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What I am doing as a materials scientist?

(1) Graphene and other 2D materials
(2) Theoretical and computational magnetism
(3) Electronic structure of strongly correlated materials

Also core-level spectroscopy, anharmonic lattice dynamics, phase
transformations in solids, rare earths, actinides, iron and steel. ..
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Graphene: Predicted and confirmed

Chiral tunnelling and the Klein paradox e,
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A philosophical statement

Knowledge begins, so to speak, in the
middle, and leads into the unknown -
both when moving upward, and when
there is a downward movement. Our
goal is to gradually dissipate the
darkness in both directions, and the
absolute foundation - this huge
elephant carrying on his mighty back
the tower of truth - it exists only in a
fairy tales (Hermann Weyl)




What does it mean for condensed
matter physics and materials science?

Everything follows from quantum mechanics
plus electrodynamics; QED is enough to explain
all properties of matter around us

YO0 —ieAy)Y +imyy = 0 where a=0,...,3
ny_ﬁ — Aﬁ,ae — Aa,ﬁ
aaFaﬁ — _47T€j[3

- . /
where 7, = WUy,.

That is all. Please tell me why iridium is brittle and platinum is
ductile, copper is red and silver is white, iron is ferromagnetic
and vanadium is not... Not talking on biochemistry and biophysics!



Quantum Hamiltonians: General

In condensed matter physics we know the basic laws, it is laws of quantum mechanics

Time-dependent Schrodinger equation (general)
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Quantum Hamiltonians: General Il

174
EJ allows to separate lattice and
M electron degrees of freedom

Common metallic crystal structures

Adiabatic approximation: small parameter Kk =

Crystals: periodic arrange of atoms \

In single-electron approximation: KJ

Bloch theorem and band structure

body-centred cubic (bec) face-centred cubic (fcc) hexagonal close-packed (hcp)

© 2011 Encyclopzedia Britannica, Inc.
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Quantum Hamiltonians: General Il

The problem with this description: it neglects interelectron interaction, and
the intercation is not small

Two limits: free atoms and bands of noninteracting electrons: the description is
dramatically different
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Quantum Hamiltonians: General IV

To be able to do anything quantitatively we need to map initial
quantum many body-problem in a crystal to an effective
single-particle problem in a crystal plus auxiliary simpler many-body
problem which can bve treated accurately
Auxiliary problem is homogeneous electron gas: Density Functional
Theory (DFT)

Auxiliary problem is an effective atom: Dynamical Mean-Field
Theory (DMFT)

Alternative approaches: GW, BSE... many words and formulas
Plus combinations
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Curiosity-driven research?

Physics is like sex: sure, it may give some practical
results, but that's not why we do it
R. P. Feynman
Nevertheless, we want practical results as well!

Materials for sustainability

- Optical properties (base for photonics, plasmonics, etc.);

- Magnetic properties (magnetocaloric materials, spintronics,
replacement of expensive rare-earth metals on permanets magnets);
- Strength and plasticity, electronic effects on structural and
thermodynamic lattice properties, phase diagrams of metals and

alloys;
- Demystification of metallurgical traditional prescriptions, physics
of steel;

- And much more



Optical properties of strongly correlated
systems

nature communications
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https://doi.org/10.1038/s41467-023-41314-6

A theory for colors of strongly correlated

electronic systems
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Accepted: 25 August 2023
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Many strongly correlated transition metal insulators are colored, even though
they have band gaps much larger than the highest energy photons from the
visible light. An adequate explanation for the color requires a theoretical
approach able to compute subgap excitons in periodic crystals, reliably and
without free parameters—a formidable challenge. The literature often fails to
disentangle two important factors: what makes excitons form and what makes
them optically bright. We pick two archetypal cases as examples: NiO with
green color and MnF, with pink color, and employ two kinds of ab initio many
body Green'’s function theories; the first, a perturbative theory based on low-
order extensions of the GW approximation, is able to explain the color in NiO,
while the same theory is unable to explain why MnF is pink. We show its color
originates from higher order spin-flip transitions that modify the optical
response, which is contained in dynamical mean-field theory (DMFT). We show
that symmetry lowering mechanisms may determine how ‘bright’ these exci-
tons are, but they are not fundamental to their existence.

Colors of very common and usual
materials can be described only via
subtle many-body effects and are

determined by a very formal object

of Feynman diagrarns known as a
vertex



Hyperbolic polaritons

Just to remind: -
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Hyperbolic polaritons in CrSBr

nature communications
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Hyperbolic exciton polaritons in a van der
Waals magnet

Andrew J. Millis®"'°, Xavier Roy®°%, James C. Hone®°>, Cory R. Dean®’,
Mikhail I. Katsnelson®"', Mark van Schilfgaarde® & D. N. Basov®'

Experiment: observation of hyperbolic polariton at low enough temperature

y X

Fig. 1 Schematic crystal structure of monolayer CrSBr shown in
three different projections. Brown, blue, and yellow balls corre-
spond to Br, Cr, and S atoms, respectively.
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Computation of magnetic interactions
Magnetic molecules as an example of very complicated magnetic systems

PHYSICAL REVIEW B 00, 004400 (2014)

First-principles modeling of magnetic excitations in Mn,, A P rOtOtype m01ecu1ar
V. V. Mazurenko,' Y. O. Kvashnin,™* Fengping Jin, H. A. De Raedt,” A. L. Lichtenstein,® and M. I. Katsnelson'-’ magnet
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Magnetic interactions in Mn12

All parameters of exchange, anisotropy and DMI calculated from first
principles, after that exact diagonalization, no fitting parameters
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FIG. 2. (Color online) Schematic comparison of the theoretical
spectrum obtained by diagonalizing Eq. (1) and INS spectrum taken
from Ref. [12] (Figs. 6 and 8 therein). The arrows denote the intra-
and interband transitions that correspond to the excitations observed
in the INS experiment.

A

Also heat capacity and magnetic
susceptibility have a good agreement

with experiment (O. Hanebaum,
J. Schnack, PRB 92, 064424 (2015))



We are still in iron age

Steel (basically, Fe and a bit C) is one of the main materials of
our civilization




Physics of steel

From electronic structure to magnetism to energetics of various phases
(bcc, fec, cementite...) — then phase-field model then simulations

3. Phys.: Condens. Matter 25 (2013) 135401 (9pp)

. . . PHYSICAL REVIEW B 90, 094101 (2014)
Effect of magnetism on Kinetics of y—«

transformation and pattern formation in Role of magnetic degrees of freedom in a scenario of phase transformations in steel

iron L. K. Razumov,">" D. V. Boukhvalov.” M. V. Petrik,” V. N. Urtsev,* A. V. Shmakov,*
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Model of pearlite structure
B Dcarlitic structure in rail steel (Sci Rep 9, 7454 (2019))

Long-standing problem how to explain; we made
the first steps. Magnetism play a crucial role!

What to do next: (1) combine lattice and spin dynamics; (2) build better
phase-field functional; (3) do three-dimensional phase-field simulations
(currently we did only simplified two-dimensional model)...

A dream: the whole road from many-body quantum mechanical problem
to real metallurgical processes — seems to be that all components we already
have!



Collaborations in Sweden

Uppsala University (Olle Eriksson group)
KTH (Anna Delin group)
Linkoping University (Igor Abrikosov group)

Clear opportunities to establish collaboration with Lund (including
MAX IV Lab and ESS) and Lulea (steel!)

MANY THANKS FOR YOUR ATTENTION
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