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which has partially filled bands {1}.1 However, as early
as the 1930s, it became known that there were crystals to
which the Wilson criterion did not apply. De Boer and
Verwey [2] demonstrated that NiO crystals and some
other transition-metal oxides were insulators, although,
according 1o their crystalline structure, they must have
partially filled bands and be metals. In his unpublished
report at a conference in Bristol in 1937, Peierls came
up with the view that Wilson’s criterion could break
down because of the correlations associated with Cou-
lomb interaction [3]. Later, this view was developed by
Landau and Zel’dovich [4]. In 1949, Mott [5] clearly
formulated the problem of the metal-insulator criterion
for compounds of the NiQ type, that is, the transition-
metal monoxides. Following that, the term “Mott insu-
lators” became a generally adopted one for substances
that are nonmetals in violation of Wilson’s criterion of
the conventional band theory. Actually, the first attempt
to define the metal~insulator criterion with allowance
for Coulomb interaction (practically equivalent to
Mott’s reasoning in [S]) had been made by Schubin and
VYonsovskii [6 - 9] well before de Boer and Verwey. The
first quantitative calculation in the quasiclassical approx-
imation advanced in [6 - 9] was made by Svirskii and
Vonsovskii [10] and a more consistent quantum-mechan-
ical calculation by Vonsovskii e al. in {11 - 13].

In the 1950s it was realized, however, that the ques-
tion as to whether or not Wilson’s criterion was violated
was not so simple as it had appeared previously. The
point is that all “Mott insulators” are antiferromagnets
and, as Slater demonstrated for the first time in 1951 [14],
antiferromagnetic order leads to a further splitting of
energy bands — an occurrence that might, generally,
account for the nonmetallic nature of NiQ, MnO, and
other similar substances. The fact that they remain
insulators even in the paramagnetic phase (that is,
above the Néel temperature Ty) might be attributed to
the preservation of local magnetic moments (and, pos-
sibly, antiferromagnetic short-range order as well [15]).
However, the quantitative calculation undertaken by
Terakura et al. [16] using the local spin density func-
tional method for the 3d metal monoxides demon-
strated that Slater’s hypothesis was inadequate to
resolve the problem. According to the calculation and
in contrast to experiment, FeO and CoO in the antifer-
romagnetic phase tumed out to be metals and the
energy gap in MnO and NiQ was found to be too small;
moreover, it tended to diffuse strongly upon transition
to the paramagnetic state. Thus, the problem of the vio-
lation of Wilson’s criterion of the band theory still
exists, even if by the band theory one means a present-
day approach based on the local spin density func-
tional method and allowing in part for correlation
effects (see Ch. 4).

Recent years have seen a surge of interest in the
problem of Mott insulators in the wake of the hypothe-
sis (now almost generally accepted) advanced by
Anderson [17], who maintains that the “base” com-

! “Fhis holds with an odd number of electrons per atom or when the
bands overlap with any number of electrons per atom.
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pounds for high-temperature superconductivity (such
as La,CuQ, and YBa,Cu,0,) likewise fall in this class
of substances,

Thus far, we have not actually explained what Cou-
lomb interaction has to do with the metal-insulator cri-
terion. We will discuss the matter in this chapter.
Importantly, it is not limited to the appearance of addi-
tional bandgaps in the energy spectrum — the very char-
acter of the electronic states and even their occupancy
(statistics!) may be drastically changed.

1t is convenient to begin our discussion of this range
of matters by setting forth the fundamentals of the polar
model first advanced by Schubin and Vonsovskii [6 - 9].

3.2. The Atomic Representation
and the Polar Model of a Solid

As stressed in the Introduction, the main difficulty
in a theoretical study of transition-metal compounds lies
in the necessity to take into account both the band
effects and the traits of the atomlike behavior of the d
and f states, notably strong interactions within the atom.,
For the first time, a similar problem arose in the theory
of the hydrogen molecule [18]. Consider this very sim-
ple example. Each hydrogen atom has an electron in the
nondegenerate 1s orbital state. The excited states of the
atom are rather distant from the 1s state in terms of
energy, and may be excluded from consideration in the
simplest approximation. Then, each atom can exist in
any one of four states. Notably, it can have one electron
with rightward or leftward spin (such states will be des-
ignated as | T) and |4 or as |+) and [-)), two electrons
with antiparallel spins (a I2) state or a “couple”), or no
electrons at all (the 10} state or a “hole”). If one pro-
ceeds from the condition for a minimal energy of inter-
actions within the atom, one may disregard the so-
called polar states, that is, couples and holes. Such an
approximation corresponds to the Heitler-London
method [18]; it is applicable in the case of a large inter-
nuclear distance R, when interatomic interactions may
be taken to be small and allowed for in terms of the per-
turbation theory. In the Heitler-London approximation,
each hydrogen atom is assumed to have a well-defined
spin moment; exchange interaction between them leads
to antiparallel order.

This state (called “homopolar”) is unfavorable as
regards the kinetic energy of electrons, each of which is
“locked” on its own atom and, by virtue of the Heisen-
berg uncertainty relation, has a large mean-square
momentum. On neglecting electron-electron interac-
tion, it would be more favorable energetically for both
electrons to be uniformly distributed between two
atoms. True, each atom would then be occupied with a
probability of 1/4 by a couple, and this would increase
the energy of electron—electron Coulomb repulsion.
With smail R, one may expect that the “kinetic” factor
will tilt the balance in its favor, and the hydrogen mol-
ecule can be adequately described in the language of
molecular orbitals, whose analogs for the crystal are
Bloch states [18). By the molecular orbital method, not
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only all of the molecule but also each of its atoms have
no definite magnetic moment.

By extending this reasoning to a crystal composed
of identical atoms, one may conclude that, with large R,
metallic conduction is unfeasible in the ground state
because each electron will be locked on some atom,
thus giving rise to a local magnetic moment, As R
decreases, the overlap of the wave functions at different
sites will increase, until at some critical value R, the
electrons will change to the Bloch state, that is, a metal-
insulator transition will occur [5]. Of course, this holds
for atoms with unfilled shells (that is, the transition ele-
ments). For filled shells, the Heitler~London and
molecular-orbital methods are equivalent, and whether
one uses the Bloch or the atomic states is a matter of
convenience. :

The polar model of a solid [6 - 9] is a generalization
of the hydrogen molecule theory to the crystal case.
One considers a crystal lattice of identical atoms with a
number N of sites, equal to the number of electrons,
each of which can exist in one nondegenerate orbital
state {(in the single-electron approximation, this corre-
sponds to the tight-binding approximation [1]). The
second-quantized Hamiltonian of the system in ques-
tion takes the form [19]

H="t,c/,0i5+ %ZF(ij, KD)C1Cio Crep Chgr (5.1)
ijo ijki
aq’
where c?;, and c;, are the operators of the creation and
annihilation of an electron on the ith site with spin pro-
jectiono=T, - t; and F(ij, kI) are the matrix ele-
ments of the one-electron Hamiltonian and the pairwise

interaction Hamiltonian, respectively; and Z is the

sum with i # j. Here, in (5.1), account will be taken of
only the terms that describe the direct Coulomb inter-
action F(ii, ii) = U between a pair of electrons on the
same site (in the couple state), and F(ij, if) = V; on dif-
ferent sites

R B
H. = UY nen, + E21/',.1.141,.::,,, (5.2)
i if

where n,; = Ci5Cig» M = N + ny, and the term that
takes care of electron transfer is

ﬁ, - 2 {tjjc:g'cjg + EF(i[sjl)CTcnlcjc} . (53)

i f

The remaining terms in (5.1) contain the matrix ele-

ments F(ij, k) with two pairs of overlapping functions

of different sites (i #/, k # I). Such matrix elements are

small [19] and, apparently, immaterial with regard to
the matters in question.

¥ One also drops from the Hamiltonian (5.1) all terms with
exchange integrals, which are essential when one considers the
magnetic properties of the system.
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In the polar model, the state of the system is com-
pletely described by the labels of the sites that are in a
12 state, a [O) state, a |+) state, and a |—) state, Taken
together, such labels will be designated as f, g, 4, and k,
respectively, and the probability amplitude of such a
distribution of electrons will be denoted by a(fghk). In

this representation, the Schrodinger equation takes the

form

Y (re'wk| A+ Hlfghk)a(f'g' i k') = Ea(fghk).
FEHE 5
In finding the matrix elements that enter into (5.4),

it is convenient to change from the operators ¢j, and ¢,
to Hubbard’s X operators [20]

x* = lioy Bl (5.5)

where o, =2, +, —, 0 is the complete set of many-elec-
tron states on the ith site. Any operator A, acting on the
ith site can be written as

4 =Y o4 px. (5.6)
af

By making the operator A; more specific in terms of the
operators ¢;,, one obtains from (5.6)

o =X+ X7, =X+ X,
i ﬂX?“—-Xﬁ e =X -Xx, o))
R By ;Xizz, ni*szz“X?O“'l-

By virtue of (5.7), the operators (5.2) and (5.3) take the
form

H.=UY X7
" (5.8)
I
+ EZV‘? (X?z-«X?O) (X?ZMX?O) + const;
i

a=3 [z,,. + Y F(il, jb (n, - 85,)}
if H

x [z (XX XK + XX XK (59)

[+

7

+ XX - X?*X‘.’"}

where we took into account the anticommutativity of

the operators X;° and X; for i # . The matrix elements
of the X operators on amplitudes a(fghk) are calculated
in a trivial way. Therefore, subject to equations (5.8)
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and (5.9) and to the approximations of the Schubin—
Vonsovskii equation {6, 9}, we obtain

Igv, Iy
[E- SU=52 V=3 Veg + zvfg}a(fghk)
i 8¢’ T
= X B,alT,|fghk) + 3" By,a(T,| fghk)
fe gp (5.10)

3 Vi LSS ks | JERR) = (S, L 14, 4] f31H))
hk

* Z'st [a(Sf”*k-g%kUghk) - a(Sf—ak,gah[fghk)} s
fz

where s is the number of couples in the state a(fghk),
equal to the number of holes; B}P is the integral of the
transfer of a couple fto a simple site p

By = ty+ Y F(L jhn” + 2F(ii, ji),

[E3N

(5.11a)

0 . . .
(n,( ) are the occupation numbers of the sites, which

remain unchanged upon the transition i — j); 7 is the

integral for the transport of a hole g to a simple site p
By = == 3, FLjbn”, (5.11b)

I#i,f
Y7z and 7y, are the integrals for the transformation of a
pair of simple sites to a couple-hole pair and back

Y, =ty 3, FGL D' + Fiji.  (S.1ic)
P#ij
The symbol T, in (5.10) stands for interchanging the
labels i and j, and the symbol S, , ; ; _, ; stands for the
substitution of j, ' for i, {'.

The Hubbard model (4.36) is a special case of the
polar model: it neglects (i) the interaction between
electrons of different sites (V; = 0, i # j), (ii) the

many-electron contribution to the transfer integrals
(B, =-PB; = v, = t;), and (iii) the exchange integrals.

Ignoring (i) deprives one of the possibility to con-
sider matters associated with charge ordering, but this
is apparently not very essential when one takes up phe-
nomena related to magnetism. In any case, it is
assumed that Coulomb interaction is shielded by the
outer electrons of the atom and is therefore effective
only over a short range. The Coulomb-like drop of the
V, integrals at long distances would significantly
change the character of the metal-insulator transition
(the formation of Wannier-Mott exciton) {3, 1].
Neglecting the many-electron contributions to the
transfer integrals (5.11a) - (5.11c) may likewise be
important, e.g., when one considers nonphonon mech-
anisms of superconductivity [21]. The same can be said
for ignoring exchange integrals [see Footnote 2 on
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p. 345 and also later comments in connection with equa-
tion (5.15)].

The atomic representation, first introduced in 6],
may be generalized fo any many-particle system. In
general, the states of the latter can be specified in sev-
eral ways. One is the configurational representation, in
which the state vector is written as a wave function
dependent on the coordinates of all particles. Another is
second quantization, in which case the state vector is
specified by giving a set of occupation numbers for the
eigenstates of some single-particle operator. Still
another way is atomic representation. With it, a many-
particle system is divided into blocks. Within each

block, the interaction can be accounted for exactly; the

interaction between blocks is written on the basis of
exact eigenfunctions of each block. How adequate such
a description is when one is to define the state of elec-
trons as atomlike or itinerant was discussed earlier.

In the case of narrow bands, where the characteristic
energies of the model are such that

IBLIBL < U, Y, (5.12)
one obtains from (5.10) for the energy of a system

1 ] 1 ]
E= SU+§2fo'+ 52"33-‘2‘%- (.13)
i g8 fe

Let the number of electrons be equal to the number of
lattice sites, N, = N. Then, if the interaction between
electrons falls off with distance rather rapidly, so that
the main contribution to (5.13) comes from the first
term, a homopolar state, s = 0, will correspond to the
energy minimum. If, on the other hand, Vis fairly great
so that in, for example, the nearest-neighbor approxi-
mation

U<zV, (5.14)

where z is the number of nearest neighbors, then the
ground state will correspond to a charge order of the
“couple-hole—couple-hole...” type [6] (the maximum
polarity state, investigated in detail in [22]). In nature,
however, this case occurs very seldom, if at all, and we
will not discuss it any longer. If one takes into account
second-order perturbations in the transport integrals,
then excitations near the homopolar ground state for
N, = N will be described by the effective Heisenberg
Hamiltonian with antiferromagnetic exchange (demon-
strated for the first time by Bogolyubov [19]). In Hub-
bard’s approximation it takes the form

2,

2 t 2.8 A 1
A, = E,Z[t,-j[ SS8-p- (5.15)
i

Thus, for N, = N and U > W (where W is the energy
band width) and in accordance with the qualitative rea-
soning set forth above, we have an antiferromagnetic
insulator state. Whether or not the Heisenberg model
(5.15) has an antiferromagnetic long-range order depends
on the space dimensionality and lattice type, and this

poses a very complicated question [23]. Here, when
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referring to an “antiferromagnetic insulator,” we will
mean either long-range or short-range magnetic order.

What happens with an increase in W is a question
that has a direct bearing on the nature and character of
the Mott transition [S]. It will be discussed in the fol-
lowing sections, and we will give here only the simplest
estimates in the quasiclassical Schubin—Vonsovskii
approximation [6]. We replace the X operators in (3.8)
and (5.9) by c-numbers, which are the numerical func-
tions that characterize the probability of the creation
and annihilation of couples, holes, etc. on one site. That is,
we put X2 - @ W, X' - @ g, and X] - ¥y,
etc., where @, W, ©,, and , are the amplitudes of the
annihilation of a couple, a hole, a spin up, or a spin
down, respectively, on the jth site. Moreover, all of
these events are treated as independent. This coire-
sponds to the determination of energy E from the vari-
ational principle -

E= mbj')n((‘l‘lff MY/ (PIY) (5.16)

with a trial function |y) of the form

hd =1—[(c1>’§c X+ 4 ¢f X;° +y" X% vacuum),
i (5.17)

which corresponds to the physical significance of the
parameters @, ¥, ¢, and y; described above. The func-
tion (5.17) mixes the “Bose-like” excitations at the site

(those proportional to X?O) with the “Fermi-like” exci-

tations (those proportional to X; 0). For this reason, it
does not possess the necessary permutation properties,
nor does it obey even the Pauli exclusion principle.
However, it takes care of the classical Coulomb repul-
sion of electrons in a couple and may in this sense
be regarded as an analog of the Hartree (but not the
Hartree-Fock) trial function. In estimating the condi-
tion for a metal-insulator transition to a very rough
approximation, this appears quite acceptable.

The X operators at different sites are either commu-
tative or anticommutative [20]. In factorizing the nor-
malization integral (y|y) with respect to i, however,
the anticommutative operators change sign an even
number of times, Taking advantage of the property of X
operators that

XX = 5, X5, (5.18)

which stems from the very definition of the X operators
by (5.5), we find

iy = TT U@+ 1)+ o) +|w"] = 1.(5.19)
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We also find that

Wyl A ly) = HOY oy, & ¥ ¢* y*)

1 1]
=UN O 53 V(@ -2 (@ =¥
¥ ij

+ 31, { (00 +WN] ) (20] —¥¥)(520)
i

. .
"'i ((pin“Wiq’j) (q):k IPT _qf:f CI):‘ )
1
t5 (¢ ‘I’? -V (P,T Y (Y- @) }

(where, for simplicity, we put B, = —By; = v, = #,).

Equation (5.20), which we just derived, is the same
as the quasiclassical Hamiltonian postulated in [6].

Equation (5.20) was minimized by Oertel [24]. We
seek the solution of the variational problem in the
forms (see [6])

¢; = @exp(ik,R), ;= yexp(ik:R),
®, = Dexp(ik;R), W, =Yexp(ik,R),

where for N, = N, |®| = |'¥'| and the nonferromagnetic
case, to which we limit ourselves, | =y = (1/2 - |2,
Then, the terms with Vj, which describe the interaction
between electrons of different sites, disappear automat-
ically, and we obtain .

(5.21)

H = UNJO} + NI (5 - @)

x {1k, — ks) + 2K, — k) — #(k, — k) — 1K, — K,)
+._28k,—k3, k4-k2t(ki -ky) - 281‘1_;;4,;‘3_;‘23("1 ~kp },
(5.22)

where #(k) = %Ztijexp{ik (R,~R,)] is the band

energy. The expre;sion in the braces in (5.22), mini-
mized with respect to k;, k,, k;, and k, [which depends
on the specific dispersion law #(k)] is —AW, where
W = max#(k) — min#(k) is the band width and A is a
numerical factor on the order of unity. Minimizing (5.22)
with respect to |®@}2 = s/N yields

0, U>AW/2,
h)
—=<11 U (5.23)
N §(§“W)’ U<AW/2.

Because when N, = N the only charge carriers are cou-
ples and holes, then for U > U, = AW/2 the system will
be an insulator and for U < U, it will be a metal with a
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number of charge carriers
(U~ UMU]N for Utending to U...

At first glance, the quasiclassical approximation
given by (5.16) and (5.17) may appear unduly simpli-
fied.3 However, the result (5.23) is the same as yielded
by some present-day, more sophisticated approaches.
For example, a result of the form (5.23) for the average
number of couples can, according to [35], be obtained
if one represents the X operators in terms of the Fermi
and Bose operators acting in some limited space (the
auxiliary boson method) and then applies continual
integration and the mean-field approximation over
boson fields.

proportional  to

The metal-insulator transition itself at U = W is
described by the above expression, On the other hand,
there is, generally, no ground for identifying the num-
ber of charge carriers with the number of couples s
(which is equal to the number of holes). The point is
that couples and holes can be coupled pairwise into
zero-charge excitations. It will be shown in the next
section that this does happen at sufficiently high U and,
at the same time, 5 # 0 for no finite U. The existence of
coupled (virtual) couples and holes in the insulator
phase leads to the antiferromagnetism of Mott insula-
tors. That is what we now proceed to discuss.

5.3. The Slater Picture of an Antiferromagnetic
Insulator

As noted in Section 5.1, all “Mott” insulators are anti-
ferromagnets at low temperatures (although many of
them remain insulators even in the paramagnetic state).
According to Slater’s idea [14], this fact, which leads to
the appearance of an antiferromagnetic gap in the energy
spectrum even in the Hartree-Fock approximation, is
enough to explain their insulating nature. Such an
approach seems very natural, although how well it fits
reality calls for special consideration (see [25] and also
Section 5.4). For the time being, we will basically follow
the same lines as those in [26] and consider the Slater
picture of an antiferromagnetic insulator within the Hub-
bard model.

The formation of antiferromagnetic order with a
wave vector K has as a corollary the fact that the oper-

ators ¢y, and ¢y, ; (Where ¢y, is the operator of the
creation of an electron with a quasimomentum k and
spin projection o) are mixed, and the operators ¢, and

% Such quasiclassical calculations have been done by many investi-
gators for quite some time. They have yielded different estimates
for the parameter A. For the first time, such an estimate appears to
have been proposed by Oertel [24] upon a suggestion from
Heisenberg. Later, after Hubbard’s works, such calculations were
performed within his model (see Ch, 4 in [3]). Within the polar
model, this issue was discussed in detail by Svirskii and Vons-
ovskii [10]. See also the Editor’s note to the Russian translation
of Mott’s book, [3, pp. 329 - 342], and [11 - 13].
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B: generate new band states that can be introduced by
applying the Bogolyubov transformations
(X.: = ukc;T + ch:‘l—K,J— 3 (5‘24)

+ + *
By == ViCur + UyChie 1o
(5.25)

We assume that the energy band generated by the oper-

ators a, is completely filled and by the operators Bj is

empty. Then, in the generalized Hartree—Fock approxi-
mation {14], the trial function of the ground state will
be sought in the form

) = J]ox vacuum).
k

Here, the product is taken over all k of the Brillouin
zone; u; and v, are variational parameters. We then find
the average (| H [d) with Hubbard’s Hamiltonian
(4.36), minimize it with respect to v; and u, subject to

the auxiliary condition (5.25), and obtain the estimate
of the ground-state energy

NU
E—-T

2
u+vi=1,

(5.26)

1
(1+5) += Y e k):
2§ « (5.27)

e ) = [PS+520] b () = ik +1) — 1K),
where

2 +
S = K’zk:uk vi = 2(S%)
is the sublattice magnetization defined by the equation
U 1
Y e = ]
N Ek: g,(k)

In the limiting case of narrow bands |¢] < U, equations
(5.27) and (5.28) yield

= “Z%z [k + ) — (k)] 2.
k

(5.28)

(5.29)

In the nearest-neighbor approximation, for the bee and
simple cubic (sc) lattices this gives

2
ﬂf—,’_, (5.30)

where z is the number of nearest neighbors. As Ander-
son [27] proved, an exact estimate for the ground-state
energy of alternating lattices (that is, those which per-
mit partitioning into two sublattices) in the case of the
Heisenberg Hamiltonian (5.15) can be obtained in the
form of the inequalities

Nz + D
—— (531

This proves that the estimate (5.30) is quite accurate for
high z. Note that the concentration of holes in the limit

E=-

2
Nzt
<E0<—-—z .
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of large U can be found by the Hellman-Feynman
parameter differentiation theorem [compare with (4.36)
and (5.31)] :
1 _1/3f\ _ 10E, of

§ = NZ (rirny) = ﬁ<@> = N3U -(—}2—, (5.32)
where z < ¢ < (z + 1). Thus, contrary to the result given
by the quasiclassical approximation, s # 0 in the insula-
tor phase. This quantity is related to the virtual creation
of couple—hole pairs from spin-up-~spin-down pairs, as
described by the transfer integrals v, in the general

‘equations (5.10) of the polar model. However, the gen-

eration of couples and holes does not, of course, imply
a transition to the metallic state at large U; in such a
case, they can only form a coupled zero-charge state,
These reasons lie at the basis of the exciton approach to
the problem of Mott insulators set forth in [28]. At first
glance, it might appear quite different from the Slater
picture. Nevertheless, as demonstrated in [26], it yields
physically equivalent results. However, the physical
picture proposed in [26, 28] enables one to look at the
nature of Mott insulators from another angle and might
prove useful for further generalizations [26, 29]. For
these reasons, it appears beneficial to present the basic
idea and results of this approach.

