with these interactions are
called self-anharmonic. There is also another kind of
anharmonic effect which is connected to the depend-
ence of the phonon frequencies w; on the interatomic
distances in the Hamiltonian Hy. These effects are
called quasiharmonic. They are characterized by the
microscopic (riineisen parameters
= —M (4]
d InQ e
where Q is the crystal volume. For noncubic crystals,
the dependence of m; on shear deformations should
also be considered. The point is that for harmonic
oscillators described by the quadratic porential energy
and, correspondingly, by linear interatomic forces,
the frequencies are not dependent either on the
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amplitudes of oscillations or on the equilibrium
positions. Due to nonlinear (anharmonic) effects,
there are renormalizations of the frequencies. Up to
the lowest order 17, one should take into account the
quasiharmonic effects and the self-anharmonic effects
with £ =3 and 4.

Thermodynamics
Thermal Expansion

Thermal expansion, characterized by the coefficient,
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(T is the temperature and p is the pressure) equals to
zero in harmonic approximation. This can be easily
proved from the Gibbs distribution for the potential
energy V, which is quadratic in the atomic displace-
ments #; (and, moreover, if it is just an arbitrary even
function of #;). It can be calculated by using the
known thermodynamic identity
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where § is the entropy; as a consequence, due to the
third law of thermodynamics, the thermal expansion
coefficient should vanish at T— 0. If one calculates
the entropy in harmonic approximation but with
the phonon frequencies dependent on the volume
(quasiharmonic approximation), one can derive
the Griineisen law
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where By = —Q(0p/0Q); is the isothermal bulk
modulus,
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is the macroscopic Griincisen parameter (which is
temperature independent assuming that 3, = const)
and Cy(T') = kg >, C, is the constant-volume lattice
heat capacity. It follows from eqn |7] that the tem-
perature dependence of the thermal expansion coef-
ficient at low and high temperatures 1s the same as
for the heat capacity: o, ~T3 at T<0p (0p is the
Debye temperature) and o, ~const at T'= 0.

For noncubic crystals, one should introduce pa-
rameters characterizing the anisotropy of the thermal

expansion % = du; /0T, where u, are different defor-
mations, for example, for uniaxial crystals with c-axis
different from a- and b-axes, one can introduce
du; = dInQ and du; = dln(c/a). As a generaliza-
tion of eqn [6], one can prove from the equilibrium
conditions at finite temperatures

5= E (5 9

where B;; = (1/Q) (0*F/du;ou;) is the matrix of iso-
thermal elastic moduli and F is the free energy. In
particular, for the uniaxial crystals
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where B = By, — B%,/B); is the bulk modulus of the
uniaxial crystal.

Temperature Dependence of Elastic Moduli

Temperature dependence of the elastic moduli Bj; is
another important anharmonic effect. This tempera-
ture dependence in quasiharmonic approximation
results from the ideal phonon gas contribution to the
free energy, F,, = —kgT ) ;In[2sinh(hw;/2ksT)),
and from the volume dependence of the electronic
contributions to the moduli. As a result, both terms
behave as éBjoc — T* at T«Op and 8B — T
at T=(p. Normally, this contribution is negative
{elastic moduli decrease with the temperature in-
crease), but for some shear moduli in peculiar cases
an opposite behavior sometimes takes place (acoustic
soft modes), usually near the structural phase tran-
sitions. Empirically, for many cubic crystals the
trigonal shear modulus B44 at the melting point is
55% of its value at zero temperature (Varshni mel-
ting criterion).

Lattice Heat Capacity at High Temperatures

[n harmonic approximation, the molar constant-
volume heat capacity at Tz 0, is independent of
both the temperature and the chemical composi-
tion of the crystal: Cy = 3R (Dulong—Petit law,
R~8.3144Jmol 'K ' is the gas constant). Self-
anharmonic effects lead to linear temperature depen-
dence of the heat capacity, 6Cy ~Ry*> ~R(kpT/Eon)
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where E.,, 1s a typical energy of the chemical
bonding. These terms arise from both three-phonon
and four-phonon processes (the second-order pertur-
bation effect in H* and the first-order one in H'*,
see eqn 3]k

Skngs, kg IIJ

c- 4!";—*T > 5

Tl B o naW:, kg

(—::}] —. —k%T Z k. — g [J .)]