First, we consider the ferromagnetic saturation state
i@, (all spins down), which is, of course, far from the
ground antiferromagnetic state in the Hubbard model,
and investigate various paths for its decomposition [28].
As argued in [28], among the states with one spin up

@) = ¥ at, )i cp, oy, (533)
if

there are states both of the exciton type (a superposition
of bound couple-hole states and spin-wave states) and
of the type corresponding to the independent propaga-
tion of a couple and a hole, The “exciton” states corre-
spond to a lower energy at large U in the two- and one-
dimensional cases, this will also be true even at any U.
One may therefore assume that in the Hubbard model
the ground state is approximated by a condensate of
excitons, and in the three-dimensional case at low U by
a state corresponding to the creation of unbound cou-
ples and holes in large numbers. This metal-nonmetal
criterion is in qualitative agreement with the exact solu-
tion reported by Lieb and Wu [30]. According to them,
in the one-dimensional Hubbard model with N, = N, the
ground state is always that of an insulator. Accordingly,
Katsnel’son and Irkhin [26] used a ground-state trial
function of the form
N/

@) = (g,‘@(k)cim?‘fw) 2I<}>0)

(an exciton condensate with a wave vector K} and
developed a calculation procedure using this function
on the basis of the graph enumeration theory [31]. In
the thermodynamic limit of N tending to infinity the
variational estimate for the ground-state energy with a
function of the form (5.34) turned out to be the same as

(5.34)
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(5.27) and (5.28). Note that, although in the state (5.34)
(CDl Si kb), the function (5.34) describes an antiferro-

magnetic state owing to the &-function contributions
from g — K in the corresponding paired correlators (for

‘more detail see [32]).

In a straightforward manner, the insulator nature of
the state described by a function of the form (5.26) or
(5.34) can be demonstrated by calculating the polariz-
ability o, () in these states (i, /) = (x, , 2).

In [26], this quantity was calculated.in the nonsta-
tionary state Hartree—Fock approximation. The Hubbard
Hamiltonian A from (4.36) was extended to include the
term eF,%;coswt, where F and  are the strength and
frequency of the external electric field, ; is the coordi-
nate operator, and e is the electron charge. The trial

function was sought in the form (5.34), with ¢ depen-
dent on k and time ¢ from the variational principle

5 @ l'g}wﬁ—i- eF %;cosmt )
3¢° (k, ) (DD}

Next, the average dipole moment e(%;) = o F; was
calculated in an approximation linear in F. The result
for a{w) is '

=0, (5.3%)

& (Us) 2
%) = Na,

Ob,(K) b, (k) 1
ki ok g el - (0+i8)]

where €, is the volume of the unit cell. From equation
(5.36) it is seen that the product US takes the form of the
direct energy gap, that is, a minimal distance between
the states in the filled and empty bands having the same
k, (Ima(w) # 0 for @ > US). For large U (U > W), we
have § = 1, and the gap width is equal to the Coulomb
repulsion energy per atom, U, which is in full agree-
ment with the qualitative considerations set forth in
Section 5.2. By virtue of (5.32), the number of couples
then tends to zero.

For low U, the system remains an antiferromagnetic
insulator and does not change to the metallic state if
subject to a nesting condition

(5.36)

frone =

(5.37

which holds in the tight-binding and nearest-neighbor
approximations for the simple cubic lattice [k = (%, %, ®)],
the bee lattice [x = (®, &, 0)], a linear chain (x = 1}, and
some other cases. With antiferromagnetic order, the
energy gap in such a case occurs over the entire Fermi
surface at once [25, 33], thus lowering the energy of ali
occupied states and, consequently, the total energy. Sim-
ilar considerations were first formulated by Peierls [34]
when proving the instability of the metallic state in a
one-dimensional chain. An expression for the energy

Vol.76 No.4 1993



350 VONSOVSKIl et al.

gap can then be readily derived from (5.28). As an
example, for a one-dimensional chain it takes the form

Us = ttEexp(——g%ﬂ),

(5.38)
and differs from the exact solution of Lieb and Wu [30]
solely by the preexponential factor. According to this
result, the ground state in the one-dimensional Hubbard
model considered in the nearest-neighbor approxima-
tion and for the number of electrons equal to the num-
ber of lattice sites is one characteristic of an insulator
for any relative values of U and ¢.

Thus, the Slater picture of the ground state of an
antiferromagnetic insulator in the Hubbard model is
quite satisfactory and is in qualitative agreement both
with physical considerations in the limit of large U and
with the exact solution in the one-dimensional case of
small U. Two important questions remain open how-
ever: (1) Does this description apply to real systems?,
and (2) Why is it that the insulator state is preserved in
the paramagnetic phase? They are dealt with in Sec-
tions 5.4 and 5.5 that follow.

3.4. The Band-Theoretic Approach
to the Problem of Mottt Insulators

As noted in Section 3.1, attempts to describe the anti-
ferromagnetic insulator state of 3d-metal monoxides
from MnQ to NiO within the standard band-theoretic
approach and the local-spin-density-functional (LSDF)
formalism have proved, on the whole, to be not very suc-
cessful. The findings set forth in Section 5.3 offer an
insight into the cause of the failure. As we observed in
Section 5.3, the description of the antiferromagnetic
insulator state within the Hartree—Fock approximation
is quite reasonable. With it, the key factors such as the
small number of couples and the formation of an energy
gap in the limit of large U are determined by Coulomb
effects, rather than by the intra-atomic Hund exchange,
which the nondegenerate Hubbard model does not take
into account at all. This is best demonstrated by the
exciton approach [26] [with a trial function of the form
of (5.34)]. With this approach, the antiferromagnetic
insulator state is formed as electrons and holes are cou-
pled into “excitons” of a special type [28], that is, as a
result of an obvious Coulomb effect.

In the LSDF method, the formation of an antiferro-
magnetic energy gap is ascribed to the difference
between exchange-correlation spin-up and spin-down
potentials, that is, to the effects of the Hund-exchange
type, as explained in detail in Ch. 4. The standard band-
theoretic approach is unable to detect changes in the
character of electronic states with increasing U, that is,
a transition from the Bloch to the atomic picture
(see Section 5.2) because, by definition, it deals with
Bloch states.

In contrast to the LSDF method, the Hartree—Fock
approximation with a nonlocal exchange potential
directly dependent on the state on which it acts allows
the possibility of localized states (as demonstrated in [25]
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with reference to simple examples). Unfortunately, this
method is too complicated for use in calculating the
electronic structure of real solids (see, however, a recent
paper by Massido et al. [105]). Of the approaches avail-
able at present for describing real Mott insulators, what
we see as most promising and fitting is the self-interac-
tion-corrected (SIC) [38] density-functional formalism
used by Svane and Gunnarsson [36, 37]. Tts rationale
may be summed up as follows.

In the Hartree—-Fock method, an electron existing in
the quantum state |v) is not acted upon, as should be, by
the contribution to the self-consistent field from this
state because the corresponding Hartree and Fock con-
tributions cancel out completely [15]. In the LSDF for-
malism, the self-consistent potential is determined by
the total charge and spin density, including the contri-
bution from the density |y, (r){? of the [v) states. In the
SIC density-functional formalism, the corresponding
contribution is simply subtracted, and the potential act-
ing on the |v) state takes the form [compare with (4.15)]

A

SIC, , 21
Vo e) = Volmn(e, me) = 5 far 2

~Viw, o[, 0),

where lel = i = m = 1; V is the self-consistent potential
in the LSDF method, including the Hartree and
exchange-correlation contributions; and n (r) is the
total electronic density with spins 6 = T, 1. The physical
significance of the self-interaction corrections [the last
two terms in the right-hand side of (5.39), i.e., electro-
static and exchange-correlation] is that they account for
the attraction of an electron by the field of its own hole.

Two important things are worthy of note. First, the
self-interaction corrections are exactly zero for delocal-
ized (notably, Bloch) states because for them the density
[y, (r)]? is “spread” over an infinite volume. If one
places the system in a “box” L x L X L in size, then, for
the itinerant electrons, the density |y, (r}{? at every point
r will be on the order of L3 (and n(r) is finite because it
contains the sum L3 of contributions from the individual
states). Then V*{]y,(r}|*} — 0 will tend to zero for L
tending to infinity because |y, (r)|* vanishes at every
given point r and the electrostatic potential [the second
term in (5.39)] tends to zero as L™, Therefore, any solu-
tion obtained by the LSDF formalism for the crystal is
automatically a solution in the SIC density-functional
formalism as well. If, however, the total width of the
energy band is sufficiently small (or, equivalently, if the
interaction is sufficiently strong), additional (except
Bloch) localized solutions can appear, which may be
qualitatively interpreted as the bound states of an elec-
tron in the field of its own hole. Second, because, by vir-
tue of (5.39), different states are acted upon by different
potentials, a single Hamiltonian that would be common
to all states is nonexistent, and {y,(r)} are not the
eigenfunctions of one Hermitian operator and are not
orthogonal (same as in the exact Hartree—Fock
method). Therefore, when one uses the SIC density-
functional formalism, one has to handle the problem of

(5.39)
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Table 5.1. Energy gaps AE (¢V) and spin magnetic moments M, (i) calculated for transition-metal monoxides [37]

AE M,
q-

Compoun LSD SIC-L8SD Experiment LSD SIC-LSD Experiment
VO 0 0 0 0 0
CrO 0 1.01 2.59 3453344 -
MnO 0.8 3.98 3.6-3.8 439 4.49 (4.49) 4.79-4.58
FeO 0 3.07 342 3.54 (455 332
CoO . 0 2.81 2.4 2.33 253372 335,38
NiO 0.2 2.54 4.0;4.3 1.04 1.53(1.80) | 1.64;1.77;1.90

Note: LSD stands for calculation in the local spin-density functional approximation; SIC-LSD denotes the seifﬂipteragtion-corrected local
spin-density functional formalism. For experimental data, see the references in {37]. The values of M|, given in parentheses allow
for the orbital contributions. In the case of a discrepancy between different experimental sources, several values are given.

nonorthogonality; failure to take into account the
nonorthogonality of the functions {y,(r)} will signifi-
cantly affect the end results [36 - 38].

In [36], this formalism was applied to model sys-
tems such as a one-dimensional Hubbard chain (in the
discrete analog of the LSDF formalism) and a CuQ,
plane (a fragment of the high-temperature semiconduc-
tor structure); in [37], it was applied to 3d-metal mon-
oxides. As it turned out, the self-interaction corrections
enable one to bring the energy of the ground state and
the width of the energy gap in the one-dimensional
Hubbard model in good agreement with the exact
results [30], to ascertain the antiferromagnetic insulat-
ing state for the CuO, plane in keeping with experimen-
tal data (which cannot be done in the usual LSDF
formalism), and to improve the description of Mott
MeO insulators considerably in comparison with the
LSDF formalism (see Table 5.1 borrowed from Svane
and Gunnarsson [37]). In quantitative terms, however,
a noticeable discrepancy between the theoretical and
experimental energy gap width for NiO does remain.
Note that, according to Svane and Gunnarsson [37],
NiQ is not, in the strict sense of the word, a Mot insu-
lator that could be described by the Hubbard model.
The point is that the 3d states of Ni are significantly
hybridized with the 2p states of O and that the energy
gap is not a purely “intra-site” type; it also involves the
p—d hybridization at different sites. For VO, the condi-
tion for the formation of localized states is not satisfied,
all solutions in the SIC DF formalism are the same as
Bloch solutions, and VO turns out to be a metal. For all
other monoxides under study, the equations of the SIC
I.SDF formalism have localized solutions, and this cor-
responds to a transition from the Bloch picture to the
atomic representation.

Although it is inapplicable in describing the elec-
tronic structure of Mot insulators, the conventional den-
sity functional formalism can be useful in, for example,
calculating the effective Hubbard parameter U. Such a
procedure has been proposed by Anisimov and Gun-
narsson [39]. To determine U, one calculates the
change in the total energy of the system caused by a
change in the occupation number of the d orbitals at the
selected lattice site, and then applies an appropriate
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procedure to obtain self-consistency. In keeping with
the ideology of the Hubbard model, when doing calcu-
lations one “locks out” the hybridization of the d states
with states of another symmetry and disregards spin
polarization. This yields a U on the order of 6 ¢V for
FeO, 7 eV for NiO and CoO, and 10.3 eV for MnO,
which is quite reasonable for these systems [40]. Addi-
tionally, for the metailic VO and TiO [40] and bee
Fe [39], one similarly obtains U = 6 eV, which is an
obvious overestimate (with such U, these systems can-
not remain metals). This seems to indicate that the Hub-
bard model is inapplicable in the latter case. Instead,
one should use a model with several selected groups of
d electrons that stands midway between the Hubbard
model and the s—d exchange model [41].

5.5. Mott Insulators and the Metal-Insulator
Transition in the Paramagnetic Phase

As noted in Section 5.1, most Mott insulators, includ-
ing typical species such as NiO and MnO, remain insu-
lators even in the paramagnetic phase (above the Néel
temperature Ty). One should bear in mind, however,
that, according to the diffraction analysis of spin-polar-
ized electrons [42], MnO retains a strong short-range
antiferromagnetic order over a very wide temperature
range. For other 3d-metal monoxides, no such evidence
is reported. However, one may presume that the situa-
tion is the same in their case as well, because they have
the same magnetic and crystal structures and, possibly,
the same exchange interactions (a case that stands all
by itself is CoO, in which orbital degeneracy is
observed for every ion; this degeneracy can be removed
by the interaction between ions, thus leading to orbital
order. This case has been described in detail by Bran-
dow [25]).

A wide temperature range with short-range antifer-
romagnetic order obviously exists above Ty in quasi-
two-dimensional (layered) Mott insulators, such as
La,CuQ, and YBa,Cu,04. Whether an electronic struc-
ture has or does not have a short-range order is a vital
issue that deserves a more detailed discussion.

We will first recapitulate some known properties of
a two-dimensional Heisenberg insulator (see [43, 44]).
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v YT We now consider the antiferromagnetic exchange
o interaction J' between layers. For J' <€ J, the Néel tem-
0601 ~CTRIZe~_ =10 21.00 perature is low in comparison with J and, according to
’ ?* SR ’ explicit calculations within the self-consistent spin-

wave theory [52], its estimate is

0.45 -0.75 J

Ty W (7T (5.40)

0.30 -10.50 . . ... .
(the explicit expression is given in [52]), whereas short-
\ range order exists as far as T~ J 3 Ty. As the ratio J/AJ'
0.15 ¢ —025 increases, the region of developed short-range order
! decreases, mainly because of the rise in Ty, The degree
o T . 0 of short-range order can be described by the parameter y,

i 1 }
0.60 0.75 0.90 1.05 120 1

Fig. 5.1. Short-range-order parameters in the layer, y(dashed
curves), and between layers, 7' (solid lines), for different
values of interaction parameters between layers, J'/J.
The arrows label Néel points [521.

At finite temperatures, the magnetization of the sublat-
tice is zero because of the divergence of longwave fluc-
tuations of the antiferromagnetic order parameter (the
Mermin-Wagner theorem [45]). This assertion also
holds in the case of anisotropy of the “easy plane” type,
where the energy spectrum has a gap at a wave vector
g = 0. In the latter case, long-range order exists in some
finite temperature range 7'< Ty. In an isotropic Heisen-
berg antiferromagnet, as in an antiferromagnet with
anisotropy of the “easy axis” type, Ty = 0, although they
significantly differ in state at 7' 0. In the anisotropic
case of the easy axis type one observes topologically
nontrivial defects, such as Kosterlitz~Thouless vortices
(see [43, 44]), and a semblance of long-range order
associated with their ordering. By contrast, the Heisen-
berg model displays no long-range order at finite tem-
peratures but has a finite correlation length & This
important result was obtained for the first time by Poly-
akov [46], who used the renormalization-group method.
He found that £ ~ aexp(const(J/T)) for T <€ J, where J is
the exchange integral and a is the lattice parameter (this
matter is discussed in more detail in [47]). For the wave
vectors g = &1, spin excitations do not “feel” the differ-
ence between short- and long-range order. Because of
this, and despite the fact that the latter is nonexistent,
antiferromagnons with a linear dispersion law (for
q < a’') exist. Recently, a fairly simple self-consistent
spin-wave theory was developed for the two-dimen-
sional Heisenberg antiferromagnet for 7'# 0 through
the use of Schwinger bosons [48, 49] or the Dyson-Ma-
leev representation [50]. By applying this theory to the
effects of electron-spin interaction within the Hubbard
and s—d exchange models, Irkhin and Katsnel’son [51]
were able to demonstrate that, on the energy scale
|E| = Ja/§, the electron spectrum for T+ 0 has the same
structure as in the ordered state for T = 0, that is, the
antiferromagnetic gap is preserved, and electron-mag-
non scattering appears, as if long-range order exists.
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which characterizes the tendency of spins at neighbor-
ing sites to form a singlet state (a triplet state in the fer-
romagnetic case). Its temperature dependence,
calculated by the nonlinear spin-wave theory, is given in
Fig. 5.1 [52], which demonstrates a short-range order
region above Ty for J' <€ J. For the isotropic case (J' = J)
and a simple cubic lattice, the width of this region
decreases to about 10727y [52]. It may, however,
broaden if one allows for the interaction with the next-

nearest neighbors, as this leads to frustrations [53] (that |

is, a situation where interactions with the nearest and
next-nearest neighbors are competing in the sense that
they favor the formation of different magnetic struc-
tures). One may therefore think that in MnO an impor-
tant thing is that the cation fcc sublattice (of the NaCl
type structure) is partly frustrated or, possibly, a signif-
icant exchange interaction takes place with the next-
nearest neighbors. Thus, for most known Mott insula-
tors, one has either direct experimental evidence or g
theoretical consideration that allows one to speak of a
sufficiently strong short-range order above Ty. For this
reason, their electronic structure in the paramagnetic
phase is apparently close to that of the ground antifer-
romagnetic state. Nevertheless, the description of Mott
insulators in a “deeply paramagnetic” region (that is,
where the magnetic moments are completely disor-
dered) is a problem that undoubtedly evokes strong
interest in its own right. Indeed, most theoretical works
on Moitt insulators deal precisely with this case, which
we now proceed to discuss. We will place main empha-
sis on the metal-insulator transition in the wake of a
change in the relative magnitude of the energy V and
the band width W,

In his pioneer work [54], Hubbard used the two-
time Green’s functions. Other investigators, who like-
wise used his model in their research on the metal—
insulator transition, have drawn upon a wide range of
various theoretical tools, such as the functional integral
method [55], a diagram technique for X operators [56],
the Schwinger functional derivative formalism {57],
variational methods [58 - 60], and the renormalization
group in real space [61], to name only a few. Still, the
physical picture of the metal~insulator transition
remains fuzzy.

Now let us consider the results of Hubbard’s
approach to the metal-insulator transition and the
description of the insulating state in the paramagnetic
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phase. In our presentation we will proceed along the lines
of Anokhin et al. [62]. (In his original papers {54, 631,
Hubbard used a different derivation method.) Our task
is to calculate the anticommutative retarded Green'’s
function of electron operators [64]

Gk, B) = ({oyolete)), = —i[dte’™( { orer cral®} ),
1]

ImE >0, (5.41)

where A(f) = exp(iflt)Acxp(—if{t) is the Heisenberg
representation of operators, the French quotes (...) stand

for averaging over Gibbs’ ensemble, and the braces, for
an anticommutator (here and elsewhere, i = 1). To take

care of Coulomb interaction at a site, we change over to
the X-operator representation even in the lowest
approximation [see (5.7)]

Cxs = 2,expUKR)Cly = fio + Bkod

fus= Y exp(kR)X{", gyo= 3 exp(KR)X;".

(5.42)

The operators f,, and g, describe the motion of a hole
and a couple in the crystal, respectively. According to
the definition of the X-operators (5.5), the multiplica-
tion rules at the ith site take the form

X?BX?H = aﬁxX:m, (5.43)

where X operators of the Fermi type (that is, those
changing the number of electrons at the site to 1) at dif-
ferent sites anticommutate and those of the Bose type
(that is, changing the number of electrons at a site to 0
or 2) commutate, similarly to Fermi- and Bose-type
operators [20]. Using this property, one can calculate
the commutators of X operators with the Hamiltonian
H (4.36) as well as their commutators and anticommu-
tators with one another. This is necessary in order to set
up a string of equations of motion for the two-time
Green’s function

EAIBY, = ( {A, B})+{{[A, H]IBY),. (5.44)

The Hubbard Hamiltonian H for the canonical ensem-
ble of X operators takes the form [see (5.8) and (5.9)]

H=H+H,-pYn, (5.45)
where
ff, Etu l:z (X?GX;JZ —X?GXTO) +}(:D.XJ—2
v (5.46)
_ X:OX;2 +X?.-—-X;)+ “X?+Xf_]:
A = Uy X", (5.47)

it is the chemical potential, and n, = X?z - X?O +11is
the number of species on a site. If one considers an
energy band that is half-filled (the number of electrons

THE PHYSICS OF METALS AND METALLOGRAPHY

is equal to the number of sites) and symmetric (the den-
sity of states

Ny(E) = Y 8(E - 1K) (5.48)
k

is an even function of E), then from the symmetry with

respect to the replacement of electrons by holes it fol-
lows that u=U/2, irrespective of the model used. Then,
in view of (5.47) and (5.7), we obtain

U 22
H, = Hc—uzn,- = EZ(X,» +X?°) + const, (5.49)

that is, the Hamiltonian is written in a symmetric form.
It is an easy matter to show from (5.42) and (5.43) that

E - .U
Ui He) == s (8100 H] = 5800 (550)

Thus, the change-over to the X-operators drastically
simplifies commutation with the interaction Hamilto-
nian in (5.44). Unfortunately, the commutators with H,
are rather cumbersome.

In the paramagnetic state, for the anticomimutators
in (5.44) we have

(Ui fiod) = () (X7 = (X2 + %g(XZ’?

- 5+ S0 = 3

<{gkw gl},})m %9

< {fkm g:c}> = < {gkcsf:o}>m 0,

where it is taken into account that for (i) = 1, the num-
ber of couples is equal to the number of holes:
<X?2> = <X?{J > Then, by splitting the Green’s func-
tions (5.41) according to (5.42) and noting (5.50) and
{5.51), we can obtain the exact relations

G(ka E) = <(fkclc;0)>5 + <<gkciC;d)>E;

(5.51)

(5.52)

({fuolcra )y = E—i%z—/—j [1+ k)G, E)]

1

+ mgt(q) {8 Lo Fror Cqo Ec:‘,))g; (5.5%)

(rolci)y = goterrs U1+ 100Gk, B))

1 (5.54)
+ E__ U/z Z‘I(Q)<<8 {gkc ? gkd' } Cqs'lckc)>£-:
qo
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where 84 = A — {A). Substituting (5.53) and (5.54) in
(5.52) and solving the equation formally for G(k, E)
yields

Gk, E) = e )

= , (5.55)
E*- Exk) - U4

where

Lk, E)

1 ) . )
= ﬁ Zt(q)<({ 8 {_fko’fka' } - 8 {gkc) ke }] cqc' Eck(’))ﬁ"
g’

(5.56)

Equation (5.55) is an exact one, but the function L(k, E)
(5.56) entering into (5.55) can be evaluated only
approximately. The simplest approximation, in which
the string of equations (5.44) is truncated at the first
step, that is, for L(k, E) = 0, was attempted by Hubbard
in [63]; since then it has come to be known as the Hub-
bard approximation I. Now, equation (5.55) suggests
the following expression for the Green’s function:

1
B = 5@ -

The poles of this function form two bands

By = 5 1000+ U,

which in the limit of large U are splitinto £ U/2 and are
half as wide as in the case U = 0. These bands are called
the Hubbard subbands, and the gap between them, the
Hubbard gap. By virtue of this gap, the system is an
insulator, which is correct for U 2 W, but in no way cor-
rect for small U. Thus, the Hubbard approximation I is
unable to describe the transition to the metallic phase.
In the limit of large U, however, it is rather easy to
grasp the significance of the Hubbard gap.

WE) = E~ ZU;‘ (5.57)

In the atomic limit, there are configurations with 0,
1, and 2 electrons and with two excitation energies:
E,=0(a|0) ~ |1) transition) and E, = U (a |1) = |2)
transition). Each transition produces an independent
energy band of its own. As a matter of record, this pic-
ture of the spectrum was given as early as 1934 - 1936
by Schubin and Vonsovskii in [6 - 9] (see also {10] and
the Editor’s note to the Russian translation of Mott’s
monograph [3]). It can also be generalized to the degen-
erate case where an isolated atom has a discrete energy
spectrum E(nLSJ) determined by the electron configu-
ration 4" or " and by the term LSJ (the orbital, spin, and
total angular momentum quantum numbers). Consider-
ing the transfer of energy between atoms, every intra-
atomic transition produces an energy band of its own;
that is the Hubbard subband [20].

If one attempts to describe the case of a not too large
U and, notably, the transition to the metallic phase, one
will have to step outside the approximation defined by
(5.57). By setting up an equation of motion for L(k, E}
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and decoupling the accompanying more complex
Green’s functions at the first step, one obtains [62]

-t

Gk E) = [%(% -~t(k)i| , (5.58)
where
U’ Hq)
@ =1+ (E) lIIZJ’(E)mt(ﬂl)
e (5.59)

2
=1+ (%) ‘I’Et(q)Gm(q, E),
q

and ¥ = (Sf) is the mean square of the electron spin
at a site (for a nondegenerate model, ¥ = 3/4). However,
even this approximation does not lead to a metal—insu-
lator transition, because it preserves an energy gap down
to small U. The point is that (5.59) contains the “Hub-
bard I” Green’s function (5.57) that needs to be replaced
by the sought Green's function G(q, E) as part of the
self-consistency procedure. To achieve self-consis-
tency, we recast (5.58) and (5.59) in an equivalent form

Gk, E) = [FE)- 1K) (5.60)
Y
FE) = yE)/OE) = % (5.61)
where
|
(5.62)

ME) = y(B) - [‘PZG(”@, E)}
4q

and replace G(q, E) in (5.62) by G(q, E) from (5.60).
This yields an equation for the Green’s function G(q, E),
corresponding to what is known as the Hubbard
approximation III {54], which is ordinarily written in
terms of the self-energy Z(E)

Gk, E) = [E-1(k)-Z(E)]™; (5.63)
U R(E) _
1+ S(E)R(E) + [W - 1} ER(E)
N
RE) =Y Gk, E)= jdew‘%_fg, (5.65)
k

where Ny(€) is the trial density of states (5.48). The
Hubbard approximation III can be described in terms of
the alloy analogy we used in Ch. 4; it is equivalent to
considering electron scattering on spin disorder in the
coherent potential approximation [65]. According to
Anokhin et al. [62], the Hubbard approximation III is
equivalent to a selective summation of several series of
perturbations in terms of the reciprocal number of near-
est neighbors, 771, It can therefore be validated more rig-
orously for the classical s—d exchange model than for the
Hubbard model, where such a parameter is nonexistent,
This calls for the use of an additional smallness param-
eter 1/28, where § is the localized spin, and ¥ = 1/4.
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The density of states N(E) = ~(1/%)ImR(E) at the
Fermi level E = 0 will be nonzero only if

oy = Eﬁlop (E) (5.66)

is finite. In the Hubbard approximation I, F(E) = y(E) =
[2/4E for E tending to zero, so this condition is not sat-
isfied. From (5.63) - (5.65) it is possible to derive a
closed equation for c(U) of the form

v 1
m&“ = 4‘?(1[0.’. R_{)(&_)]’ (5.67)
where
Ny& 1
Ro(c) = ja’sa_g =zk:a~¢(k)' (5.68)

Consider equation (5.67) for large |ct| (as will be shown
later, this corresponds to the vicinity of the metal-insu-
lator transition). Then, one may take advantage of the
series expansion

Ry(0)) = é+u—§+§§+...,
o o

(5.69)
where [L, is the nth moment of the bare density of states
Ny(&) (Ny(e) = Ny(—€)). By substituting (5.69) in (5.67),
we find that, with the critical U = U,, where

U, = 4(¥u'?, (5.70)
the quantity |of also goes to infinity, such that
2 -1 1
4 Mo

We will now show that U = U, is the point of the metal-
insulator transition. Indeed, for U> U, a(U) is real and
large. Then, N(0) = Ny(e) = 0 because o lies outside the
bare energy band. For U < U, o(U) is purely imagi-
nary, and
1
N(O) ol
which corresponds to a metallic phase. However, this
“metallic” phase is very unusual because its electronic
states are strongly damped and it has no well-defined
Fermi surface. A more detailed analysis of the electronic
spectrum in this approximation shows that the energy
gap for U tending to U, + 0 varies as (U, — U)¥2[54], and
the thermodynamic potential has a singularity of the
form |2 [56, 62] at the transition point. This implies
that in the Hubbard approximation III the metal-insula-
tor transition is a 3Y/, and not a 2/, transition, as would
be natural to expect in the conventional two-band
model. Apart from the unanswered question about the
transition to the Fermi liquid state with zero damping at
the Fermi surface as U decreases, the Hubbard approx-
imation 11T poses problems associated with the calcula-
tion of thermodynamic properties. This has given
ground for criticizing it more than once [57, 62, 66].
However, a more satisfactory approximation that
would be free from all of these drawbacks has not yet

~(U=-UY", (5.72)

THE PHYSICS OF METALS AND METALLOGRAPHY

U
0
\\
O
: N
2 E ! {
-2 -1 0 1 2E

Fig. 5.2. Densities of electronic states in the Hubbard
approximation II for a simple cubic lattice with different
values of U. The half-width of the conduction band for U =0
is unity {62].

been proposed. True, Edwards and Hertz [66] have
made an attempt to account for the effects of spin
dynamics through some simple approximations. In
their model, there is a well-defined Fermi surface up to
U= U,,. Then, as U increases in the range U, < U< Uy,
a metallic phase is formed with finite damping at the
Fermi level, and finally an energy gap appearsat U> U,
However, it is difficult to say at present how realistic
this sophisticated picture of the transition is.

To illustrate the evolution of the energy spectrum in
the Hubbard approximation I with changes in U,
Fig. 5.2 gives values of N(g) calculated for a simple
cubic Jattice [62]. '

Among the other approaches used to describe the
paramagnetic phase in the Hubbard model, the one
worthy of special mention is the variational approach of
Gutzwiller [58], which still evokes strong interest
(see [59]). Gutzwiller proposed a trial function of the
form :

Wy = [Tt - (L -y mem IRE,  (5.73)
where |\, is the Slater determinant describing the state
of noninteracting electrons, The parameter 1| describes
the tendency of electrons to form couples under a
strong Coulomb repulsion U on one site. For 1| tending
to unity, |'¥) = |¥y). For n| = 0, no couples exist in the
state (5.73), and this is another way of saying that a
homopolar state sets in. In the simplest approxima--
tion [58], minimization of the average energy in the
state (3.73) with respect to 7} leads to the same result
(5.23) for the number of charge carriers as the quasi-
classical approximation. (Gutzwiller’s variational
method was applied to the metal—-insulator transition by
Brinkman and Rice [67].) The method received further
development in studies by Chao and Berggren {68],
Ogawa and Kanda [69], and Takano and Okiji [70].

In contrast to the quasiclassical approximation,
Gutzwiller’s theory takes into account the Pauli exclu-
sion principle explicitly and can be brought in accor-
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dance with the Fermi liquid theory (see [59]). Generally,
it probably gives a fairly accurate description of the
metallic phase. Interestingly, the single-particle distri-
bution function », is, according to Gutzwiller [58], a
function of the form

g, <U,

a,,
Ay, =
8 a  E> M,

where g, is the energy of a quasiparticle with a quasimo-
mentum K, and 1 is the chemical potential. The jump
Z = a, — a, decreases linearly fo zero as U tends to U,
Because the effective mass m* of a quasiparticle is
inversely proportional to Z [71], one should expect, in
keeping with the Gutzwiller theory, that m* and, conse-
quently, electronic heat capacity and paramagnetic sus-
ceptibility will diverge at the metal-insulator transition
point [67].

Note further that the result (5.23) for the number of
charge carriers can be derived phenomenologically, if

one regards Z as an “order parameter” in the spirit of
Landau’s theory and recalls that s ~ Z [72].

The major shortcomings of the formalisms just dis-
cussed are that they are unable to describe the insulator
phase (notably, its antiferromagnetism) and contradict
the exact solution derived by Lieb and Wu [30].
According to the latter, in the one-dimensional Hub-
bard model in the nearest-neighbor approximation, the
ground state is always an insulating one.

Still, Gutzwiller’s variational method gives an esti-
mate of the ground-state energy for small U that is
closer to the exact one [39] than the Hartree—Fock state
(5.25) or, equivalently, (5.34). It must be stressed, how-
ever, that the results in question were obtained subject
to some additional approximations in comparison with
the trial function (5.73). Generally, its use involves
rather sophisticated computational schemes, which are
now becoming more popular (as are the exact solution
of the Hubbard model for small clusters and some other
numerical techniques).

The very multitude of ideas and techniques involved
in the problem of Mott insulators and the metal-insula-
tor transition is evidence of its complexity. As usual,
one runs into special difficulties with the intermediate
values of U and W. A significantly greater headway can
be made in the case of the strongest correlation U » W
for N, # N (for N, = N, it reduces to the problem of the
Heisenberg antiferromagnet, which will not be dis-
cussed here),

We now proceed to discuss the strong correlation
case.

(5.74)

5.6. Electronic States and Magnetism
in Strongly Correlated Systems

3.6.1. A Saturated Ferromagnet at Low Tempera-
tures. Consider the case of narrow bands W = U where,
as noted in Section 5.5, the structure of the enetgy spec-
trum is determined by the formation of Hubbard sub-
bands and differs qualitatively from that of the spectrum
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of the normal Fermi liquid. Thus, to one value of a quasi-
momentum there correspond one value of the energy of
bare particles and two quasiparticle energies differing
by the Hubbard gap [see, for example, (5.58)]. This
obviously violates the principal postulate of Landau’s
theory that there must be a mutual one-to-one corre-
spondence between the states of particles and quasipar-
ticles. This implies the violation of other important
points of the Fermi liquid theory, such as the Landau—
Luttinger theorem on the invariance of the volume of
the Fermi surface. Indeed, when the number of elec-
trons is the same as the number of lattice sites, N, = N,
the Fermi surface volume for the bare particles is half
the volume of the Brillouin zone, €, owing to the
twofold degeneracy in terms of spin. On the contrary,
with large U all states in the lower Hubbard band with
any k are filled, and the volume of the “Fermi surface”
separating the filled and empty states is thus Qg One
may therefore expect that, in the case of N, # N as well,
the properties of a many-electron system at sufficiently
large U will qualitatively differ from those of the nor-
mal Fermi liquid. Those are what we will call strongly
correlated systems. If N, # N, that is, if there are par-
tially filled Hubbard subbands, the substance will be
ametal but possibly with properties different from
those of ordinary metals. One may class among such
systems the heavily doped Mott insulators, including
high-temperature superconductors La,_,Sr,CuQ, and
YBa,Cuy05., , [23], some transition-metal oxides such
as the metallic ferromagnet CrO, [3], the solid solutions
Fe,_.Co,S, with a pyrite structure [74], etc. Many
properties of these systems can be qualitatively inter-
preted in a model with infinitely large Coulomb repul-
sion, U = oo, For definiteness, we will consider the case
of charge carriers in the upper Hubbard subband

(N, > N). Then the condition U — e will signify the

exclusion of couple and hole creation. In such a case,
the Hamiltonian H. (5.47) need not be taken into
account explicitly, and the transfer Hamiltonian H,

{5.46) will take the form

B, = Y uox5x’ =Y 1,X°X7,  (5.75)
k.o ij,o
where Xi” are the Fourier transforms of the operators

Xf ® (5.5). The remaining contributions to the kinetic
energy are eliminated by the exclusion of couple~hole
pair creation.

Despite its apparent simplicity, the Hamiltonian
(5.75} is rather difficult to analyze because of the com-
plicated commutation relations between the X operators.

We begin by reference to the case of a low concen-
tration of couples

N,-N
< 1. (5.76)

c =

In his fundamental work, Nagaoka [751] has rigorously
proved that, for some structures, notably bee and sc lat-
tices in the nearest-neighbor approximation, the ground
state for N, = N 1 is ferromagnetic and saturated (that
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is, with a maximally total spin). Rigorous as it is,
Nagaoka’s proof does not allow one to make any defin-
itive assertion about the state of the system in the ther-
modynamic limit of N tending to infinity. For one thing,
the difference in energy between the ferromagnetic and
nonmagnetic states may generally be small in terms
of 1/N. For another, and more importantly, Nagaoka’s
approach tells very little about the spectrum of electron
and spin excitations. Therefore, it would be a good plan
to supplement it with research on the stability of the sat-
urated ferromagnetic state, from the ouisef oriented
toward the thermodynamic limit but using the parame-
ter (5.76). This task has been achieved by Irkhin and
Katsnel’son [76] through the use of two-time Green’s
functions (see Section 5.5). At the same time, they have
received nontrivial results on the structure of the energy
spectrum of the “Nagaoka ferromagnet.”

We will now set forth a corresponding approach. It
would enable one to investigate the electron and phonon
spectra in this state and it seems rather instructive in
that it gives insight into the unusual character of X oper-
ators compared to Fermi and Bose operators.

We begin by calculating the Green’s function

Gk, E) = (X IX20),, (5.77)

which characterizes the spectrum and state of charge car-
riers with spin down (that is, against the magnetization).
Using the lattice-site representation, we calculate
the commutator required to set up the string of equa-
tions of motion (5.44) with the Hamiltonian (5.75)

ERY L AR ARt

o

(5.78)
=8, (X X+ (1-X7) X1,

Here, we used the rules of multiplication (5.43)
(according to which the terms with j = ! do not contrib-
ute, as can readily be seen, to the commutator) and the
condition of completeness

XX +X2 =1 (5.79)

(the exclusion of lattice sites from the {0) state stems
from the fact that the creation of holes must be accom-
panied by the appearance of additional couples, but this
cannot happen with U tending to infinity). Moreover,
we neglected, by virtue of (5.76), the terms containing

X7 (the gas approximation), Now we will set up the

first equations of the set (5.44) for the Green’s function
(5.77). For this purpose, we take the Fourier transform
of (5.78) and transpose the term with unity from the
right-hand side of (5.78) to its left-hand side. As a
result, we obtain the first equation

[E-4k)] G _(k E)

= o+ Zt(k - q)((X;"Xf_q - X, qu_ S
-4 (5.80)
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where
o= X" +XD=1-(X") (5.81)
At T=0 K, the parameter ¢ in the saturated ferromag-

netic state will be equal to unity. Next, we use the iden-
tities

X;iq = ZX:; i‘zﬂ)"q’ Xy = ZX:X;:W (5.82)
) )

that are obtained according to the multiplication rules
(5.43) by applying the Fourier transformation (which
converts a product to a convolution), and insert them in
(5.80). Now we reduce all the resultant Green’s func-
tions to the “normal” form, in which all X~ stand to the
left of all X*~, For example,

prg “pig
e Te T 22 -

= X; X; + 6pq_XD+f{ - 2X;+Q’

where we used the condition of completeness (5.79).

Next, we consider only the terms of order zero with

respect to the number of couples (that is, we discard all

Green’s functions containing the X*? operators) and the

terms of the first order with respect to the number of
spin departures (magnons)

Ny = <X:;X;->‘

(5.83)

(5.84)
Note that

SN, =(X"X7)=(X")=1-0, (589
p

which does prove the smallness of NV, near the saturated
ferromagnetic state. Then, subject to the approxima-
tions involved, equation (5.80) takes the form

[E-tk)]G.(k, E)
=0+ Y [k~ ~ 1k~ q+p)]Lg kpE), (586

qp
where

Lg kpE) = (X LX X0 XN, (5.87)

Owing to the general form of equation (5.44) and the
Hamiltonian (5.75), the equation of motion for the
function L can be written as

[E-1k—q+p)]Lg kpE)
= (XKL + ik rp-a-D

XXX, (X g ) ) (5.89)

The Green’s function in (5.88) can be simplified owing
to the smallness of N,. For example, in view of (5.18),
we have

XX = 6T XK

=X et KX =X
because, even alone, the operator X"; in (5.88) leads to
the first-order smallness in N, and we may neglect the

(5.89)
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X, immediately following the X,*. (Note that such
estimates can be made solely for operators in normal
form!) We can write out the X~ operator in (5.88)
according to (5.82), then reduce the corresponding
product to the normal form, and use a simplification of
the type (5.89). A similar procedure can be applied to
the average in (5.88). As a final result, we obtain a
closed integral equation for the function L

[E-t(k— q+p)] L(@ kpE) = N, (3,,~ 1)
{(5.90)

+Y [k +p—q-1) ~#k+p~r)] L{r| kpE).
It is convenient o introduce the function

N N -
o(q kpE) = (=701 NPL(k+p q kpE), (5.91)

satisfying, by virtue of (5.90), the integral equation

E ~ (k)
AIkpE) = 8~ s (5.92)

+ E;I,—(q)z [s(k +p - q 1)~ (r)] p(g| KpE).

In view of (5.86) and (5.91), the first two terms of the
series expansion of G_(k, E) in terms of N, take the form

G.(k E) = Emt(k)[l+E—t(k)z(k’ E)] (5.93)
where

2k, E) = Y N, [a~p) ~ (@) ¢(a| kpE). (5.94)

Pq
Using Dyson’s equation for the function G_(k, E)

o
C-05) = Fri -tk B G99)
and comparing (5.95) with (5.93), we see that X(k, E)
must be the same in these equations. Thus, (5.94) yields
an expression for the self-energy of an electron with
spin down. This expression is exact in the linear
approximation with respect to N, and in the zero
approximation with respect to the concentration ¢ of
couples (or holes).

For T'= 0 K (and also (X~~) = 0 and o = 1), equation
(5.95) implies

G_(k, E) = [E—-1k)] ", (5.96)

that is, charge carriers with spin down move as free
particles. Therefore, their distribution function

fi= <X,2,§ Xf) at T'= 0 K is the same as the Fermi func-

tion f(#(k)). To find corrections to the electronic spec-
trum at finite temperatures, one needs fo solve the
integral equation (5.94). For an sc lattice in the nearest-
neighbor approximation, this can be done exactly,
because its kernel is degenerate [76]. Furthermore, one
needs an expression for N, at least for small p, which
alone are important at fow temperatures. Such an
expression will be derived later in this same section by
calculating the spin (magnon) Green’s function. If one
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wishes to evaluate the latter, one needs to know the
electronic spectrum. The general form of N, for small p
may be determined without making any of the calcula-
tions to be done later. From phenomenological consid-
erations and on neglecting relativistic interactions with
any model of the ferromagnet, we have for the energy
of a magnon

®,=Dp?, p<a’, (5.97)
(a is the lattice parameter) and
(l)p -1
N, = (exp-T— -1y, (5.98)

where D is the spin stiffness constant [77]. An explicit
expression for D in the model in question will be
derived later. Then, for the temperature dependence of
the conduction band bottom (k = 0}, we obtain [76]

3L(5/2)Q 52
At =t (D)~ t,(T=0) = Km [%J s
(5.99)

where { is the zeta function, £, is the volume of the unit

cell, m* is the effective mass of conduction electrons at
the bottom of the conduction band, and x is a numerical
factor approximately equal to 0.656 for the sc lattice.

For k < (T/D) " [76], the damping of electronic
states near the band bottom is

155(7/12)8 72
= x2w5ﬁwﬂk(£) . (5.100)

2560 m* D
For thermal electrons [k ~ (m*T)!2], it is proportional
to 74 and is small at low temperatures.

An entirely different picture of the spectrum

emerges for the electronic states with spin up. In the
language of the polar model, they are associated with

k

- the transition of a couple to a “simple” site with spin

down and are described by the Green’s function

Gk, B) = (OG1X50),. (5.101)

In the ground state, no sites exist in the |- state, and, it
would seem that such states should not exist at all. But
the identity

X?G X?Z — Xizz
[see (5.43)] implies the sum rule

SO = T - o

whereby the complete filling must be the same for elec-
tronic states with spins up and down. This alone indi-
cates that the Green’s function G.(k, E) must show a
rather unusual behavior. In evaluating it, it is convenient
to use the relation (5.82) and to write the function as

G.(E) = Y (XL XN, (5.104)
q

(5.102)

(5.103)
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Using the equation of motion (5.44), evaluating and
transforming the commutator similar to the method
used in evaluating G_(k, E}, wé have

(E -tk + QI XX JXYs = Nyt fiy g (5.105)
Here, we retained the small Fermi distribution function

fera = (Xy, X0 ) because it is comparable with the

likewise small quantity N, Substituting (5.105) in
(5.104) yields

_ N, +fk+
G,k E) = ;m

As a function of the complex variable £, the Green’s
function (5.106) has not poles but only branch cuts. At
T = 0 K, it is independent of k, and the distribution
function of electrons with spin up

(5.106)

(XU %) = —(1/m) Im jdEﬂE‘)G+(k,E) = ¢
. (5.107)

is constant over the entire Brillouin zone [of course, the
relation (5.103) is then satisfied]. By the general theo-
remn of the accelerating action of an electric field on the
many-electron system of the crystal [78], those are
zero-current states. It is only at finite temperatures that
they contribute to the conductivity ¢ owing to the term
proportional to N, in (5.106). Calculation of this contri-
bution by Kubo’s equation in [76] has yielded

el -ts/pmt i
At the same time, for the contribution of electrons with
spin down, we have

2
G = ce i B _i“
T om QyYewr, TV

[see (5.100)], and o_ 3> @, at low temperatures.

A very unusual contribution to the total density of
states N(E) comes from electrons with spin up. From
(5.106) and (5.96), we have for T=0K

1 Ny(E), E<Ey,

N(E) = -%gzmm(k,ﬁu - { 0. E>E.
(5.110)
N_(E) = Ny{(E), (5.111H)

where Ny(E) is the initial density of states (5.48) and Eg
is the Fermi energy for electrons with spin down. The
physical significance of (5.110) and (5.111) is fairly
simple. To determine N(E) for E < Eg, one needs to
remove the particles from the system. In doing so, one
breaks up a couple and may choose an electron with
spin up or spin down with equal probability. Therefore,
for occupied states, N.(E) = N_(E). To determine the
densities of states for E > E, one needs to place the par-
ticles in the corresponding states, which cannot be done

3
°1%  (5.108)

(5.109)
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N_E)
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Fig. 5.3. Schematic representation of the density of elec-
tronic states in the upper Hubbard subband (the band of
couples) for I equal to infinity. The filled states are shown
as shaded.

for electrons with spin up because of the Pauli exclu-
sion principle. Therefore, N.(E > E) = 0.