2D
ot I ep g

The three-phonon contribution [11] is always po-
sitive (the growth of Cy with the increase in the
temperature), whereas the four-phonon one [12] can
be, in principle, of arbitrary sign. Experimental sep-
aration of the self-anharmonic contribution to the
lattice heat capacity is a difficult problem since it has,
in general, the same order of magnitude and tem-
perature dependence as the difference

Cp — Cy = TQB7a} [13]

(Cp is the experimentally measurable heat capacity at
a constant pressure) and, in metals, as the electron
heat capacity.

Phonon Spectra and Damping

Temperature Dependences of Phonon Frequencies

According to classical mechanics, for a generic non-
linear system, the oscillation frequencies are depend-
ent on the oscillation amplitudes. Therefore, one can
expect that anharmonic effects lead to the tempera-
ture-dependent phonon spectra, due to growth of
average oscillation amplitudes with the increase in
temperature. In quantum terms, the same effect
can be described as an appearance of the phonon
self-energy due to the phonon—phonon interaction
processes. Up to the second order in the smallness
parameter n, the temperature shift of the phonon
frequency @; 1s determined by the following ex-
pression:
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where Amh —1,AQ(T)/Q is the quasiharmonic
u)ntributlon due to the temperature d(pcndtnu of
the crystal volume Q(T), and AH and A‘ are the
contributions of the three- phon()n and four: phonon

processes, correspondingly:
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where # is the principal value symbol and N; =
(exp hw; [kyT — 1) ' is the Planck function. At high
temperatures Tz, one can use the classical as-
ymptotic N, ~kgT /hew,; and see that all three con-
tributions in eqn [14] are linear in remperature,
Usually, the phonon frequencies decrease with the
temperature increase; a typical behavior is shown in
Figure 1 (upper panel). However, for the soft modes,
daw, /dT =0, as it is illustrated by Figure 2. In the
framework of the perturbation thenre this behavior
is connected with the contribution A}

Phonon Damping

Beyond the harmonic approximation, the phonons
cannot be considered as stable quasiparticles; for ex-
ample, due to the three-phonon processes, they can
decay into couples of other phonons. As a result, the
phonon damping arises (which can be measured
experimentally as a half-width of phonon peaks in
inelastic neutron scattering spectra). In the lowest-
order perturbation theory, the damping, or the
inverse phonon lifetime, is equal to
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The delta functions in eqn [17] correspond to the
energy and momentum conservation laws for the de-
cay processes. At high temperatures T = Iy, the dam-
ping is linear in T (see Figure 1, lower panel). Nore
that, both the damping and the frequency shift do
not vanish at T" = 0 where all N; = 0. These residual
cffects are due to quantum zero-point oscillations;
they are of the order of /m/M and small, in general
(with the exception of the quantum crystals). For
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Figure 1 Temperature dependences of the frequency shifts
(upper panel) and phonon damping (lower panel) for different
phonon modes at the symmetric points of the Brillouin zone
for face-centered cubic (f.c.c) phase of calcium. ey =
{4nZe? /M) 2 is ionic plasma frequency, Z M, and €, are
the valency, ionic mass, and atomic volume, respectively, T, =
iy ks = 476 K is the corresponding temperature. Asterisks and
hearts label different phonon modes for L point, circles and
triangles for W point, and squares and diamonds for X point.
(From Katsnelson MI, Trefilov AV, Khlopkin MN, and Khromov
KYu (2001) Philosophical Magazine B 81: 1893.)

acoustic phonons with ¢—0, the damping [17] is
linear in g, as well as in the phonon frequency;
however, this is not true for the case gl <« 1, where [ is
the phonon mean free path. For this regime, accord-
ing to general hydrodynamics consideration, the
damping behaves like g°!.

For strongly anharmonic modes, the phonon dam-
ping can be comparable with the frequency; phonons
are not well-defined in such a situation (high-tem-
perature body-centered cubic (b.c.c) phases of Ti and
Zr can be considered as examples). The perturbation
theory reviewed here can also be insufficient under
resonance conditions, where the frequency ratio for
different phonons with the same wave vector is close
to 1:2, 1:3, etc.
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Figure 2 Temperature dependence of the phonon frequencies
of the T[Z:] phonon branch in (f.c.c) lanthanum in the soft mode

region. (From Stassis C, Smith GS, Harmon BN, Ho KM, and
Chen Y (1985) Physical Review B 31: 6298.)