The jump N(E) at E = Ey, resulting from (5.110),
spreads out when one takes into account the magnon
frequency. Instead of (5.106), a more careful calcula-
tion [76] yields T

N, +f k+q
G, (kEy= Y — 1
* }; E—g,, ,+0,

Then, in view of (5.97), it can be shown that (5.110)
will hold as before for Ex— E > @, where @ is the max-
imum frequency of magnons, and

N,(E)~ (Eg—E)* for 0<E;~E <®. (5.113)

A diagram of N(E) for the case at hand is shown in
Fig. 5.3. For the first time, a result similar to (5.113)
was obtained by Edwards and Hertz {79] for the broad-
band Hubbard model.

Thus, it has been proved for narrow-band Hubbard
ferromagnetism with ¢ <€ 1 that nonquasiparticle states
associated with the branch cuts (but not poles) of the
Green’s function exist. Those are nearly zero-current
states (that is, making a small contribution to the con-
ductivity) and yield a contribution to the density of-
states suddenly changing near Eg. This is forceful evi-
dence that the systems in question are different from the
Fermi liquid. Interestingly, as is shown in [80], the non-
quasiparticle states in the case at hand contribute a lin-
ear term to heat capacity. For ¢ <€ 1, this term is many
times greater than the usual band contribution from
electrons with spin down. The existence of nonquasi-
particle states is a characteristic and important property
of strongly correlated ferromagnets [76, 79, 80].

We now proceed to calculate the magnon spectrum.
As a matter of fact, this will provide enough ground for

(5.112)
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substantiating the adopted hypothesis about the ground
state. Acting similar to Irkhin and Katsnel’son [76], we
calculate the commutator two-time Green’s function

(g, ®) = XX, (5.114)

in zero approximation with respect to N, (that is, for
T = 0) and in a linear approximation with respect to the
electronic distribution function. By writing the equa-
tion of motion (5.44) for the Green’s function (5.114)
and applying transformations similar to those used in
deriving G_(k, E) [see (5.90)], we obtain

ol(q, ®)

=M+ z [etk — q) — 1(K)] <<Xq: kXTEX:;»“’
k

=M+ Y [k~ q) - (k)] ©(k| qra),

Kk r

(5.115)

where
Bk qro) = (XX, X0, (5.116)

and M = (X** — X~ is the relative magnetization. For
the saturated state at T=0 K, M = 1 — ¢. Subsequently,
when setting up and solving the set of equations, we
may set

(O xPAIXTY), = 0;
(X AKD), =0,

q
for any operator A. This is because the first function is
proportional 1o the product of the small occupation
numbers of couples, and the second, to the occupation
numbers of couples and N,,. This leads to the equation
of motion for the function ® from (5.116)

(5.117)

[0~ #k) + 1(r)] (k| gro)
= Smfr - <XE: ;1k+rX;2— q>

+ YO KX, e (KX X X0 (5.118)
f

- XE;X;:rX;:ka-rXI:ZIX:))@-

By using (5.43), reducing the products of X-operators
of the “Bose” type to the normal form, and discarding,
in accordance with (5.117), the small terms, we obtain

(X X X0,
= X X XXX, G119
P

=~ Ok| qro) + ®(g -k +p +flqro),

and, similarly, for the remaining Green’s functions
entering into (5.118). For the second term on the right-
hand side of (5.118), we have
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<X-2—: X;: k+ rXi_:z— q>

= (X K oK)~ e
14

Inserting all of the above expressions in (5.118) and
introducing the function

(5.120)

Xkl qre) = ® DK| qro), (5.12D)

we obtain for it a closed integral equation of the form
W

X qro) =8, — o

1

* ST & L+ a0~ 0l are).

(5.122)

Similar to (5.95), using the Dyson equation for the
function T(q®) from (5.114) '
M

@ -Tl(qw)’
recovering IT{qw) from the first two terms of the series
expansion I'(q) in terms of f;, and noting (5.115) and

(5.121), we obtain [compare with the similar derivation
of (5.94)]

M(gw) = Y [#k— @) - 1)1 £,x(K qre). (5.124)
kr

T(qw) = (5.123)

For q tending to zero, we have ®, =T1(q, 0) = Dg’ in full
agreement with (5.97). The integral equation (5.122)
has the same kernel as (5.92) and can be solved simi-
larly. For the spin stiffness constant D in an sc lattice
with a = 1, we have

D = xelt], (5.125)

where x = 0.656 is the same constant as in (5.99) and
(5.100). The result (5.125) follows from the one
obtained by Nagaoka [75] for N, = N + 1 upon the nat-
ural change 1/N - ¢. It can be shown that the magnon
spectrum for a simple cubic lattice is positive definite
for all q, and the magnetization M, defined self-consis-
tently from I'(q, 0) in (5.123) according to spectral rela-
tions, is

M=1-¢c-2X")

P (5.126)
=1-c+ %2 j doN,(0)ImT(qw),

q oo

where Ng(w) = fexp (®/T) ~ 117" is the Bose func-
tion. Thus equals 1 — ¢ at T = 0. In this sense, our
hypothesis regarding the saturated ferromagnetic state
proves self-consistent, ((X~) = 0 for T'= 0; that is, the
magnetization is maximally tpossible.) By contrast, the
spectrum of spin waves for fcc and hep lattices at t < 0
in the nearest-neighbor approximation is not positively
definite [75]. The cause for this is that the density of
electronic states Ny(E) at the lower edge of the energy
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band diverges, which is untypical of three-dimensional
lattices; the divergence 1s removed when considering
the next-nearest neighbors. One may therefore think that,
in reality, the ferromagnetic state is stable at small ¢ [76].

Considerir%g the succeeding terms of the series
expansion of I'(q, ) with respect to N, one can calcu-
late the temperature dependence for the frequency o,

and damping ;‘;q of magnons and for the magnetization

M [76, 80]. We will give, without derivation, only the
results of these rather tedious but basically simple cal-
culations.

The damping of magnons takes the form

o 35185 1.2
4 0,3
Yo = ) B.127h
4 0 42 T 5
gT 3kp[lna)—;+3} T's>w,
where
6 13
¢
kp = (wgo ) (5.128)

is the Fermi momentum for the saturated ferromagnetic
case.

The spin stiffness constant varies with temperature
as
o d
— = —— 2 U -~k
DT) = D(O) = 5 TNED - m™(E7)
szd o 5 - Q 2 5/
MTzinwuwfwg(g/g) ) m__;;(lm) ,
e’ T 12 ar? ) m" " D(0)
(5.129)

where m™!(E) is the reciprocal effective electronic mass
averaged over the constant-energy surface, m*;‘ is ifs
value at the bottom of the band, and ® = 4Dk;, is the
characteristic magnon frequency. The first term on the
right of (5.129) is due to the Fermi distribution function
in (5.124), the second is due to the interaction of
magnons with charge carriers, and the third, due to the
magnon-magnon interaction. The expressions (5.127)
and (5.129) are derived in the leading orders of the
reciprocal number of nearest neighbors and can change
by numerical factors of about unity. Finally, the magne-
tization strictly obeys Bloch’s T¥? law

M=1-c-3N,
|4

The coefficient facing N, in (5.130) is equal to unity,
that is, as in a ferromagnetic dielectric, each magnon
reduces the total spin by 1. To obtain this correct answer,
one should, when calculating M by equation (5.126),
take into account the contribution both from the poles
and from the branch cuts of the function I'(q, ®).

The case ¢ <€ 1 and T = 0, which we just considered,
allows a rigorous analysis and is basic to an under-
standing of narrow-band ferromagnets, much as the

(5.130)
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(a) ®

Fig. 54. Energy spectrum diagrams for {a) FeS; and (b)
COSz.

Heisenberg model is basic to an understanding of ferro-
magnetic insulators. However, the situation becomes
confused and ambiguous away from this range of
parameters. In the next section, we will present a rele-
vant view based on a study by Auslender et al. [81]. We
think it to be most convincing because it is in qualita-
tive agreement with a certain set of experimental data,
which we proceed to analyze.

5.6.2. Local Magnetic Moments in Narrow-Band
Ferromagnets. Application to Fe, _,Co,S,. In connec-
tion with the ferromagnetism of strongly correlated
systems considered herein, special interest is evoked
by experimental data on Fe,_,Co,S, solid solutions
with a pyrite structure [74]. They have a fairly sirople
band structure, and one can therefore regard this sys-
tem as a model one. In FeS,, the splitting of the d states
of Fe in the crystal field into the #,, and e, bands is
greater than the Hund exchange interaction. ’i’hereforc,
this substance is a nonmagnetic semiconductor, in
which the 1,, energy band is completely filled and the
twofold-degenerate narrow e, band is empty (its width
is about 1 eV) (Fig. 5.4). The electronic spectrum of
substances with a pyrite structure was siudied by Folk-
erts et al. [82].

Upon substitution of cobalt for iron, the e, band,
which is only one-fourth filled in the ferromagnetic
metal CoS,, is gradually filled. The isostructural com-
pound NiS, with its e, band half-filled is an antiferro-
magnetic Mott insulator [3]. This alone is evidence
that strong interelectron correlations play a decisive
role in the solid-solution system in question. Accord-
ing to Jarrett et al. [74], the most unusual feature of the
Fe;_,Co,S, system is that it is ferromagnetic, even at
extremely low concentrations of conduction electrons,
n = x < {.03. In fact, it is not unlikely that the critical
concentration is still lower or is nonexistent because at
lower x all or some electrons are localized owing to dis-
order. Ferromagnetism remains saturated up to x = 0.15.
In contrast to ordinary weak itinerant ferromagnets
(such as Ni-Rh alloys), however, there are no signs of
any exchange enhancement of Pauli spin susceptibility
in the paramagnetic region of compositions; the
Curie-Weiss law is satisfied at practically any concen-
tration n of conduction electrons, and the Curie con-
stant C is proportional to n. This behavior seems rather
unusual because at low n the gas approximation must
hold, and, according to Kanamori [83], this rules out
ferromagnetism. Indeed, in Kanamori’s theory [83], the
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criterion of ferromagnetism takes the form of the
Stoner criterion (see Ch. 4), except that Stoner’s [ is
replaced by a quantity on the order of the conduction
band width, and N(Eg) tends to zero for n tending to
zero. The situation might be different if there were a
sharp N(F} peak near the lower edge of the band, but
the band calculations performed by Folkerts et al. [82]
do not confirm that. Moreover, in Kanamori’s theory
the magnetic susceptibility does not obey the Curie-
Weiss law.

The latter impediment is fundamental. The point is
that if one interprets the Curie—Weiss law in a most nat-
ural way as arising from the existence of localized mag-
netic moments, then one will not obtain it with any
approach that draws upon the perturbation theory and
the Fermi liquid picture of the electronic spectrum (for
a more detailed discussion of the matter, see Ch. 4).
A standard procedure whereby one can deduce the
existence of localized magnetic moments in itinerant
ferromagnets is to use a static approximation in the
functional integration method (see Section 4.4); with it,
one replaces a translationally invariant system by a
spin-disordered one. Physically, this is a quite reason-
able approximation (albeit not controllable in accu-
racy). On the other hand, it is desirable to be able to
deduce the existence of localized magnetic moments by
a regular and, possibly, traditional method, such as the
Green’s function method. Among other things, this
would enable one to allow for the dynamic behavior of
spin fluctuations from the outset. Following the suit set
by Auslender et al. [81], we will set forth such a tech-
nique, which yields a qualitatively correct description
of ferromagnetism in Fe, _,Co,S,.

To begin with, note that the picture of the electronic
spectrum described in subsection 5.6.1 holds solely at
fow temperatures and for the saturated ferromagnetic
state, where the itinerant motion of electrons with spin
up is ruled out. In cases where the magnetization M is

low (high temperatures or fairly large c¢), however,

charge carriers with both spin projections are suffi-
ciently well-defined quasiparticles and can be
described by approximations of the Hubbard I type (see
Section 5.5). As demonstrated in {76], the Green's
function (5.112) is replaced by an expression of the
“band-theoretic” type

c+{X)
E—tk) (c+ (XY

G.(k E) = (5.131)

at ¢ # 0 and (X" = const/z, where z is the number of
nearest neighbors. In such a case, the structure of the
series involved in the perturbation theory is changed.

Keeping in mind the specific Fe, _,Co.S, system, we
now proceed from couples to holes and consider a model
with the Hamiltonian

(5.132)

I

H= Y exixs’ - %hz (X ~X),
ko i
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where % is the magnetic field strength in the units of yg
and g(k) = —«k) [cf. (5.75)], which corresponds to the
case

(5.133)

We will neglect the twofold degeneracy of the ¢, band
because it is immaterial for small n. Our objective is to
calculate the magnetization (more accurately, the aver-
age spin)

(8§ = %(m —n)=M/2, n,={X"") (5.134)

O<e=l-n<l.

and the susceptibility in the paramagnetic phase,
X = ($%/h. In theory, one can evaluate (§) either from
the Green’s function G,(k, E), in terms of which one
can express ng or from the two-time commutator
Green’s function (5.114) [see also (5.126)]. The latter
method is more fruitful in describing magnetic proper-
ties, so we will use it.

To begin with, we set up the first two equations of
the set (5.44) for the Green’s function I'(q, @) with the
Hamiltonian (5.132)

(w—-h)T(q, )

=n, =+ (&g~ 8Kl XX (5.135)
k

[0—g(n, +c)+e,_ (n_+c)—h] ((Xﬁi kXﬁ“IX;*))m

=y = Mot (8 Mg~ &) TG, )
* ESP((Xﬁ:kS (Xﬁomp + X:cip) X;;O
P

“X?.;a(xﬁe-k+p+x;k+ii)x;0 :
XSS (G) — 8 (X X Tk X s

(5.136)
where 3A=A~{AYand n, = (XE ﬁX:O>. By neglecting
the fluctuation term in (5.136) (which contains a sum
over p), we obtain a closed system of equations and can
explicitly define I'(q, ®)

+
" W—-h—T +7T

I'g,m) = I:2<SZ>+E (ny “‘nk-q} (Ek“qmgk)}

k-q

- -1
(8;;”: — & _ Mg (8_— &)
~q q k-g k
x[m—m»z P ,
" O—h—1Ty +T,_,

(5.137)
where
© = [-1%‘—‘? e Sﬂ £ (5.138)
1 "'i"‘ Fa [+] Gh
n = [TC +o(s >] fE 2. (5.139)
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The expression (5.139) was derived from the Fermi
Green’s functions Gk, E) taken in the Hubbard
approximation I. Therefore, as noted earlier, it does not
hold for low ¢ and T (for ny).

We are interested in either the paramagnetic phase
(h = 0, (5% =k — 0) or the ferromagnetic phase away
from saturation ({(§%) <€ 1). In such cases, the numerator
and the denominator in (5.137) can be expanded in
a series in terms of (5% and A, thus yielding an expres-
sion of the form

wA(g, ®) +{$B(g, ®) + h((g, )

I'(g, ®) = ,(5.140)
o ~($)D(q, ©) - hE(g, ©)
where
Fy_o—F
AQ ) =L@ @)Y, " (514D
k k—-g k
-1
— 2 Py qTu—q= FxTy

Lig, ®) = [1 iy C; TSR (5.142)

and T, = &, (1 +c) /2, Fy=f(1). The other functions

in (5.140) are rather complex in structure. The expres-
sions that foliow will include only their values for 0= 0:

B(q,0)=b, = L(q, 0)

2 9 Fo.q—Fy |
x[”“—cz(atk(rkﬂ‘) T“'zk_ —'ck) ’
k q

(5.143)
_ _ aFk Fic—q_Fk .
C(g, 0)=c, = L(g, 0)2, (3. m) ; (5.144)
D(q,0)=d,
81(q,0) Fy_q=Fi oF,
= = Ty =—); (5.145
(1+c)2§k: KT T COT ( )

E(g,0)=e, = L{q, 0)

) Ty -qF kg~ TFx oF,
x[”uc;( Tyog— T 'c“_éﬁ) '
(5.146)

if one sets 2 = 0 and {§% = 0 in (5.140) from the outset,
then I'(q, ) = A(q, ®). The expression for this function
in (5.141) takes the usual form of the random-phase
approximation with the Stoner enhancement L{q, ). In
these circumstances, the Curie—Weiss law cannot, of
course, be obtained. If, however, one inserts (5.140) in
equation (5.126) for M = 2(§%), while retaining h and
{59 in the numerator and denominator, and writes the
integral with the Bose distribution function in a com-
plex plane for small 4 and (§%), one will obtain the addi-
tional contribution from the pole of (5.140) at the point

0 = (S9d, + he, (5.147)
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corresponding to the itinerant mode. After calculations,
one may let A tend to zero (assuming that A <€ 7). As a
result, one will obtain the equation for % in the para-
magnetic phase

1-¢ 1m ) o
—t J‘ dolm Y A(q, © + i0)coth -
. _

g

(5.148)

= Xbgteq
= T% [A(q, O) + m] .

In the left-hand side of (5.148) for T <€ Ep one may set
T = 0 [in accordance with (5.143), the expression for
A(q, ®) implies that it depends on T only via the param-
eter T/Eg]. At the same time, the right-hand side
of (5.148) contains the temperature 7' arising from
coth ({Dq/ZT) =2T/0, forh < T. Then, one can see
that ¥ obeys the Curie—Weiss law
=<
x - T""‘ TC’

where T is the Curie temperature definable from
(5.148) for ¢ tending to infinity

(5.149)

lemc 1} :
To = ["”5," + E!dwlm );A(q, o+ :0)}

-1

b
x [2 (Alg, 0) + d—:)}
q

Thus, the transition to the limit & —» 0 is nontrivial. It
then follows that, if one calculates the susceptibility in
the paramagnetic phase by the Green’s function method
at once in a field h = 0, as is usually done, one will not
deduce localized magnetic moments (the Curie~Weiss
law). The above procedure for calculating ¢ and {$%) is
a complicated version of the Tyablikov approximation
for the Heisenberg model [84], where one faces the
same problem involving the limiting transition 2 — 0
for T> T.. Apparently, it is specific precisely for a sys-
tem with localized magnetic moments. For purely itin-
erant paramagnets, one can calculate the susceptibility
in a direct way for & = 0 immediately.

A significant feature of the above approximation is
that it describes the ferromagnetic state down to the
charge-carrier concentration n tending to zero. It is not
clear whether this is a merit or a demerit of the approx-
imation. The point is as follows. On the one hand, it
would be natural to expect that with very small n one
should pass to the gas limit where, according to Kan-
amori [83], ferromagnetism cannot exist. On the other
hand, judging from experimental data on Fe; _,Co,S,,
this critical concentration may prove to tend toward
zero. We will give, without derivation, the characteris-
tics of the ferromagnetic state in the proposed approach
forn < 1. For T=0and n < 1, we have an unsaturated
ferromagnetic state

(5.150)

an
Sﬂ = “““é““‘,
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(5.151)

o= 22 (Ex_q — &) B(E,_— &Y <1
o BBt 8

For the Curie temperature, we have

§£’ M Q (5.152)
2 o o .

and for y, at 7. € T < E;, we obtain the Curie~Weiss
law (5.149), where

Te =

So
C=—.
2
Thus, for n < 1, the main characteristics of the ferro-

magnetic state are
on
2
where D is the spin stiffness constant. The above results
are in gualitative agreement with the general picture of
the magnetic properties of Fe, _,Co,S,. Thus, it is true
that the existence of localized magnetic moments,
revealed by the Curie—Weiss law, is closely related to the
structure of the electronic spectrum typical of strongly

correlated systems (Hubbard subbands), as discussed in
Section 5.4 from entirely different considerations.

(5.153)

So=2C=—-, D~-an’? T,-an'’ (5154

3.7. Spin Polarons and Phase Separation

A very interesting property of strongly correlated
systems is that there is a possibility for couples and
holes to experience self-localization so that they “lock™
themselves in a kind of a magnetic drop known as a spin
polaron [85, 86]. This phenomenon is akin to the for-
mation of self-localized states in magnetic semiconduc-
tors [87 - 90], also known as ferrons [88, 89] and
fluctuons [87].

As previously discussed in detail (see Section 5.3),
the Hubbard model in the limit of narrow bands W< U
for ¢ = 0 reduces to the Heisenberg antiferromagnetic

model with the exchange integrals J; = 2|¢,{>/U. At the -

same time, for U = ¢ and ¢ # 0, the ground state is fer-
romagnetic (see Section 5.6).

This prompts one to wonder about the nature of the
ground state for small but finite values of ¢ and |¢|/U,
when one observes a competition between the tenden-
cies to ferromagnetic and antiferromagnetic order. It
has been hypothesized that this might lead to the forma-
tion of “skewed structures” with the mutually perpen-
dicular vectors of ferro- and antiferromagnetism [91].
An energetically more favorable development is, how-
ever, the formation of spin polarons (ferromagnetic
drops in an antiferromagnetic matrix) examined in [85].
Note that these spin polarons are an analog (in the nar-
row-band limit) of ferrons considered by Nagaev in the
s—d exchange model (see [88, 89] and the references
given there). That phase separation is more favorable
energetically in the narmrow-band, almost half-filled
Hubbard model was deronstrated by Visscher [85] by
numerical calculations and from simple qualitative
considerations (see also [3]). According to these con-
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siderations, if an electron is situated in a ferromagnetic
region, it gains, in comparison with the case of an anti-
ferromagnetic environment, an energy |¢ (because the
band experiences an antiferromagnetic narrowing, see
above). At the same time, some energy is lost in the
exchange interaction between localized spins (5.15).
Because of this, an electron can establish ferromagnetic
order only in a region of a finite size L. In addition to
the exchange-interaction energy, there is also a loss of
the “zero-point” energy related to the indeterminacy of
the electronic momentum ~#A/L (a similar issue was
raised for the first time in [92]). Then, the energy of an
electron locked in a ferromagnetic region is estimated as

3

At ol (L
~ =1 -4, 5.155
E(L) m*L2+ i (a] |4 ( )
where a is the lattice parameter, m*~ £%/|t|a® is the
effective mass, and numerical factors on the order of
unity are dropped. By minimizing (5.155) with respect
to L, we find for the optimal size L, an estimate of the
form

Ly~ a(Ulzjt))'". (5.156)

Moreover, for U » z|z|, equations (5.155) and (5.156)
imply that E(Ly) < 0, and self-localization proves to be
energetically favorable. Simple estimates do not give
enough ground for one to determine if spin polarons
can coalesce into macroscopic drops, as Visscher [85]
believes they can. Probably, an important factor here is
the long-range part of Coulomb interaction, not taken
into account in the Hubbard model (see [89]). We will
not discuss the structure of the two-phase region. From
(5.156) it is possible to form an estimate for its bound-
ary, which is subject to the condition that the total vol-
ume of drops is smaller than the volume of the crystal

L3
¢ =
c(a)~l.

Equations (5.156) and (5.157) imply that
3/5

()

When the inverse inequality is satisfied, ferromagnetic
order establishes itself throughout the system. Appar-
ently, there is direct experimental evidence for the
existence of a two-phase region in LaMnQ;-based solid
solutions (a situation of the Hubbard model type: the
charge carriers are Mn** ions with Mn3* in the back-
ground) and also in alloyed EuSe and EuTe (a situation
of the s—d exchange model type) [89].

Auslender and Katsnel’son [86] derived an effective
spin Hamiltonian for 0 <¢ <€ 1 and 0 < }t}/U < 1, which
describes phase separation. To this end, they used the
functional integral method in the static approximation
{see (4.41) and (4.42)]. The usual procedure, as
described in detail in Section 5.4, involves calculating
the mean Green’s function in some approximation. This
is not enough for obtaining the effective spin Hamilto-

(5.157)

(5.158)
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nian because one should be able to calculate the energy
of the system and, consequently, the Green’s function
for each random realization of the unit vectors magne-
tization € = €,/|&] [see (4.42)]. A similar problem
arises in the case of Anderson localization in disordered
systems (see [93]). As Abou-Chacra et al. [94] showed,
it can be solved on the so-called Bethe lattice (the Cay-
ley tree), in which there are no closed paths, without
self-intersections, of three or more sites [93] (Fig. 5.5).

Instead of a ri%_orqus derivation of the applicable
equation, we will limit ourselves to a “physical” rea-

soning, which will nevertheless yield a rigorous result.
The Green’s function G, {) [the Fourier transform
(5.161)] bhas the significance of the amplitude of the
probability of finding an electron on the ith lattice point
at time ¢ subject to finding it on the same lattice point at
time 0. This amplitude involves two outcomes: either
the electron stays on that lattice point at any time (the

probability amplitude G,-‘,-m (1) is the Green’s function
for t = 0) or it hops to a neighboring lattice point at
some instant T < T Fthe transition amplitude is the trans-

fer integral £) and back (or else it will never come back
to the original site on the Bethe lattice). Therefore, one
may write a Dyson-like equation (in the site represen-
tation) as

7 T
G = G @+ 3 [0 G P (€)G gt~ T),
Pei 0 (5.159)

where p labels the nearest neighbors. By applying the
Fourier transformation G (t) — Gy(F) and taking
advantage of the explicit form

A D) 1
G (E) = NS
E-£6

we derive from (5.159) the closed equation

(5.160)

-1 z -
Gi(E) = E~28~1" Y Girpirs(E),  (5.161)
p=1i
for each realization of the vectors €,. We seek the solu-
tion of equation (5.161) in the form

Pt A
Gi (E) = a;+bG . (5.162)

Then,
Gii(E) = Xi(ai_'_bi% ). (5.163)

Substituting (5.162) and (5.163) in (5.161) yields a sys-
tem of equations for g; and b;. Solving it by iterations
with respect to t subject to the condition || <€ &, we
find that X; satisfies the equation

208 XX, (E’+€%ee,, )
2:‘ " e (5.164)

+X,(&~E") +1=0.
We introduce a quantity

1
cos8, = -Z.);e,.ew, (5.165)
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Fig. 5.5. Bethe lattice (Cayley tree).

which characterizes short-range ferromagnetic order
(6; = 0) or short-range antiferromagnetic order (9; = 7).
If cos 6, is taken to be a smooth function, then X, , = X,,
and equation (5.164) can be solved explicitly. Next, we
find the total energy E, which can be expressed in terms
of G(E) and, in the final analysis, in terms of X,(F). The
simplest way to do this is by using the Hellman-Feyn-
man theorem

JE _/d + '
3t = <“‘a““§i> = 2 <C,~GC,-+p'c>,‘

iitp, G

(5.166)

and by expressing the average on the right-hand side of
(5.166) in terms of the Green’s function in the spectral
representation

(€iotirpioy = ~xIm [ dERE)[Gyis B, (5167)

Finally, we can minimize the resultant energy E(cos0))
with respect to the distribution of 9;. The results can be
summed up as follows. Above all, we confirmed the
qualitative finding stated earlier that it is advantageous
to separate the system into ferromagnetic regions (con-
taining all charge carriers) and antiferromagnetic insu-
lating regions (containing no charge carriers).

The total energy E of the system in the two-phase
region, such that cos,/2 = 1 in the volume fraction x
(the ferromagnetic phase) and cos8,/2 = 0 in the vol-
ume fraction 1 — x (the antiferromagnetic phase), is

2

E) =271 cN+ 2 xn
2¢g,

s 0 {5.168)
+ g (W{EJ zm[tEcﬂsx—mN,

50 2

where £, ~ U/2 is the length of the vectors €, Minimiz-
ing (5.168) with respect to x, we find the expression for
its optimal value

3
wee5(5)
ANy

35

(5.169)
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Then, bearing on the problem of electron localization and
. delocalization.
E(xp) 1”2 5zt ) . .
i =227 e+ 5 %o, (5.170) Doped Mott insulators are usually described in
0 terms of the narrow-band version of the Hubbard model

If we calculate, for purposes of comparison, the en-
ergy of a skewed structure in a homogeneous phase
(cos0,/2 = const), then we will find that, for

273
c<cy = 32 il
o7 143 €
[cf. (5.158)], it lies above the energy of the two-phase
region given by (5.170). We will further find that the
ferromagnetic and antiferromagnetic regions are sepa-
rated by sharp boundaries (on the order of the lattice
parameter in thickness). For ¢ > ¢, the system is ferro-
magnetic. In fact, these results follow (except for the

numerical coefficients) even from the simple estimates
given at the beginning of this section.

3/5

(5.171)

Because the ferromagnetic phase contains all the
charge carriers, the system owes its conductivity at
0 <c<¢y to percolation through the ferromagnetic
regions, and this significantly varies with the specific
structure,

5.8. Comments on Low-Dimensional Systems
and High-Temperature Superconductivity

As already noted in Section 5.1, the upsurge of inter-
est in strongly correlated systems and Mott insulators in
the late 1980s was stimulated by the discovery of high-
temperature superconductors containing CuQ, layers,
such as La, _ (Sr, Ba),Cu0,, YBa,Cu,04.,,, and many
others. Anderson [17, 23] stated most definitely that ail
high-temperature superconductors are alloyed Mott
insulators. However, they strongly differ from tradi-
tional systems. Compare, for example, LaMnO; (see
Section 5.7) and La,CuQ,, which are similar even in
chemical composition. Both are antiferromagnetic
Moitt insulators falling in the perovskite family, except
that La,CuQ, is a layered perovskite and LaMnQ, is
a cubic perovskite. Both change to the conducting
state as the antiferromagnetic order is destroyed when
doped with alkaline-earth metals (La,.. . Sr,CuQ, and
La, _,CaMnQ;), but with a difference. The former
becomes a superconductor and the latter, a ferromag-
net. In our view, an explanation of this difference con-
stitutes a serious problem. Possibly, the cause lies in the
magnitude of spin (§ = 1/2 for Cu?* and § = 3/2 for
Mn?*); possibly, this is due to the specific structural
state and dynamics of the La,CuOy lattice. However, the
most striking difference is the isotropic, three-dimen-
sional electronic and magnetic excitation spectrum of
LaMnO; and the strongly anisotropic quasi-two-
dimensional spectrum of La,CuQy Two-dimensional
strongly correlated systems have been the subject of a
huge number of publications, but they lie outside the
scope of this review. We are forced to limit ourselves to
passing comments only on the aspects that have a direct
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or of the polar model, known as the t—J model, with a
Hamiltonian

= S+ T, (58, én,.nj), (5.172)
ije i

where S, is the spin operator, n; is the operator of the
number of particles on a site, and J; = 2]#;|*/U is the
exchange integral [see (5.15)]. The second term retains
the operator n;, which goes to unity for N, = N, and the
first term [cf. (5.132)] describes hole transport. This
version of the polar model (but applied to the ferromag-
netic case of J; < 0) was apparently investigated for the
first time by Katsnel’son [95]. It was found that in the
one-dimensional case a hole couples with a spin wave
to form a quasiparticle with a band of width |J| (for
[t = IJD. An unexpected result, extremely vital for the
theory of high-temperature superconductors, is that
something similar was observed by Kane ef al. {96] and
by von Szczepanski et al. [97] in the two-dimensional
antiferromagnetic case as well. The scheme leading to
this finding is as follows. One chooses the case of a sin-
gle hole on a plane square lattice with antiferromag-
netic exchange and considers #; and J; in the nearest-
neighbor approximation. To describe the magnetic
subsystem, one passes to the magnon representation
(a transformation due to either Holstein-Primakoff [96]
or Dyson-Maleev [51] and writes the self-energy of
conduction electrons Z(k, E) in terms of the “bold-
faced” second-order perturbation theory, where the
unperturbed Green’s function Gy(k, E) is replaced by its
exact counterpart G(k, E). As shown in [97], this proce-
dure yields results close to those obtained numerically
under the strict diagonalization of the Hamiltonian

© (5.172) on a finite cluster. For T'= 0, the structure of the

self-energy term related to the interaction of the hole
with zero-point vibrations of antiferromagnons takes
the form [96] '

Ik, E) = Y Mk @Gk -¢,E~a), (5173)
9

where M*(k, q) is the electron—antiferromagnon inter-
action matrix element, At the bottom of the band (k =0)

M0, ) ~ [1}*lql forq - O, (5.174)
where q is the momentum of an antiferromagnon and
o, ~ J lq| for q tending to zero is the energy of an anti-
ferromagnon. One uses the dominating-pole approxi-

mation [96], which consists in using the pole
expression in (5.173)

. a
Gk, E) = ECER (5.175)

Vol.76 No.4 1993

LOCALIZED AND ITINERANT BEHAVIOR . 367

where E(k) = a[#(K) — #,;,], on neglecting the contribu- ‘

tion of nonquasiparticle states. Then, for a one has the
condition of self-consistency

1_,_ %205
a oE I,_,
=1+ Y MO, 4
% OV gy G179
2 iql ~ 11
=1+ alt 2—~—w«*~w~w---~1+const—j,

a (allg’ +Jg)

where the integral is evaluated for the two-dimensional
case, in which for |J] < |¢#] it is defined on the domain

of small q. Hence, a ~ |J/¢] and [E(k)| ~ J.

All of this should of course be taken as an elucida-
tion. The actual spectrum £(K) can, it appears, be deter-
mined solely by numerical calculations for clusters [97].
In general, such techniques appear to be in especial
vogue in the theory of strongly correlated systems at
present. Moreover, as is shown in [51], the electronic
spectrum in the two-dimensional ~~J model does not
change its structure on passing to finite temperatures
T <€ J, despite the destruction of antiferromagetic long-
range order, owing to the preservation of short-range
order (see Section 5.4).

Thus, heavy (to the extent of the smallness of |J//)
quasiparticles can be formed in two-dimensional doped
Mott insulators, Anderson [99] proposed an even more
radical assertion that the quasiparticle description is
inapplicable completely to two-dimensional systems
and that the so-called Luttinger liquid is formed in
them. We will make a few notes on this matter without
claiming, of course, either completeness or rigor.

The term “Luttinger liquid” has its origin in the
exactly solvable one-dimensional Tomonaga-Luttinger
model [100]. Let the electronic spectrum be linear in
the qausimomentum

(k>0), (5.177)

where the “+” sign applies to the electrons moving to
the right and the “~ sign to the electrons moving to the
left, with a velocity vi. Then, we may write the kinetic
energy Hamiltonian (for simplicity, we omit the spin
indices) as

Hy = Z vik (G CoiCa) »
k>0
where the subscripts “1” and 2" apply to the electrons
moving to the right and left, respectively. We introduce
the density operator (p>0,i=1,2)

+
pip) = zci,k-t»pcik’
all k

£y = + Vi:k,

(5.178)

(5.179
pp)= Ec:rkcs,mpv
all &
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and write the interaction Hamiltonian as

V=3 U, [p,@)P,p)

p>0
+P,(-P)p, () + P, (2)P(-P) 1,

where L is the length of the system and U, is the inter-
action constant (for simplicity, a contact type of inter-
action is assumed). We then prove that p,(p) and pf )]
are the Bose creation and annihilation operators [accu-
rate to the factor proportional to (pL/2m)'2), that the
Hamiltonian

(5.180)

H=Hy+V, (5.181)

turns out to be quadratic on passing to bosons and can
be diagonalized, and that the single-electron Green’s
functions are proportional to some averages of the expo-
nents of the Bose operators and can be evaluated by
analogy with the Debye-Waller factor for phonons [1].
As a result, for the single-electron Green’s functions,
we have [100]

(E* = vi)*

TEIvi (5.182)

G;‘(ki E) -~
where

2
1-U/2rv,

=3 1] = 4 (7| 5189
2l 1-U/mvy) 8\ ®Vk

and the last equality in (5.183) holds for small U. The
Green’s function (3.182) generally has no poles but it
has branch points for E = £ vk, By the same token and

in contrast to, e.g., Fermi liquid, the distribution function
n, = <cfkc,.k> likewise has no discontinuity for k = tkg,
but it has a singularity of the form (ke £k)# [100]. This
behavior is typical of one-dimensional systems and has,
for example, been observed in the one-dimensional
Hubbard model for N, # N [98]. The situation is less
clear with two-dimensional systems, In this connection,
mention should be made of Wen [101] who, using the
renormalization gzou]f method, demonstrated the sta-
bility of the Luttinger liquid in the case of weak overlap
between chains (that is, in two-dimensional, but quasi-
one-dimensional systems), and Fukuyama et al. {102]
who argue that in two-dimensional systems with weak
interaction the partial derivative dX(k, E)/JE displays a
divergence of the form U/*In|E| (which further implies
a breakdown of the Fermi liquid theory).

In conclusion, we will touch on the superconductiv-
ity of strongly correlated systems (including low-
dimensional ones). With limited space available, we
cannot afford a detailed discussion of many and often
conflicting views on the nature of superconductivity in
real’ metal-oxide systems and any specific “correla-
tional” mechanisms of superconductivity. We will only
dwell in brief on a secondary yet still important issue
admitting a rigorous analysis. This is the electron—
phonon pairing mechanism, but with allowance for
strong electron—electron correlations in the normal phase.
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This issue was investigated by Anokhin et al. [103].
From among their results, we will only give a fairly
compact equation for the superconducting transition
temperature 7, in the case of a weak initial electron—
phonon coupling (the dimensionless constant A > 1),
taking into account the energy, but not momentum
dependence of the self-energy X(F) in the normal phase

AT, ip, ¢ _ NE)
L= i 3 jdE
N (0 3
ol )lpnlmplp(lpn) E'+p

where N(E) is the exact density of states in the normal
phase with allowance for electron—electron interaction
(E is reckoned from the chemical potential level), Ny(E)
is its value without allowance for interaction, @, is the
Debye frequency, and p,, = n(2n + 1)T, are the Matsub-
aru frequencies (n =0, £1, ...)

iPp,) = ip~ 3 [Zip,) ~ 2ip)].

If the Fermi-liquid theory is applicable and the pole
approximation (5.170) is valid, such that a > @y, /{1,
then iP(ip,) = ip,/a, N(E) = Ny(E)/a, and the many-
electron renormalizations cancel outin (5.184). Then T,
takes the form

T. =~ L13wye ™. (5.186)

As Anderson [104] argues, no such cancelation takes
place in the Luttinger-liquid model; instead, the cou-
pling constant A —> constA!” in (5.186) is effectively
increased. In contrast, the “phonon” superconductivity
is completely suppressed in strongly correlated systems
when one applies the Hubbard approximation III (for
both N, <N, U< U, and for N,#N, U> U_)[103]. This
implies that the problem of the nature of high-tempera-
ture superconductivity cannot in theory be divorced
from that of the nature of the normal phase in corre-
sponding systems.

This concludes our roundup of strong-correlation

(5.184)

23
n

(5.185)

effects in 4 systems in connection with the problem of -

electron localization and delocalization. In sumunary,
the following statements may be made and tasks stated.

Strong electron—electron interaction can cause elec-
trons to change from itinerant to localized states so that
a metal becomes an insulator. The electronic states in
the metallic phase near the transition or in the insulat-
ing phase upon doping can be quite unusual. They may
be strongly damped, the effective mass may experience
a large renormalization, the charge carriers may
undergo self-localization, a nonquasiparticie state may
set in, etc. Moreover, there is a strong cross-influence
between the electronic spectrum and magnon (ferro- or
antiferromagnetic) order.

The task of describing this broad range of issues can
in no way be taken as fully achieved at present. The
possibilities of quantitative band-theoretic approaches
still remain unclear. The same is true of the applicabil-
ity of simple Hubbard-type models for describing the
properties of specific systems (say, Fe, _,Co.S, ferro-
magnets or high-temperature superconductors). Nor is
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one certain about the adequacy of specific approxima-
tions within the models themselives. Research on these
matters constitutes a vigorously developing division in
the physics of condensed matter, and the situation here
is rapidly changing all the time. We would like to hope,
however, that the view set forth in this chapter can at
least help the reader to keep track of the key trends in
these changes. ,

In the next chapter, we will consider the f systems,
which significantly differ from the 4 systems in the
degree of electron localization ~ a fact that, as we will
see, leads to qualitatively new traits in electron behavior.

3.9. Conclusion

This chapter dealt with problems that still defy
unambiguous treatment. Despite the huge number of
studies dealing with the theory of strongly correlated
systems (which has increased since the discovery of
high-temperature superconductivity), no generally

accepted universal formalism has been developed yet. -

In this chapter, we dwelt mainly on approaches that
proceed from the localized limit and use the atomic rep-
resentation and X operators as their working tools, and
from the picture of magnetism with localized magnetic
moments. We left out many studies based on the Fermi-
liquid picture and the band-theoretic approach to the
magnetism of strongly correlated systems. We did so
because, as we believe, they are not convincing encugh
even for pure iron (see Ch. 4), to say nothing of narrow-
band magnets.

What follows is a summary of the most essential
findings and methods set forth in this chapter.

1. We gave a general formulation of the polar model
for solids and of the Hubbard model as its special case.
We also discussed at length how to use the X operators,
which seem to give a most natural mathematical
description of strongly correlated systems (Section 5.2).

2. We discussed “naive” approaches to the descrip-
tion of Mott insulators, based on various modifications
of the Hartree—Fock approximation and band-theoretic
calculations (Sections 5.3 and 5.4). In some cases, they
give a befitting description of antiferromagnetic order
and the energy gap in the ground state of a Mott insula-
tor. However, they are all but useless in cases where
long-range order is nonexistent.

3. We described the metal-insulator transition in
the paramagnetic phase within the “alloy” analogy for
spin disorder (Section 5.5). This approach, which goes
back to Hubbard’s classical works, vields a rather
strange picture of the metallic phase (with it, the damp-
ing of the electronic states is finite at the Fermi level
and is even great in comparison with the Fermi energy
near the transition). Even now, heated debates are going
on as to whether this is a limitation of the approxima-
tion or such is physical reality. Whichever is the case,
no other sufficiently consistent and formally developed
approaches to the problems are available.

4. In Section 5.6, we used the Hubbard model to
examine in detail the properties of narrow-band mag-
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nets exemplified by Fe, _,Co,S, solid solutions. Suffi-
ciently rigorous results can be obtained only for an
almost half-filled band. The most interesting of these
findings is the existence of nonquasiparticle (spin-
polaron) states. It ha§ proved possible to construct an
approximate description of tl}e ferromagnqtic state over
a wide range of charge-carrier concentrations. Among
other things, it explains the occurrence of ferromag-
netism at small n and the Curie-Weiss behavior of mag-
netic susceptibility for all “ferromagnetic” compositions.

5. The conflict between the tendency of charge car-
riers in strongly correlated systems to establish ferro-
magnetic order via the “double exchange” mechanism
and the “desire” of the Mott insulator to be an antifer-
romagnet is resolved through phase separation, in
which all charge carriers are locked in ferromagnetic
domains within an antiferromagnetic matrix. A theory
of this striking development is set forth in Section 5.7.

The Jury had each formed a different view

(I.ong before the indictment was read),

And they all spoke at once, so that none of them knew
One word the others had said.

Lewis Carroll, “The Hunting of the Snark”

6. LOCALIZED AND ITINERANT ELECTRONS
IN “ANOMALOUS” f SYSTEMS

This chapter considers matters related to. the
formation of the small energy scale in the f
systems, that is, intermediate-valence and
heavy-fermion systems. This includes hybrid-
ization, exciton condensation, and the Kondo
effect. Main emphasis is placed on narrow-
bandgap mixed-valence semiconductors, and
the so-called Kondo magnets, which display
the transition from localized to itinerant mag-
netism in the narrow range of variations in
external parameters.

6.1. Specific Traits of f Systems

This chapter deals with the degree of electron local-
ization in some classes of the fsystems, Before we pro-
ceed any further, however, it is worth while dwelling on
what distinguishes all f systems from the d systems on
the whole.

Calculations of the wave functions for the electrons
of free atoms and ions reveal a general pattern: the
degree of localization of electronic states abruptly
increases with increasing orbital quantum number I/,
whereas within a series with a given [ it decreases with
increasing principal quantum number n (see Fig. 6.1
(170]). Therefore, the d wave functions are more local-
ized than the f functions, and the 3d states are more
localized than the 4d and 5d states. The most localized
of all states in the partially filled shells are the 4f states
in the atoms and ions of the rare-earth metals, their
alloys, and their compounds. The 5f electrons in the
actinides are as localized as, or somewhat more local-
1zed than, the 3d electrons. More accurate infortmation
can be obtained by band-theoretic calculations. As seen
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from Fig. 6.2 [106], which demonstrates variations in
the width of the 5f band across the actinide series, the
5f states are somewhat delocalized in the “light”
actinides (up to plutonium), where the f band is rela-
tively broad, and are highly localized in the “heavy”
actinides, beginning from americium. Two elements
stand out; they are cerium in the 4fseries and plutonium
in the 5f'series. As was discussed in detail in Section 2.6,
in cerium the electrons change from the itinerant
behavior in the o phase to the localized behavior in the
v phase because of a phenomenon of “collapse.” A sim-
ilar situation exists in plutonium with the transition
from the o to the & phase {107].

With regard to a solid, what counts most is not the
localization radius of the f function, but its ratio to the
interatomic distance. The latter is, in the final analysis,
determined by the localization radius of outer-shell
electrons that are responsible for chemical bonding.
There is, therefore, ample reason to think that the felec-
trons are completely localized in all compounds of all
4f elements, except cerium and all “heavy” 5f elements.
Moreover, they are bound to be localized in the com-
pounds of cerium or “light” 5f elements (for example,
uranium) if the interatomic distances in them are signif-
icantly greater than in the pure elements.

On the whole, such a picture is borne out by a wealth
of experimental data. When one speaks of a strong
localization of electronic states, one means that even in
the crystal they remain “atomlike.” In other words, they
do not form Bloch states but are described by the
orbital, spin, and angular momentum quantum numbers
LSJ. The effects of the crystal structure then reduce to
a weak splitting of the terms with J # 0 [removal of the
(2J +1)-fold degeneracy in accordance with the sym-
metry of the crystal environment]. In a most direct way,
this picture of the f states is confirmed by the equality
of magnetic moments in rare-earth metal crystals and in
the states of free ions [108], and by the neutron spec-
troscopy of local excitations [109].