Transport Properties

It one neglects phonon—phonon interactions as well
as phonon scattering by any defects (impurities, dif-
ferent isotopes, crystal surface, etc.) and by other
quasiparticles (conduction electrons in metals, spin
waves in magnetic crystals, etc.), the mean free path
{ = o which means, in particular, infinitely large
thermal conductivity x (any nonequilibrium distribu-
tion of the phonon momenta and energies conserves
for an ideal phonon gas). This means that for the case
of perfect, isotopically homogeneous, large enough
insulating crystals, the anharmonic effects should de-
termine the values and temperature dependences of
both [ and «; they are connected by a simple relation:

B | (-:ng
3 Q

K [18]
where 7 is a characteristic sound velocity. In principle,
the same processes of phonon decay which are re-
sponsible for I's contribute to the mean free path.
However, for a continuum medium theory, any proc-
ess of phonon—phonon interaction cannot lead to a
finite thermal conductivity, since the momentum is
conserved at any individual interaction act and any
redistribution of the momenta among the phonons
cannot change the energy current of the phonon gas
as a whole. In crystals, Umklapp processes are pos-
sible when the momentum is conserved with the
accuracy of some nonzero reciprocal lattice vector g,
and only these processes lead to the relaxation of the
energy current and to finite x. The energy conservat-
ion law for the Umklapp processes results in the
appearance of some finite activation energy so that
loc exp(const x 0p/T) at T—0. For the very small
temperatures, when the phonon mean free path is
larger than the crystal size L, one should replace I — L.
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in eqn [18] and thus xoc Cy o TP, For high temper-
atures T =0, one has koc o 1/T.

See also: Ferroelectricity; Lattice Dynamics: Aperiodic
Crystals; Lattice Dynamics: Structural Instability and Soft
Modes; Lattice Dynamics: Vibrational Modes; Thermo-
dynamic Properties, General.
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introduction

Crystals with aperiodic structure are solids with
long-range order (LRO) in the atomic positions but
no translational invariance of a unit cell position.
Their Fourier module consists of sharp diffraction
spots, proving their LRO, which includes a long-
range bond orientational order (BOO). The wave
vectors O of these diffraction spots can be repre-
sented by the sum over integer multiples of a number
of rationally independent basis vectors, k, which
span the Fourier module of the aperiodic crystal:

n

0 2: mik; [1]

7=1

In contrast to periodic crystals, where the number
of rationally independent basis vectors is equal to the
dimension of the crystal (and of its periodic recipro-
cal latrice), for aperiodic crystals n exceeds the di-
mension of the space, in which the crystal is
embedded. The minimal necessary number of inde-
pendent basis vectors defines the “rank” of the Four-
ier module, which is finite in the quasiperiodic case.
In a space of dimension 7 (the #-dim space), the
crystal structure, aperiodic in three-dimensional

(3D) Euclidean space, can be presented as a “peri-
odic” structure with a unit cell, which usually has a
relatively simple structure. Generally, the aperiodic
structure can be obtained by an appropriate inter-
section of the n-dim periodic structure with the
physical space, in which the aperiodic structure is
observed. For quasicrystals (QCs), this intersection
involves the intersection of the n-dim lattice with the
physical space, which has an “irrational” slope re-
lative to the orientation of the n-dim lattice. After a
small change of this slope to a rational value, this
intersection will lead to a crystal in physical space,
which is periodic, but locally has a structure similar
to the QCs. Such crystals are called “approximants”
{to the corresponding QCs), the dynamics of which
are discussed below as well.

[ncommensurably modulated crystals, incommen-
surate composites, and QCs all belong to the aperi-
odic crystals. However, in some of their fundamental
properties, they are different from each other. There-
fore, the restriction to one or the other of them is
mentioned explicitly as has just been done tor QCs.
Assuming that the physical (direct, external, or par-
allel) space, by which the n-dim space is intersected,
is 3D, the remaining (1 — 3)-dimensional subspace is
the “internal” or “perpendicular” (perp) space, which
in the case of an incommensurably modulated crystal
can be viewed as containing the information on the
phase of the modulation function with respect to
the original commensurate lattice, out of which
the incommensurate phase developed. In view of the