Among the compounds of the 5f elements, those
best investigated are the uranium compounds. For
them, an empirical rule (the Hill rule) has been estab-
lished, relating the formation of magnetic moments on
uranium ions to the distance between the ions [110]. In
general, the formation of magnetic moments by itself is
a weaker criterion for the localization of the f states
than the fact that their magnitudes are equal to the
“atomic” values. On the whole, the localization of the
5f electrons in the actinides presents a more complex
problem than that of the 4f electrons in the rare-earth
metals.

Everything stated above about the complete local-
ization of the f electrons holds for the overwhelming
majority of rare-earth compounds. There is, however,
quite a number of systems that are anomalous in this
respect. For one thing, their magnetic properties
strongly differ from what one might expect on the basis
of the atomic picture. For another, the local excitations
associated with the term structure and the crystal field
are either nonexistent or strongly diffused. Finally,
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4nrp(r)
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Fig. 6.1. Radial density of 5f electrons (the solid curve)
and 64 electrons (the dashed curve) in an U atom; r is the
radius (a.u.) on a logarithmic scale [170].
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Fig. 6.2. Canonical width W; of the f band across the
actinide series [106].

there are indications that the f electrons take part in the
formation of states near the Fermi energy (for more
detail, see Section 6.5 below). In such “anomalous”
compounds, the f electrons may be regarded as partly
itinerant. Moreover, according to the degree and char-
acter of delocalization, these compounds may be clas-
sified into intermediate-valence (or mixed-valence)
systems (with the f electrons rather strongly itinerant)
and the Kondo lattices or heavy-fermion systems (with
a weak localization of an essentially many-electron
nature).

We will now discuss these two classes of com-
pounds in turn. The intermediate-valence compounds
will be taken up in Sections 6.2 - 6.4 and the heavy-
fermion systems, in Sections 6.5 - 6.10.

6.2, Intermediate Valence: A General Outline

The matter of intermediate (or mixed) valence came
up in Section 2 in connection with the properties of free
atoms. Here, we will consider the properties of real sys-
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tems in the intermediate-valence state. It is not a simple
task to define intermediate valence in formal terms. For
one thing, it is not always clear how one should deter-
mine valence. The simplest and historically first
method of estimating the valence of the rare-earth ele-
ments was based on an analysis of variations in, for
example, the lattice parameter in a sequence of isos-
tructural compounds of different rare earths [111]. If for
any compound of, for example, Sm, the lattice parame-
ter occurred between the values typical of the rare
earths known to be di- or trivalent, the Sm ion was
taken to be in the intermediate-valence state, which
meant that its valence was 2 < n < 3; it was even possi-
ble to estimate n by linear interpolation. However, the
“valence” estimated in such a way needs an elabora-
tion. For example, according to the jump in the lattice
parameter due to a pressure-induced o, —» ¥ transition in
Ce (see Section 2}, the valence of Ce in the ¢ phase
may be recognized as lying between 3 and 4 (in contrast
to trivalent y-Ce). At the same time (as again noted in
Section 2}, more delicate spectroscopic studies provide
unquestionable evidence that the number of electrons
having fsymmetry practically does not change upon the
transition. In other cases, when we speak of a transition
to the intermediate-valence state with a jump in the lat-
tice parameter (for example, in SmS in the isostructural
phase transition under a pressure of 6 kbar from the so-
called “black” to “golden” phase), there is convincing
evidence that the number of f and d electrons actually
does change [112]. Furthermore, by invoking the con-
cept of average valence estimated from sore statistical
properties, we run the risk of mechanically combining
entirely different systems in one class. These may be
golden SmS and transition metals like Ni or Fe (which,
according to band-theoretic calculations [113, 114],
have a fractional number of d electrons), on the one
hand, and systems like magnetite Fe,O, (in which di-
and trivalent Fe ions are ordered in the lattice at a low
temperature {3]), on the other. All in all, there obviously

- is not much sense in average valence. Actually, magne-

tite and metallic nickel represent two extreme cases.
For Fe;0,, we may say that di- and trivalent ions do
coexist in the lattice (except the very slow processes of
hopping conduction [3]). For Ni, this is completely
ruled out because any experiment would demonstrate
that all Ni atoms have the same electronic structure cor-
responding to the average number of d electrons.

What makes intermediate-valence systems so spe-
cific is as follows. When one is to describe some exper-
imentally observed properties, one has to assume ions
of a different valence carrying integer-valued charges,
but equivalent ions carrying an average charge when
one is to describe other properties [111, 112]. For
example, X-ray spectra of golden SmS, SmBg, and
other intermediate-valence systems (in reality, one usu-
ally deals with the Ly spectra determined by the posi-
tion of the core 2p level) display two separated spectral
lines corresponding to Sm* and Sm* ions; from the
ratio of their intensities, one can readily determine the
average valence. On the contrary, the Mdssbauer spec-
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tra of the Sm nucleus in such systems displays only one
Jine with an isomeric shift corresponding to the inter-
mediate valence [111]. The point is that for inter-
mediate-valence systems the characteristic valence
fluctuation time T, is significantly longer than the
atomic times T,, (about 1071% g). Therefore, “fast” meth-
ods (such as X-ray spectroscopy) take, as it were, an
instantaneous picture of “frozen” ions, whereas “slow”
methods with a characteristic time T » 1T, (including
static measurements) yield results determined by the
average valence.

Estimation by various techniques, such as heat-capac-
ity measurements, optical spectroscopy, etc. [111, 112],
yields a characteristic time T, around 107 5. On the
energy scale of the electronic spectrum this corre-
sponds to E ~ /T, = 10 meV. Precisely this type of
scale identifies intermediate valence as a special state
of solids. Among other things, the small energy scale
implies that the physical state involved is highly labile,
that is, readily changeable in a substantial way in
response to relatively weak extraneous factors (pres-
sure, temperature, electric and magnetic fields, etc.).

The specific microscopic mechanisms responsible
for the formation of such an energy and time scale have
yet to be completely elucidated (for a brief discussion,
see Section 2.6). Also, they are apparently different for
Ce, its intermetallic compounds, and compounds of
5f elements, on the one hand, and for the compounds of
Sm and other 4f elements (except Ce, see Section 2.6)
on the other. In the former case, as follows from the
Johanson model discussed in Section 2.6 [115], one has
to deal with a strongly correlated electron liquid in the
f subsystem, which is in principle analogous to the
strongly correlated liquid in the d subsystems. This sit-
uation 1s discussed in Ch. 5. In the sections that follow,
when speaking of intermediate valence, we will have in
mind the second case. In it, the microscopic basis is the
promotion of the flevel to the Fermi level and the tran-
sition of some felectrons to the 5d state (the promotion
model).

6.3. A Simple Single-Electron Model
of Intermediate Valence

In this section, we will demonstrate that many
important features of intermediate-valence systems can
be properly understood without considering many-
electron effects.

If one takes as the starting point the “promotion”
picture, the simplest model should, as a minimum,
include itinerant electrons with an energy #, (and cre-
ation and annihilation operators ¢, and c), localized
electrons with an energy level E, (and creation and
annihilation operators d; and d; in the site representa-
tion), and the coupling between the subsystems, which
in the single-electron approximation can be effected
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only via the terms c¢*d and d*c. Hence, the Hamiltonian
of the model takes the form

B =Y texe,+E Y did,+ VY (dic,+cld),
K i i (6.1)
where ¢; = ¥ ¢, e Visthe hybridization param-
- _
eter assumed constant for simplicity, V; = const, that is,
the hybridization of ¢ and d electrons takes place only
on a given site; and ¢, and E, are reckoned from the
chemical potential.

The model with the Hamiltonian (6.1) is called the
hybridization model. As will be shown later (see Sec-
tions 6.4, 6.5, and 6.8), it is the basis model for a study
into anomalous f systems in the sense that in the sim-
plest approximations the problem of intermediate
valence and the problem of Kondo lattices both reduce
to an effective hybridization model.

To begin with, we turn to the electronic spectrum in
the model (6.1) for an isolated impurity (present at site
i = 0) and for the lattice, when in the k representation
equation (6.1) takes the form

H =Y [toge+ Egdidy + V(diey +cxd)]. (62)
k

The simplest way to solve the single-impurity prob-
lem is to use two-time retarded Green's functions (see
Section 5.5). For the Hamiltonian (6.1) without interac-
tion, they can be evaluated exactly because the string of
equations of motion is now closed. Considering the
explicit form of the Hamiltonian (6.2), equation (5.44)
immediately leads to a closed system of linear equa-
tions for the single-particle Green’s function

(E - Eo) {({difds)) = 1+ VY ({dolei)),

(E— Ep)({dglep)) = VY {{ende),
-

(E—t) <(Ck' [C:» =Jy + V<<d0|6:)>

from which they are all easy to evaluate. The result for
localized electrons takes the form

(dfd)), = 1E-Ey-VRBI
R(E) =Y (E-f+i0)
k

(6.3a)

(6.3b)
=Py (E~1)™ ~inp(®),
k

where p(E) = ES(E — t,) is the density of states of ¢
k

electrons, and P is the principal value symbol. The real
part R(E) describes the shift of the initial level E, and
leads to no qualitative changes. For simplicity, it may be
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(@) (b}

i, 3 E, E

Fig. 6.3. Diagram of the density of electronic states in the
hybridization model for (2) an isolated impurity and (b) the
lattice,

dropped, presuming that it is lumped with E;. Then, (6.3)
corresponds to a quasilocal level with a density of states

1 r
NAE) = —=Im{{dJdy)). = 6.4
4By = () R {(E~Ey) +r23( )

of width I" = V?p(Ey). Also, n, = <dg d0> is the num-
ber of d electrons (*valence™). It is equal to

0
1.1 _E
n, = JdENd(E) = 3+t Y 6.5)
and markedly differs from 0 and 1 for |Ey| = I. If
|V} <€ W (where W is the width of the conduction band)
and |Eg| <€ W (that is, if the localized level is situated
close to the Fermi level), then I' € W determines
the scale of the characteristic valence fluctuation time
T, ~ #/T". Schematically, NAE) is shown in Fig. 6.3a.
For the lattice, the corresponding quadratic form in
the Hamiltonian (6.2) can be diagonalized for every k
by applying the transformation

¢ = cos (8, /2) o, + sin (8, /2) B,,
di, = ~sin (8, /2) o, + cos (6, /2) B,

where 0, is defined so as to cancel out the terms dy B, .
We have :

sinf, = 2V/E,,
12 (6.7)

—E
E 0 E = [(4-E)'+4V]
k

H= z [e, (K)o 00, + E(K)By B, 1, (6.8)
k

Iy
cos Bk =

where &, (k) = (1/2) (1, +E,£E,) are two

branches of the new energy spectrum. Then the renor-
malized density of states is

NE) = 2 [B(E-g, k) + B(E-gxk)]. (6.9

k
It is characterized by split peaks of width ~I" and by a
bandgap (likewise of width ~T") near E = E,,. For smooth
P(E), the graph of N(E) is given in Fig. 6.3b. The trans-
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6.6)

formation of a resonance (a quasilocal level) to a band-
gap in the energy spectrum when one passes from the
single-impurity case to the lattice is a fairly common and
important property of resonance-scattering models.
Indeed, for the band spectrum of a one-dimensional
string of point scatterers, one has the relation [116]

coska = cos(ka + 85(K))/cosdy(x), (6.10)

where £ is the quasimomentum, a is the lattice parame-
ter, K = (2mE/%)'2, and §, is the symmetric-scattering
phase (there is no antisymmetric scattering). Near the
resonance, we have 8,(x) = 1/2 and, by virtue of (6.10),
|coska| > 1 (a forbidden band). Generally, if V depends
on k, as in the hybridization model, or if the model con-
tains nonpoint scatterers [116], then the change-over
from a single impurity to a lattice of scatterers might
produce a pseudogap rather than a gap; it might be
shifted relative to Ey; etc. However, the formation of a
fine resonance structure is a common result. As we will
see in the next section, it is important for an understand-
ing of the physical properties of intermediate-valence
systems.

Thus, the simplest hybridization model (6.1), (6.2)
may yield noninteger-valued valences in the range
0<n; <1 and is able to explain why a small energy
scale I" <€ W exists near the Fermi level. Moreover, the
energy spectrum for the lattice model (6.2) consists of
two bands with well-defined peaks of width T at the
edges, separated by an energy gap, likewise of width T,
Two questions remain, however, unanswered: (1) How
does this picture agree with reality? and (2) How much
will this picture remain unchanged or will change when
one takes into account many-particle effects, which
a priori may be important for the fsystems?

6.4. Narrow-Gap Intermediate-Valence
Semiconductors. Many-Particle Effects
in the Exciton Approach

In this section, we will describe the exciton-
hybridization model of intermediate-valence
systems [129], which allows for many-particle
effects. We will demonstrate that in this model
the energy spectrum in the self-consistent field
approximation has the same form as in the
hybridization model, but with parameters sig-
nificantly dependent on temperature and mag-
netic field strength. We will discuss the optical
properties of intermediate-valence semicon-
ductors (the frequency dependence of permit-
tivity and the Franz-Keldysh effect); the
temperature dependence of energy gap, heat
capacity, and magnetic susceptibility; the met-
al-semiconductor transition in a magnetic
field; and the low-temperature heat capacity of
doped intermediate-valence semiconductors.

At present, it apparently may be taken as proven that
some intermediate-valence compounds, such as SmBg
117, 118], golden SmS [119], TmSe [120, 121}, and
YbB,, [122, 123], are narrow-bandgap semiconductors
and not metals, as was believed previously [111].
Recently, a family of PuX compounds (X = 8, Se, Te)
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having similar properties was investigated by Wachter
et al. [124]. The presence of a bandgap several tens or
even hundreds of kelvins wide has been confirmed by
measurements of electrical resistivity and heat capacity
at low temperatures [119, 122, 123], direct optical
observations [118, 119], tunneling experiments [125],
and NMR [123] and ESR [126] spectroscopy. Very
interesting properties of such systems are the semicon-
ductor—metal transition in a magnetic field at H = 200kOe
detected in YbB,, [127], a strong temperature depen-
dence of the energy gap in SmB, {126}, the nonmono-
tonic temperature  dependences of magnetic
susceptibility X(T), Schottky-type anomalies in heat
capacity C(T) (see the discussion in [118]), and sharp
absorption peaks in the IR region. As is pointed out
in [118] and [125], the structure of the energy spectra of
the systems in question corresponds, on the whole, to the
hybridization model, that is, it has sharp N(E) peaks at
the edges of the energy gap. The spectrum takes the form

]_ 2 2 172
emﬁ(k) =3 {t+E, £ [{(t,—E))"+4V'] } (6.11)

[see (6:8) and (6.7)] and is shown schematically in
Fig. 6.4. As is seen, the bandgap is not direct (that is,
the maximum of the valence band and the minimum of
the conduction band are shifted in the & space). Being
on the order of " ~ V2/ W (see the previous section), it

is considerably smaller than the direct gap 2!V1. In this
sense, the situation drastically differs from zero-gap or

narrow-gap semiconductors of the (Hg, Cd)Te type,
where the smallness (or even the disappearance) of the
bandgap is associated with the fact that the valence
band touches the conduction band at certain, symmetry-
related points in the k space [128].

An important distinction one observes in the energy
spectra of intermediate-valence semiconductors is the
abnormally strong decrease in the bandgap with tem-
perature [126]. This fact can be explained if one takes
into account the many-particle effects. They involve
the strong “Hubbard-like” f~f repulsion at one site, the
Coulomb and exchange interactions of fand d electrons
and also f electrons of different sites, electron~phonon
interaction, and the like. The need to take into account
the Hubbard-like f~f repulsion is beyond any doubt; the
relative implications and magnitude of the other inter-
actions listed above are not known in real systems,

_ In the detailed analysis of the intermediate-valence
picture that follows, we use the approach described in
[129]; this is among the simplest techniques, is well-
developed, and seems to offer an opportunity to
describe a large collection of properties of intermedi-
ate-valence systems in qualitative terms. In this sense,
1t may be regarded as a reasonable semiphenomenolog-
ical scheme, although the detailed microscopic signifi-
cance of the model parameters may in principle change
with further advances in the microscopic theory.

_Of all many-electron effects, we will for the time
being consider only Coulomb attraction between a con-
duction electron (the d type) and a hole at the f level.
The simplest generalization of the hybridization model
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E

Fig, 6.4. Energy spectrum diagram for the hybridization
model. ’

with due regard to these effects is the generalized spin-
less mode! of Falicov—Kimball, investigated by many
authors in connection with the intermediate-valence
problem (see, for example, [111, 129, 130]). The

Hamiltonian of this generalized model takes the form -

H=7 [hevet (A+G) i+ Ve + fac) ]
k

where we, in contrast to the hybridization model (6.2),

changed to the hole representation (A = —Ey, f; = d_)

and took into consideration the contact interaction G~ of
d and f electrons, which can lead to exciton effects.
Owing to the spinless character of the model, one can
easily take into account the limitations related to the
strong (U > W) repulsion of felectrons at a site; for con-
sideration of magnetic properties, however, the model
must be modified (see below). The choice of such a-
model can be substantiated as follows. Because a
change in the valence of the ion changes its electrostatic
potential, the need to take into account the Coulomb
interactions is obvious. Then, one may think that the
exchange interactions related to the spin degrees of
freedom are weaker than their Coulomb counterparts.
Moreover, local magnetic moments and magnetic order
are nonexistent in any of the systems in question
{except the antiferromagnetic TmSe). The Coulomb
interaction of f and d electrons is regarded (similarly to
hybridization) as being of the contact type solely for
simplicity. If one abandoned these approximations, this
would not lead, in theory, to any difficulty, provided one
is in a position to define how Vj; and Gj; at different sites
vary with the distance between them. However, this is
not known for real systems, and one has to be content
with a limited set of parameters. Finally, the Coulomb
interaction of f electrons at different sites would be
essential for processes of the charge ordering type (see,
for example, {22]). Convincing experimental findings
that might be evidence of such processes in the systems
in question apparently have not yet been obtained.
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For G = 0, the Hamiltonian (6.12) is the same as

(6.2) subject to the change Ey = ~A ~ G, fy & d,. Its
spectrum is found by a strict diagonalization procedure
[cf. (6.6)]

¢y = cos (8, /2) a, + sin (8,/2) B,

. (6.13)
[ =—sin (6,/2) o, + cos (8,/2) B,

applied so as to cancel out the terms containing OL; B,
The same result can be obtained in a different way: one

writes the trial function of the ground state as a function
of the BCS type [131]

ek - ek + ot
D) = I:[ (cosné— + smmi-—ckf_k) lvacuumy), (6.14)

takes the average over the ground state E, = @ A ko),
and determines cos8,, sinf, so as to minimize E,.
As can be proven by direct calculations, this yields the
exact value for the energy of the ground state. It is phys-
ically reasonable to use the function (6.14) as the trial
one, even for G # 0. Indeed, the attraction of an f hole
and a conduction electron can produce a bound state,
i.e., an exciton, and the expression (6.14) describes pre-
cisely such a process. To state this more accurately, if the
number of holes were the same as that of electrons and
equal to N, it would be natural, by analogy with the Hub-
bard model [see equation (5.34)], to seek the trial func-
tion describing the “electron condensate” in the form

N
o) = (z(p(k)c; f:kJ lvacuum), (6.15)
k

where @(k) is the trial function. In contrast to the Hub-
bard model, however, the number of f electrons is not

preserved at the expense of the terms proportional to V]

and a need arises to write the trial function in a more
general form

) = i,oexp [’“—(2"1”—] ﬁ [,

with the variable functions A(M) and (k) [entering
into |®, in (6.15)]. As shown in [129], the ground-
state energies obtained by use of (6.16) and (6.14) are
the same. Therefore, one can take the function (6.14) as
a successful trial function from the view point of both
the exciton approach and the hybridization model.

(6.16)

As noted in passing, the function of the form (6.14)
is formally analogous to the one used in the BCS theory
of superconductivity [131]. Therefore, the character-
istics of the ground state and the spectrum of quasipar-
ticles can be calculated fully by analogy with that
theory. We will give, without derivation, the results pre-
sented in [129].
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In this approach, the energy spectrum is the same as
the one in the hybridization model (6.7) and (6.8), except
for some renormalization of the parameters E, and V

g, k)=, —-A-GLEK],
s = 3 1t 6.17)

3 9 1/2
Ek) = [X"+ (4,-D)°T ,
where X and Y are defined (for 7= 0) by the equations

G 1
X[Ngfﬁﬁ - 1} = 2V, (6.182)
Y+A = szm'f. (6.18b)
N & E(K)
Moreover, Yis simply related to valence as
. Y+A
(ify = 3 (1450,

For A = Gp(Ep) < 1 (where Ey is the initial Fermi
level in the conduction band), equations (6.18) reduce
to the form

2
X(2x En X (6.20)

where o is a coefficient on the order of unity. An anal-
ysis of this equation in [129] demonstrated that, with
a given valence, either one or three solutions exist for
the direct gap X, depending on the value of the initial
hybridization parameter V. For V greater than some crit-
ical value V.,

VI>V, = aWh exp (—5%*1)

~1) = -2V,

(6.21)

(ot is a numerical factor on the order of unity and W is
the half-width of the conduction band), equation (6.18a)
has only one solution with

2V

oW ’
Al 1
v

which describes a bandgap of “hybridization” nature,
renormalized owing to interaction. For {V] < V,, two

more solutions of the “exciton” type exist, which for
VI <€ V, take the form

X, = (6.22)

|V|
|X, 4 = aWexp (- 2;\‘) t

(6.23)

According to [129], in order to descnbe experimen-
tal values of the direct and indirect energy gaps in SmBy
and other narrow-bandgap semiconductors, one should
take A = 0.2, then [V] ~ V,, thus the energy gap is of a
mixed exciton-hybridization nature, which means that
G and V determine it {o about the same extent.

The approach we are dealing with is a version of the
self-consistent field approximation and, as with any
variational approach, it needs, strictly speaking, a for-
mal substantiation. As such, we note that the effective
hybridization equation V* = X/2, derived in [132] for
A <€ 1 by the renormalization-group method, is the
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same as (6.20). Interestingly, according to [132], the
effective hybridization parameter for the single-impu-
rity case is renormalized differently than for the lattice
case: here, terms of the form In (W/[V!) are collected

to give a power dependence, (IVl/W) ﬁ, where B < 1,
rather than a geometric progression as in (6.22).

The model parameters can be derived from optical
spectra in the IR range [118, 119]. Calculation of the
polarizability ot{c) [129] yields [cf. (5.36)]

_ ex?

0 () = 2NG,

ot o, 1

X ;375,- ok; E(k) [E°(K) ~ (0 +10)*]
- (6.24)
Imo (w) = me
T aNQ et
at, ot

ak % = [ 3{0 = E(K)) - 3(w+ EF) 1,

where €, is the unit cell volume and e is the electron
charge. The absorption edge, corresponding to direct
optical transmons, is L | X, near it, Imo () has a
sharp maximum owing to the factor 0)““ FJor SmB,,
Travaglini and Wachter [118] give | X| = 0.1 eV. They
also observed a substantial contribution to the absorp-
tion from indirect transitions (related to processes
involving impurities or phonons) with an indirect band-
gap 28 = 30 - 60 K, which is in agreement with heat
capacity, tunneling, and resistivity measurements. As
already noted, the character of IR spectra fit the hybrid-
ization model on the whole.

With @ > |[X] and neglecting E*(k) in comparison
with «?, from (6.24), we have for cubic symmetry

g(w) = 1+4na() = 1 ~ o)/,

2 4ne Btk

Here, the French quotes denote averagmg over the
Fermi surface in the initial band and ©, is the plasma
frequency. Thus, for @ > [X| (and, notably, for visible
light), the bandgap does not affect optical properties.
Among other things, this explains why goiden SmS has
a metallic luster. Calculating the static permittivity £(0)
from (6.24) subject to | X| < W yields

(6.25)

ho °
§0) = 2 (7).

Hence, for SmBg one has &0) =~ 200 (according to
[118], h(ﬂ 1.75 eV), which is of the same order of
magmtude as the experimental data.

(6.26)
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At finite temperatures, by analogy with the BCS the-
ory, equations (6.18) are modified owing to the Fermi
functions f, g(k) = f(g, 3(k)) and take the form

1-ful) —fyk)
[NZ

i ] = 2V, (6.27a)

- #(k)
NZ EK) (1—fu(R)—f3(K)) . (6.27b)

Generally, equation (6.27) calls for a numerical solution.
To determine the general form of the function X(7), we
will examine the anaiyncally simplest case where the
conduction band is symmetric {(p(E) = p(—E)) andA=0,
so0 that ¥ = 0 by virtue of (6.18b) and {f;'f) = 1/2by
virtue of (6.19), whereas the chemical potential

B =Y-G/2 = —-G/2 is independent of tempera-

ture. Then equation (6.27) takes the form

v B E(K) + #(k)
X=or-10 LT ITI;E(k) anh =7 (6.28)
For |X| < W, we find
dep(e) (+x4" ve
L= , ;;2 77 tanh AT
-wle+X] (6.29)
szrd’{
=~ p(0) j —tanh T,
d/2r

where we denote the indirect bandgap by 28 =X Yow.
Solving equations (6.28) and (6.29) yields
2V

YT
8TW 3(0) _ :
x(1) = { X0~y &*P ["“”f“J (6.30)
1
X o 57 1), T<d T%,
i X0
where
W 1
T* = E?exp (—X) (6.31)
[for |V] ~ V,, T* ~ 8(0)], Y= ¢ = 1.147/2 (c is the Euler

constant).

By analogy with the BCS theory [131], the elec-
tronic heat capacity C can be calculated from the
entropy of quasiparticles

S=- Y [fKnfik
ki=qofB

+ (1 -f(K)) In(1 - fi{k)],

(6.32)
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specifically, gap leads to a strong dependence of heat capacity on
, field strength. Equations (6.34) and (6.38) imply
c=18-1 Y I T2 e
=isF =7 Oe,(K) 537’ G\ |- c T cosh (WAh/T), T <9,

hizep (6.33)
In the specific case at hand with A = 0, p(E) = p(-E),
the expression (6.33) can be reduced to the form

2
[XZ(T) - TW + 4th2] .

aT
(6.34)

At low temperatures T <€ 8(0), the heat capacity (6.34)
decreases exponentially

2p(0) 2 ()
e = L2 X enn | -1 |,
and for T &(Q) ~ T* (which actually means T'= 100 K
for SmBy), we find from (6.34) and (6.30)

PO, 2 T
N =" XD) [1 - m] +5POT. (636

The first term in (6.36) dominates over the linear con-
tribution in a broad temperature range & < T < |X], so
that C(T) decreases with increasing T. At T~ §, the heat
capacity C(T) has a maximum, which is truly character-
istic of intermediate-valence semiconductors (for
example, SmBg; see the overview of experimental find-
ings in [112]).

A theoretical study of magnetic properties is carried
out after one includes electron spin in the model by
changing over from the spinless operators f*, f to the
many-electron X operators. The associated manipula-
tions are very tedious (see {129]), and we give only the
end results.

dat

g
5/2'!‘cos

(6.35)

The spectrum of single-particle excitations in a

magnetic field A (defined, as usual, by varying the total
energy in terms of occupation numbers) takes the form

£ b = £ 2(0)

1 Hk)~ E (6.37)
- ioh !:ud + Hfi (p'd - uf) ””“E-“(“laj] s

where ¢ = 1 are the spin projections, and i, and Jl.are
the magnetic moments of 4 and felectrons. The indirect
bandgap turns out to vary with the magnetic field in a
very simple way

8(1) = 5 [mine, (i) + mine}, ()] ~3(0) - i h. (6.38)

At [k = 8(0), a transition to the metallic state occurs,
observed by Sugiyama et al. [127] in YbB,, at
h=200kO0e. In Sm compounds, a similar transition
must, it appears, take place in still unattainable strong
fields owing to the smallness of the i of the Smion in
comparison with Yb. The decrease in the indirect band-
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il g (6.39)
O.D N\ 1rsum/T, T8,k

An increased heat capacity in a magnetic field has, for
example, been observed by Berton et al. [133] in TmSe.

The magnetic susceptibility x(7) can be found from
the occupation numbers for d and f electrons with spin
o in a field

s+
x(T) = lim cg_fl_l{__h_u‘i_{i‘

h—=0
L]

(6.40}

For T'= 0, the magnetic susceptibility turns out to be on
the same order as the Pauli spin susceptibility

20 = 2 (1, — 1) *p(Ep). (6.41)

Because the ground state of the system is a condensate
of singlet excitons, for J1, = [, we have %(0) = 0. The
fact that %{0) is on the same orc{er as the usual Pauli spin
susceptibility of the transition metals, might appear
strongly contradictory to data on intermediate-valence
semiconductors, according to which %(0) must be sig-
nificantly greater. One should, however, bear in mind
that in samarium-based semiconductors a large Van
Vieck contribution is made to the susceptibility

Y p,f/ A [108] from the Sm?* ion (formally nonmag-

netic) because the first excited state is just A =410 K
distant from the ground state [112]. It is this contribu-
tion (two orders of magnitude greater than the Pauli
spin susceptibility) that determines the order of magni-
tude of . At the same time, it is important to take into
account conduction electrons in order to determine the
form of the temperature dependence of x(7) (see
below). For YbB,,, the corresponding van Vieck contri-
bution is small. It is relevant to note that according to
Kasaya ef al. [123] the experimental value of %(0) var-
ies from specimen to specimen and is apparently deter-
mined by the impurity Yb,0s. Equation (6.41) implies
that in ultrapure YbB,, specimens the value of 3 for T
tending to zero must fall to about the Pauli spin suscep-
tibility.

We now turn to the case of high temperatures T> 8.
Here, the main contribution to the temperature depen-
dence of susceptibility comes from intraband transi-
tions. This contribution takes the form

-, c{(k)
s =33 {mé’f;gm
k

k

X [, (1 cosB,) +p, (1+ cos8,)1?

(6.42)
~3fK) ¢
+ 5 [ (1 +cos8,) +H1, (1-cos8,)]
de,
T 1, ~Y
i -k
- «f,«p(O)W, cosf, = E,
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The contribution (6.42) obeys the Curie law, and the
Curie constant corresponds to the nonintegral atomic
magnetic moment i = {L{p(Q)W]"2. As the temperature
decreases, Ax(T) increases until it reaches a maximum

on the order of p(0) W},L;/ 0 at T'~ 8, and then suddenly
falls [Ay, ~ exp(—8/T) for T < §]. The contribution in
question must be dominant in ultrapure YbB,, speci-
mens, except at very low temperatures. In SmBg¢ and
SmS it appears to be responsible for the maximum in (7).
This behavior of Ax(T) was examined by Irkhin [134]
within the hybridization model with special reference
to d metals.

With the approach in question, one takes care of cor-
relation effects only when one calculates a single-parti-
cle spectrum, following which one calculates the
susceptibility (and the heat capacity) by the usual equa-
tions of the single-electron theory. As is known, for
metallic Kondo lattices [135] this approach yields
results accurate to coefficients of the Wilson number
type, which is very nearly unity for the many-fold-
degenerate flevel and, consequently, for real systems.

The small bandgap renders the energy spectrum
sensitive to both a magnetic field [see (6.38)] and a
homogeneous dc electric field F. Application of a field
gives rise to optical absorption at ® < |X| (the Franz—
Keldysh effect [136]). For the imaginary part of the
permittivity at @ < |{X] Irkhin and Katsnel’son [129]
derived the expression

.4 o
Ime(o, F) = exp [—WA(X)], (6.43)

AG) = sin" 1 -y —yf1 -

n/2, y=0
=1 442
_%[(1,,),)5&, y=1,

where vy is the Fermi velocity in the initial conduction
pand. Hence [using (6.40)], the effective decrease in the
indirect bandgap in an electric field is estimated to be

(le|F hve)™

8X X1/3

(6.44)

Thus far, we were dealing with the intrinsic semi-
conductor. However, Bader et al. [137] observed a large
linear term in the heat capacity of golden SmS at low
temperatures. It is therefore of interest to investigate
the heavily doped case, where the chemical potential
lies near the edge of the upper or lower hybridization
subband.
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In the symmetric case (A = 0, ¥ = (), the excitation
spectrum has two branches €, = —£3 = £ {see (6.17)]

o) = 5 { (700 +X1" — 1)}, and
dr - X2 X:z
o) = (1+ 25 o -9
Near the upper edge of the band one then obtains

(6.45)
NE) =

PO = A (t ~ 0 ', (6.46)
and near the edge of the hybridization band,
_ , \
Ne)=A* (e, —e) A mA(mgi('l?i) =A%’.
(6.47)

In view of the renormalization of the chemical potential
i (reckoned from the top of the band) for a given charge
carrier concentration, one obtains for the renormaliza-
tion of the linear term in the heat capacity

Nt % & 12 % 23 243
YN A e Ay = 6
According 1o (6.48), the enhancement in the linear term
of the electronic heat capacity is anywhere between 40
and 50 (the experimental figure is several hundred).
The insufficient amount of enhancement may be asso-
ciated, at least in part, with screening anomalies
[related to the residue of the Green’s function Z <€ 1,
v~ Z7! (see Section 3)] because what one faces is a typ-
ical “two-peak” situation. According to Section 3.4, in
order to estimate Z-1, one must, above all, find the static
polarization operator I1(0) averaged over the Brillouin

zone for the spectrum (6.17). For T'= 0 in the symmetric
case (A = Y= 0), one has

_ 1
o=y e E.0)

k k'

. M}%EEXJW (6.49)
2 3 7 . Yy z+y
8

]

(1+1n2) (POW)’,
X

W

and

& (pOW)’
2,

L2
z lzl+-~§~t«(1+ln2)
(6.50)

2
€

k2,8

In summary, the generalized hybridization model
adjusted for comelation effects yields a qualitative
description of a wide range of properties of intermedi-
ate-valence semiconductors. In this model, some of the
Sfelectrons are rendered itinerant as they mix with the d

1.
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conduction electrons through both hybridization and
exciton effects (a mobile d electron is coupled with a
heavy fhole and parily entrains it).

6.5. The Localized Behavior of f Electrons
in Heavy-Fermion Systems

In Sections 6.5 through 6.8 we will describe the
basic properties of Kondo lattices, which are customar-
ily identified with heavy-fermion systems. Later (see
Section 6.10), it will be shown that such an identifica-
tion is not always valid.

In recent years, a wide range of compounds, mainly
Ce- and U-based, have been synthesized and investi-
gated, and have come to be known as heavy-fermion
systems or heavy-electron systems (see, for example,
[135, 138, 139, 140]). These are CeAl;, CeCug, UPty,
and UBe,5, to name but a few. They owe their last name
to the high value of the linear term in the electronic heat
capacity C, =y7T, ¥ > (10? - 10%) mJ/(mol K?). In the
free-electron approximation, this corresponds to an
effective mass m*, which is several thousand times the
mass of a free electron.

For better insight into the role that felectrons play in
forming a heavy-fermion system, we will compare
experimental values of the linear terms in the heat
capacity for heavy-fermion and some d systems with
extremely high 7y (see Table 6.1 and [138]).

The existence of heavy electrons at the Fermi sur-
face of heavy-fermion systems also shows up in the
high values of Pauli spin susceptibility [138] and in IR
absorption spectra [141]. Noteworthy 1s the shape of the
Fermi surface determined from the de Haas—-Van Alphen
effect in, for example, UPt, tallies with the results of
conventional band-theoretic calculations, although the
calculated vy differs from the experimental by a factor of
several tens [139]. All of this leads one to suppose that
the heavy felectrons contribute significantly to the for-
mation of the Fermi surface and of the states near it and

Table 6.1. Linear term in electronic heat capacity [mJ/(mol K?)]
in heavy-fermion systems, some record-breaking values
{given for comparison) of y for d-systems [138]; results of
conventional band-theoretic calculations for three systems
{the second line for yp)

Compound v, mJ/(mol K?) r
CeCuy 1450 -
CeAl, 1600 -
CeCu,Si, 1100 114
UBe; 1100 333
UCd,, 840 _
UyZn,4 500 -
upt, 450 14.9
V,Ga 33 _
V15703 54 -
TiBe, 56 ~

that in this sense they are itinerant (delocalized). Addi-
tionally, the neutron spectroscopy of local excitations
(see, for example, [112, 140, 143]) reveals that in
heavy-fermion systems the f level has a term structure,
likewise split in the crystal field as in the case of “nor-
mal” f systems, albeit strongly diffuse. This evidence is
more in favor of the localized model. Spectroscopy
(notably, photoernission spectroscopy) usually demon-
strates that the fband has a typical “two-peak” structure
with a greater proportion of spectral density concen-
trated below E; (usually by about 2 eV) and narrow
peaks next to Ep (see [139, 143]); the latter can be
clearly seen in IR spectra [141]. Therefore, with refer-
ence to heavy-fermion systems, one cannot say that the
fstates come up to Ey in the same literal sense as in the
case of intermediate-valence systems. This, too, is evi-
dence more in support of the localized felectron model.
One thus runs into a situation where electronic states
display a kind of localized—delocalized duality.

We will try to visualize a theoretical scheme that
could describe such a specific behavior, assuming the
correlation effects in the f systems fo be important.
A great enhancement in the effective mass, m*/my,
might be due to the smallness of the residue of the
Green’s function at a pole
-1

IXE, kp)
Z = [1 ~SE T E=J < 1, (6.51)
because
1T, MO0, kp)
= 2 e | ©52)

(For simplicity, we assume that the Fermi surface is a
sphere of radius kg; the energy E is reckoned from the
Fermi level.) We will now state arguments proving that
the term in the square brackets in (6.52) is on the order
of unity. Indeed, we have, by the Landau-Luttinger the-
orem of the conservation of volume under the Fermi
surface {71],
n 173
ke = (—) 6.53
F ( 37[;2 ( )
where n is the number density of electrons. The chemi-
cal potential {1 is then given (see, for example, [71]) by
2

kg
B o= e+ E(0, k).

S, {6.54)
Therefore,
my 0X(0, kg)  mydp
ke kg kpokg
F F r OKp (6.55)

I N
=G5 /G, =

where the asterisk denotes the quantity renormalized by
many-particle effects, the subscript O stands for the ini-
tial value, and x = (1/n%) (0n/0u) is the compress-
ibility. There is no experimental evidence that would
suggest any significant anomalies in the bulk modulus

of heavy-fermion systems (except the nonmonotonic
behavior of its temperature dependence within a few
percent as, for example, in CeB,; [144]).

One may thus associate the large effective mass
with the first factor in (6.52) rather than with the sec-
ond. The small Z implies a small “pole” (quasiparticle)
contribution to the spectral density of the felectrons

Ak, E) =~ Im Gk, E)
(6.56)

k ~
=Z§(E-;l§(k—k;:)) +A(k, E),

where for the Green’s function of the felectrons, G(k, E),
we adopted the formally exact presentation

Gk, E) = Z + Gk, B)
E- ;i" (k— k)

(6.57)

in which the nonpole part é(k, E) and the contribution

to the spectral density A(k, F) are written as separate
terms. To obtain the experimentally observed two-peak
picture of this density, it will suffice to assume that

G(k, E) and, consequently, A(Kk,E) depend only
slightly on k& and, similarly to the function E, have a
maximum at E=-E, < 0. Then, in the close vicinity of Eg,
\E| = E* EEF;Z% = EZ, (6.582)
the dominant term is the pole contribution to A [the first
term in (6.56)], and one has a picture of heavy, but itin-
erant quasiparticles that take part in forming the Fermi
surface. However, the complete contribution of this
term to the spectral density is small (~Z), and it is there-
fore immaterial in quantities such as total energy, elas-
tic modulus, etc. The behavior of the f system as a
whole, that is, on an ¢nergy scale greater than E*, is
determined by the second contribution to (6.57), which
describes the localized f level “buried” rather deeply
below E; (by an amount |E;| > E*), which has a term
structure, split in the crystal field, etc. An applicable
diagram of the spectral density is shown in Fig. 6.5.

It is of interest to compare this picture with the con-
ditions that define the applicability of the adiabatic
approximation in metals [145, 146]. For them, the
energy scale is on the order of the average phonon fre-
quency Mgy, Therefore, for |E] <@g, the renormalization
of Z does not produce a small oy /Eg (that is, on the order
of unity). At the same time, the effect of phonons on the
integral characteristics in terms of this parameter is
small. In heavy-fermion systems, the role of wp, is to
some extent played by E* with the important difference
that Z ~ 1/E* & 1 for |E| < E*. In both cases, Z(E)
abruptly changes in a narrow layer near £, (Fig. 6.3). In
the case of electron—phonon interaction, however, the
total change X itself is on the order of wy;, (and, therefore,
Z ~ 1), whereas in heavy-fermion systems, AZ(E) ~ E.

As is known [1, 100], however, Z does not enter into
the magnetic susceptibility ¥ directly. Therefore, if one
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NE)

- ~Tx

Fig. 6.5. Sketch of the density of electronic states in Kondo
lattices. ‘

wishes to explain why not only the linear term in the heat
capacity ¥, but also the magnetic susceptibility  take on
large values, one is forced to suppose that the interaction
leading to small Z is spin-dependent (in contrast to the
case of electron—-phonon interaction). The most popular
and best investigated model of heavy-fermion systems,
which involves precisely this interaction, is the Kondo
Iattice model (see, for example, [135, 139]).

The Kondo effect (see the reviews {147 - 1497) arises
when conduction electrons in a metal are scattered on a
magnetic impurity, provided “antiferromagnetic”
exchange interaction between the electron and impurity
spins is 1 < 0. If so, specific many-particle effects cause
conduction electrons and the impurity to form a coupled
state with an energy on the order given by

1
Ty = Wexp | — oo 6.58b
. ® |~ e (6580
(the Kondo temperature). At T > Ty, the Kondo effect
shows up as contributions, logarithmic with respect to
temperature, to resistivity, heat capacity, magnetic sus-
ceptibility, and other properties, as abnormally large
thermo-emf{, etc. [147]. :

At T'< Ty, an extremely unusual situation arises. The
localized magnetic moment (which shows up at T> Ty
as the.Curie law %; ~ 1/7 for the impurity contribution to
the susceptibility and makes the contribution In 2 to the
entropy) seems to disappear (is balanced out), thus giv-
ing way to a quasilocal level at Ey. in the fermionic (elec-
tronic) energy structure. This situation is known as the
local Fermi hiquid [150]. The reason is that, in these cir-
cumstances, the impurity contributions to the heat capac-
ity C(T) and the susceptibility %(T) behave as they
would in Fermi systems: C(T) =+,T and x(T) ~¥;= const
for T tending to zero. Then, as for the ordinary Fermi
liquid theory [1], one may write

¥ o1

%o Yol+By
where ¥, and 7y, refer to the conduction electrons, and
B, is the exchange interaction constant. For an impurity

with spin 1/2, the enhancement factor (1 + By~ is 2.
(This is known as Wilson’s relation, derived by him

(6.59)
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from numerical calculations and explained within the
local Fermi liquid theory by Noziéres {150].) The val-
ues of y; and ; themselves are great, being proportional
to 1/Tx. This behavior has been investigated theoreti-
cally by various techniques, including exact solutions
of appropriate models [149]. Most revealingly, it can be
interpreted as being due to the fact that E; acquires a
quasilocal impurity peak of width Ty and of height 1/7%
(the so-called Suhl--Abrikosov resonance) [147 - 150].
In the Kondo center lattice, this resonance must split (as
discussed in Section 6.3), but the energy scale, which is
on the order of T, remains unchanged. With reference
to heavy-fermion systems, it is natural to identify Tk
with E¥*, In effect, heavy-fermion systems are usually
regarded as Kondo lattices, with the Ce or U ions acting
as Kondo centers. '

We will now demonstrate with reference to some
formal model that the physical picture of the Kondo lat-
tice does agree with the phenomenological description
of heavy-fermion systems set forth above.

This picture has been the subject of a large number
of dedicated studies, which have used various models.
The most popular among them is the so-called N-fold-
degenerate model proposed by Anderson in the limit of
infinite repulsion of f electrons and a large degeneracy
multiplicity N. (Below, we will call it simply the Ander-
son model; see, for example, [139, 151] and their refer-
ences.) The Hamiltonian in this model takes the form

H=" el)ckntin+ .&X0"
o " (6.60)
+ VY (CenXlic + Xk
k, m

where £(k) is the conduction electron spectrum; g,is the
position of the flevel as reckoned from the Fermi level
&<0),m=12,..,N;and Xﬂﬁ is the Fourier transform
of the X operators describing the felectrons with a wave
vector k. Furthermore, |0) 1s the state without f elec-
trons, |m) is the state with one f electron having an
orbital guantum number m, and V is the hybridization
parameter. For p(Eg)V? ~ |/, this model describes the

%;tennediate-valencc state (see Sections 6.3 and 6.4).
or

PERV? < g, (6.61)

on¢ can use a canonical transformation that eliminates
terms linear in V and reduces it {147, 149] to the s—f
exchange model with

I=V%g<0 (6.62)

and the corresponding value of Ty [see (6.58b)]. Then
Ty < W, with an exponential smallness in terms of V2.
Perhaps the most elegant and simplest way to consider
the model (6.60) is to introduce the so-called auxiliary
boson (see, for example, [151]). Indeed, the felectrons
described by the creation operators X"y (and not by

Fermi operators!) are thus not Fermi particles. The
point is that, owing to the infinity of repulsion at one
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site, they are subject, in addition to the Pauli exclusion
principle, to an exclusion ¥rinciple specific for groups
of states. It requires that if a state with a given |m) is
occupied, the remaining states must be free. As demon-
strated (see Sections 5.2 and 5.3), the X operators sat-
isfy certain commutation and anticommutation
relations. One can satisfy all of these relations and pass

from the X operators to the “true” fermions £, and f,,;

if one additionally introduces a boson field b; and b;
(where { is the label for sites)

X' =bby X" = fonfim

X" = bifyn XI° =finbi.
It is understood that b*, b, f*, and f satisfy the usual
commutation and anticommutation relations applicable

to Fermi and Bose fields, and the space of states in
question is lirnited by the requirement

O = Y fufun+bib, = 1.

In view of the representation (6.63) and subject to the
additional condition (6.64), one can write the statistical
sum of the model (6.60) in terms of a functional integral
[151]. In the limit of N tending to infinity, the latter can
be calculated by the saddle-point method. This basi-

At
cally reduces to the replacement of the operators b; and

(6.63)

(6.64)

b, by the number r%<3f> independent of i. Then the
Hamiltonian (6.60) reduces to the effective hybridiza-
tion model

B=N [eK)c) ¢+ (e, + NS
EI ( )Ckmckm ( F )fkmficm (6.65)

+ Vr(f:mckm'}'(“;mfkm) + er],

where A is a Lagrangian multiplier (also independent of
i in the limit of N tending to infinity) introduced in order

to satisfy the conditions (6.64) in the mean <Q,> = 1.

- Then, the parameters A and r can be determined subject

to these conditions by minimizing the free energy (see
{139, 151]). As a result, both the renormalized position

of the flevel (Ef = g+ A) and the effective resonance

width I" = ip(E) V2r? turn out to be on the order of T.
Thus, an energy structure arises near Eg, as it does in the
hybridization model, with a characteristic scale propor-
tional to Tx. At the same time, the energy structure of
the density of f states is mainly defined by the hybrid-
ization model, in which the f level takes up an initial
position € and has an initial width T' = np(Ep)V?2. The
electronic Green’s function does take the form of (6.57)
with Z ~ Ty /W. It can also be shown [139] that in the
Anderson model the formation of the Kondo structure
in the density of states near Ey is related to the partial
delocalization of f electrons also in the sense that the

occupancy of the flevel is other than unity
l-m=Z<1. (6.66)

If the condition (6.61) is violated, then Tk and, conse-
quently, Z increases and n,decreases. This is accompa-
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nied by a gradual transition to the intermediate valence
state where lgd ~ Ty, and the two-peak structure no
longer exists; instead, a single energy scale is formed
near Eg. In the Anderson model, T does the same job
as & in Section 6.4.

With increasing 7, the approximation in question
entails a phase transition of the second kind at 7'~ T for
r tending to zero. Such a transition is a drawback of the
approximation, but it can be corrected by taking into
account the higher orders of the parameter 1/N. Such
corrections are, however, responsible for terms of the
form In T that appear in the observables at T> Ty [151].

With a change-over from the Anderson to the
s—f-exchange model [152, 153] (by, for example, letting
V2 and & tend to infinity with their ratio held constant,
Vilg=1= const), the localization problem would, it
might seem, cease to exist because then ny = 1 (the
homopolarity condition for the f system). Then it is
even more striking that, as shown in {154], this model
can be reduced to the effective hybridization model
with a spectrum structure analogous to the Anderson
model [although the relation (6.66) is not satisfied]. In
this sense, the situation still looks like one of a partial
delocalization [to the extent of Tx/E;] of f electrons
owing to their interaction with conduction electrons,
but such that the homopolarity condition is also satis-
fied. This illustrates how formidable a task it is to give
a clearly evident description of the quantum behavior
of many-particle systems.

It is worthwhile comparing how things stand with
heavy-fermion systems and the d systems. In the latter
case (as with any other many-particle Fermi systems),
it is also possible to separate the contributions into
“quasiparticle” (itinerant) and “nonquasiparticle” ones.
However, because Z ~ 1 and E* ~ Eg, both types are
generally quite significant over the entire 4 band
(except the vicinity of E;, where itinerant contributions
are always dominant, provided the Fermi surface
exists.) These matters were discussed in Ch. 5. In a
heavy-fermion system, a clear demarcation line is
drawn between the itinerant and localized traits in the
behavior of f electrons in terms of energy. One may say
that in a heavy-fermion system the felectrons behave as
itinerant, albeit very heavy, quasiparticles in the narrow
layer of the order of Ty located near E, but they behave
as localized ones on a larger energy scale.

We now turn to a more systematic scrutiny of the
Kondo lattice model for heavy-fermion systems.

6.6. The Problem of Kondo Magnets.
A Roundup of Experimental F indings4

‘Until now we did not touch upon the magnetic prop-
erties of heavy-fermion systems (except for a few

4 This and the subsequent sections are based on a paper by Irkhin
and Katsnel’son {156].
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remarks on their high magnetic susceptibility). Mean-
while, they are quite unusual.

It was fraditionally believed that the competition
between the indirect spin-spin RKKY interaction and
the Kondo screening of the magnetic moment by con-
duction electrons could give rise to either a magnetic
state or a nonmagnetic Kondo lattice state [155].
Recently, it has, however, been found that many sub-
stances customarily placed in the latter class either do
change to a magnetically ordered state at low tempera-
tures or display pronounced spin fluctuations. For
example, antiferromagnetic order with a very small sat-
uration magnetic moment M, has been detected in the
classical “nonmagnetic” heavy-fermion systems, such
as UPt; (M, ~ 0.025, Ty ~ 5 K) [157], CeAl;,
CeCu,Si,, and CeInCu, [140, 158}, and also in UBe3
under a pressure of about 25 kbar [159].

Still more recently, Kleiman et al. [160] have
detected antiferromagnetism in UBe;; under normal
pressure. The compound UPt; changes to an ordinary
antiferromagnet with a fairly high M, upon the addition
of 5% Pd instead of Pt, or of Th instead of U [140],
whereas CeCu, does so upon the addition of a small
amount of Ag [161]. Earlier, the discovery {140] of a
great number of “Kondo” antiferromagnets (such as
UAgCu,, U,Zn ,, UCd,,, UCu,, CeAl,, CeAg,Ge,, and
TmS) and several “Kondo” ferromagnets (such as
CeRh,B,, CeSi, for x = 1.85, CeSi,_,Ge,, CeNi,Pt, _,,
Ce,La, _,Ge,, and Ce,Bi;) was reported. The impres-
sion is that in the ground state “Kondo lattices” have, as
a rule, magnetic order or exist “at the brink™ of order,
and that their magnetic properties are extremely sensi-
tive to external factors (pressure, alloying, etc.).

In experiment, the class of Kondo magnets is usu-
ally identified on the basis of the following features.

1. The logarithmic dependence of resistivity on
temperature (above the Kondo temperature), similar
to what is observed in the classical dilute Kondo sys-
tems [147]. This dependence is shown in Fig, 6.6 for
CeLa, _,Ge, [162].

2. The low magnetic entropy S(7,,) at the magnetic
ordering point T, related to the Kondo suppression of
low-temperature heat capacity {147, 149]. As an exam-
ple, for Ce La, _,Ge,, where the ground state of the Ce
ion is a doublet, in the absence of the Kondo effect,
8(T,) would be about Rln2. Experimental evidence
{162] indicating that S(7,,) <€ Rln2 is given in Fig. 6.7.

3. The low saturation moment in comparison with
the “high-temperature” moment M. in the Curie con-
stant, a fact which places Kondo magnets closer to weak
itinerant magnets. For example, for CeRh;B, one has
MO = 0.37”3, MC = 3”‘8 (MC = 2.54”]3 fDr Lhe C33+ ion)-

4, The paramagnetic Curie temperature € is negative
even for ferromagnets and significantly greater in abso-
lute value than T,,. For CeRh,B,, 8 = —370 K, whereas
the Curie temperature is T = 115 K. This is because a
major contribution to the susceptibility comes from the
single-impurity Kondo effect (x(0) ~ 1/T%) and 0 is
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Fig. 6.6. Temperature dependence of the electrical resistiv-
ity for Ce La; _ Ge,. The curves are shifted relative to one
another along the ordinate axis. The arrows label the posi-
tions of T¢-. The abscissas axis uses a logarithmic scale, The
system is ferromagnetic at 0.4 £x < 1.0.
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Fig. 6.7. Temperature dependence of entropy for
Ce,La, _,Ge,. The arrows label the positions of 7.

thus not a characteristic of short-range magnetic order.
Simple theoretical estimation yields 6 =~ —4Ty.

In an analysis of the properties of Kondo magnets, a
fundamental point is the ratio between 7,, and the
Kondo temperature. The latter determines the tempera-
ture and energy scale on which a crossover takes place
from the free local moment condition to the tight bind-
ing condition. This ratio can vary from one system
composition to another. The experimental concentra-
tional dependences Tu(x), Tx(x), and My(x) . for
CeNiPd, _, are given in Fig, 6.8 [163]. As a rule
(including heavy-fermion systems, where Ty = 12 K),
T = T,,. Cerium and uranium magnets with Ty < T, also
were reported, such as UAgCu, (Ty = 18K, Tx ~3 K)
[164], and CeAl,Ga, [165]. The latter represents a tran-
sition to ordinary magnets with a completely suppressed
Kondo effect.

Finally, a few words are in order about the increase
in the “stiffness” of spin excitations with decreasing
temperature [165], observed in U,Zn,, and interpreted
as a manifestation of the renormalization (enhancement)
of the RKKY interaction at low temperatures [140].
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. line the computational scheme used and discuss the

Thus, empirically, Kondo magnets are close in
many properties (above all, in the low saturation mag-
netization and T,) to weak itinerant magnets such as
Ni;Al and ZrZn,. However, in the d system, we ana-
lyzed (see Ch. 4) the formation of magnetic order and
localized magnetic moments from band-theoretic con-
siderations. By contrast, for Kondo magnets, it is more
natural to reverse the problem: one should consider the
destruction of local magnetic moments and a transition
to the “quasiband” behavior owing to the Kondo can-
cellation of local magnetic moments (see Section 6.5).
Moreover, it is important to understand why this can-
cellation is very strong but not yet complete in most
cases. A likely angle of attack on the problem, central
to the understanding of the nature of the magnetism of
Kondo systems, has been proposed in [184]. In Sec-
tion 6.7, we will consider the behavior of the systems at
T > Ty within the perturbation theory; Section 6.8 will
be concerned with the condition for the formation of the
magnetic state as visualized in [184]; and Section 6.9
will examine the properties of that state at 7= 0.

trons and is proportional to IZ [108]. For our purposes,
however, it is convenient to define I?f explicitly.

We can determine the inhomogeneous magnetic
susceptibility %o with a wave vector Q by the Kubo
equation [64]

Ko = (55,59

b _, (6.68)
= [dr{exp M) Sqexp(-AH)SLg), B=T7".
0

For the homogeneous static susceptibility (Q =0) in the
second order with respect to [, we have

N S(S+ D @
x= otk
where

T R
¥ = jdljduljduz
o A 0

x ( [Syexp (u Ho) H,exp (—u, Hp)l
x [Siexp(uHo)H exp(~u,Hy)1 ),

(compare with the single Kondo impurity case [147]).
Calculating the commutator in (6.69) and introducing
the spectral density with the Hamiltonian H;

6.7. Cancellation of Magnetic Moments (6.69)

Jrom the High-Temperature Side

As was noted in Section 6.5, at T’ » Ty, where Ty is
the Kondo temperature, the Kondo effect shows up in
the logarithmic temperature dependence of the correc-
tions to various physical quantities, including the mag-
netic susceptibility % and, as a consequence, the
magnitude of local magnetic moments. In Kondo lat-
tices, however, this logarithmic behavior is “truncated”
at the characteristic energy of spin—spin interaction,
that is, at the spin dynamic frequency . In turn, this
frequency is renormalized owing to the Kondo effect.

T (o) = —%NB(O)) Im{({S5S° N,

where Ny(®) is the Bose function, we find

These effects can be calculated within the s—fexchange 2 AP P - Fo (119
model using the theory of perturbations in terms of the Keing = ~ 7 I dod, - (@) ————"—, (6.70)
s-f exchange parameter. In more detail, the applicable - PG e (g,~ &, + )

calculations were done in [167]. Here, we will only out- where f, = f(&,) and f, = f(e,) are the Fermi distribution
P q™/\"g

functions. Within the diffusion approximation, such

results. that
We will proceed from the s—f exchange model with - 5
the Hamiltonian (@) = S(S+1) Dy
A s o A N a9 3n 2’
H=H,+Hy; Hy= zekc;cckc+H)«; o’ + (Dg)
ko where D is the spin diffusion coefficient, we obtain
. N (6.67)
Hsf = """"Ik zu" BS‘IG‘IBC'&+ q, ackﬁ’ @ S (S + I) 12 5 dEdE' aﬂE) aﬁEl)
' R L
whete I is the s-fexchange parameter, ¢y , are the elec- 2
tron creation operators with spin projection 6 = Tl(®), s % 1n (E+E)"+d (6.71)
o are the Pauli matrices, S, is the Fourier componentof W
the localized spin operators, and S(S+1) T4 &2
- 2.2
H = -3 8.8, 6672) BT el e
4 f

where d = 4Dkj = @, p is the density of states at the
Fermi level, and W is the width of the conduction band,
so that the spin dynamics renders the singularity diffuse.

is the Heisenberg Hamiltonian of the localized spin
subsystem. Actually, the site-site interaction is a result
of an indirect RKKY interaction via conduction elec-
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Fig. 6.8. Schematic representation of concentration depen-
dences of saturation magnetization (solid curve), T, {(dashed
curve), and Ty {dash-and-dot curve) for CeNi,Pd; ..,.

For Q # 0 and in the absence of dynamics, instead
of (6.70), we obtain from (6.69)

1 (1=1D) /o .
x((!m = “72 2% - g:) <Sp-q*QSq—p+Q>' (6.72)
P.q
By changing to real space
o = J‘ drexp(iQR)K(r), K(r) = B(S'S®), (6.73)

(the last equality holds for T > T, and also for any
T > T, in the classical approximation), and by isolating
the singular terms, we find

E?(r) = —4Ip’K@)dlIn -"%’ , (6.74)
in (k

a, = (exp(ikn), = M (6.75)
£l F]‘

The expression for inhomogeneous susceptibility in the
presence of spin-spin exchange interaction takes the
form

Lo

Xo = 7= =Xo (1 +Jgg) - (6.76)
QT 1-Jgxe ™ AQ ;
In view of the correction (6.74), equation (6.76) yields

the contribution :

SK(r) c(n
Rl ot 6.77)
which contains the effective value of the Curie constant
S(S+1)
) = _QT.)— (1-4%I }%’ ) (6.78)

and the spin—spin exchange parameter
Je, T) = Jr) [1 +4I%*(1-aHIn 3;] - (6.79)

Expression (6.79) is similar to the one derived by Abra-
hams and Varma [140] for the two-impurity problem.
By analogy with (6.71), the spin dynamics leads to the
change T — max(®, T) in (6.79). Thus, the Kondo
effect enhances spin-spin exchange interactions with
decreasing temperature. As follows from our consider-
ation, this renormalization holds not only for the
RKKY interaction but also for exchange interactions of
any other nature (such as direct exchange, Kramers
indirect exchange).
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Previously, we investigated how the spin dynamics
influences the Kondo effect. To develop a self-consis-
tent picture (within the perturbation theory), it is impor-
tant to consider the converse, that is, how the Kondo
effect influences the characteristic frequency of spin
fluctuations. In the paramagnetic phase, the latter can
be estimated from the second moment of dynamic sus-
ceptibility

-2 o4
2\ _ Lo _SeSq

<{0Q> - T ol ot
By expanding (6.80) as a series in terms of / (with .{Q
taken as not being small) and neglecting the spin

dynamics in the correlators (s <a)2Q>), we obtain

. (6.80)

o=t 1§
2 (6.81)
o _[2 2,
Léz) e 4IZPZBII1};—§F|‘_W,

Fy= 2 [Sp 54182055,
o

where the overscribed bar denotes averaging over the
Fermi surface with respect to k, k'

61:,1:' = Puzzs(ea)q)k. K
kK

(6.82)

for an arbitrary function @ By evaluating S =
i[H,Sg) , we find for T> T,
2
- 2 .
Fiw = =209 Y Ug-p=Jp) 555+ 1 | ;
’ (6.83)

(jp—k+k’ "jQ—-p+k-—k')
Z ("rQ—q"‘Iq)2
q

Qg = Z(JP_JQ“P)
)

(6.84)
Y Jr)a; (1~ cos (Qr))
=1L (1-cos (Qr)).

27m

Equation (6.84) implies that 0 < < 1. Substituting
(6.81) - (6.83) and (6.72) in {6.80) gives

(@)= 35S +D Y, Ug-y=)’
4

(6.85)
W
x [z —4Izp21n—~f (1- aQ)}_

Thus, the average frequency of spin fluctuations in the
paramagnetic phase decreases with decreasing temper-
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ature owing to the Kondo effect. The net decrease is
related to the fact that the moment is cancelled ($?) is
decreased) by a far larger amount than the effective
exchange interaction (6.79) is enhanced.

As already noted, a crucial question in the theory of
Kondo magnets is why the magnetic moment is not
cancelled out completely. Generally, two mechanisms
may be involved here. One is the incomplete cancella-
tion of individual moments (for § > n/2, where n is the
number of scattering channels for conduction electrons,
we have S - S — n/2 for T tending to zero [149]), and
the other is multi-impurity effects. Apparently, the first
mechanism is effective in the TmS Kondo lattice and in
the TmSe intermediate-valence systems, where both
feasible states of the Tm ion are magnetic. However,
this mechanism is unable to explain the situation with a
small magnetic moment for T = 0, which, as has been
noted, is typical. Therefore, one may suppose that the
Kondo effect and magnetic order owe their existence to
spin—spin interactions or, in other worgis, the spin
dynamics. The above results, derived within the pertur-
bation theory, enable one to describe how the state of
Kondo magnetism is formed in qualitative terms.

Suppose we have the paramagnetic phase and low_er
the temperature, As a result, the magnetic moment will
be “cancelled.” In contrast to the single-impurity situa-
tion, however, the degree of cancellation will be deter-

mined by T+ a@® (where g is on the order of unity) or
(T? + ®*'?, rather than by T. Importantly, ® likewise
decreases with decreasing temperature. This process
cannot be described analytically within the perturbation
theory. If, however, one assumes a single energy scale
on the order of Ty (which is what distinguishes the

Kondo systems), one must assume that @& is propor-
tional to Ty at T = Tx. Indeed, as one can see from
numerous experimental data on the quasielastic scatter-
ing of neutrons in the Kondo systems (see Ch. 7 in [140])
for T tending to zero, the characteristic width of the

central peak is I" ~ @ ~ 7. Thus, the cancellation of the
magnetic moment terminates somewhere at the bound-
ary of the tight-binding region, and a finite (although,
perhaps, small) saturation moment is formed.

Outwardly, the above mechanism whereby magne-
tism with small M, is formed radically differs from the
conventional one, where weak itinerant magnets are
assumed to be located in the close vicinity of the Stoner
instability [108]. One should bear in mind, however, that
in the Kondo systems both the energy spectrum of new
Fermi quasiparticles formed under tight-binding condi-
tions and the effective interaction between them undergo
strong renormalizations. It is all but obvious that the
Stoner criterion is inapplicable when used with the initial
parameters characteristic of the Kondo magnets.

A continuous transition exists between the Kondo
systems and the “conventional” systems of itinerant
electrons (Pauli paramagnets may be regarded as sys-
terns with high T proportional to Eg). This prompts one
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to wonder about the role of many-particle effects in the
case of “classical” weak itinerant magnets such as
ZrZn, and Scyln as well. It might seem that the very
closeness to the Stoner instability point, that is, the
smallness of My, is determined not so much by the ini-
tial density of electronic states and the initial interac-
tion parameter, as by their renormalization. In view of
this, it would be of interest to try to describe weak itin-
erant magnets by looking at them not from the “band”
angle, as is usually done, but from the angle of local
magnetic moments, which can be all but cancelled.
Because, as is customary to class them at present, the
weak itinerant ferromagnets include not only ZiZn,,
but also CeRh;B, and CeSi, [140], the second approach
looks less natural than the first. Formally, the Hubbard
model, which is ordinarily used to describe itinerant
magnets, is rendered almost analogous to the s—d{f)
exchange model, if one postulates the existence of local
moments {167, 171].

Of the many interesting problems, the one that
deserves special mention is the high sensitivity of the
parameters of Kondo magnets (especially M,) to small
additions of impurities and pressure. It might happen,
for example, that the renormalization described earlier
in this section leads to several fixed points with differ-
ent M, and that small changes in the external factors
cause significant changes in the overall behavior. As
will be demonstrated in the next section, however, the
situation is apparently less complicated — there is only
one fixed point with parameters strongly dependent on
the initial coupling constant.

6.8. Formation of Magnetic Order in Kondo Lattices

To begin with, we will derive the renormalization-
group equations (the scaling equations) for the effective
s-f exchange interaction, the spin dynamic frequency,
and the magnetic moment with reference to the ferro-
magnetic phase. The results that apply to the antiferro-
magnetic and paramagnetic phases will be discussed
without derivation (in more detail, all calculations are
given in [184]). We will next analyze the equations and
find criteria for the formation of a nonmagnetic Kondo
lattice, a magnetic Kondo lattice, and a “conventional”
magnet. We will also dwell on why the parameters of
Kondo magnets are highly sensitive to external factors.

As in Section 2.5, we will use the renormalization-
group method in a form called “a poor man’s scaling”
by Anderson [1851, who investigated the case of a sin-
gle Kondo impurity. For this purpose, one partitions the
space of the states of s electrons into layers of energy
C < E < C+ 8C and calculates the contribution of each
layer to the effective s—f exchange parameter I,{C). In
the ferromagnetic case, for a system described by the
Hamiltonian (6.67), the latter may be written as

Re[Zu(ke, £ = 0) — Zalks, E=0)] = 2L{C)S, (6.86)
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where X (k, E) is the self-energy for the Green’s func-
tion of an s electron

+ 1
<<Ck, oick, 5>>E = E- 5;; - zc(k, E) » (6.87)

and kg is the Fermi momentum subject to the condition
g, = 0 (the energy is reckoned from the Fermi level).

Thus, I¢ is determined by the amount of spin splitting
for the states at the Fermi level.

The simplest way to evaluate Z,(k, E) for the ferro-
magnetic phase is to use the Holstein—Primakoff repre-
sentation for spin operators [108]

§; = JéTS'[a - b:b'] mb,-,

28
172
_ bfb] (6.88)
” + L)
57 = J28b} [1 55 |

where b, are the boson operators of magnon annihila-
tion at the ith site, and then to invoke the theory of per-
turbations in terms of 1. By the second-order perturbation
theory, we find (see, for example, [167])

_ 2 fq$ +Nk-—q
Zr(k, E) = —IS+21 qu:m’ (6.89a)
L~for + N,
Sk E) = IS+20°8Y .21 X786 80h)
+ Eq:E—eqT—mM

where N, = Ng(®,), and @, is the magnon frequency.

Taking advantage of the definition (6.86), we find
the contribution 87¢(C) from a layer with an energy in
the interval (C, C + 8C) '

8I(C) =1

1 1
< Emrent L e

C<gy <C+8C gt C<gy <CHréc O

, _
pl (C"m)sc, C(690)

Ct+o

where @ = 4Dk;°;, and D is the spin stiffness coeffi-

cient. For the magnon spectrum, we adopted ®, = Dg?
for ¢ = 2kg.

By evaluating 0/,;/0C in the limit of 8C tending to
zero, changing the corresponding expression I — L; in
agreement with the general idea of the renormalization-
group method, and introducing a dimensionless cou-
pling constant

= -21{O)p,
8.4 0) AC)p 691)

g =-2Ip,
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we obtain a scaling equation of the form

%4(C) _ 84O L ]C+B,(0)
oC 20,0 ¢~ ®_(C) )
As is shown in [184], in order to find the dependence of

the effective spin wave frequency ®, on the “trunca-
tion” parameter C, one shouid proceed as follows:

(1) determine the contributions that come to the spin
wave frequency from the magnon-magnon interaction

©, = 25(Jo=J) +23 (J,+Jg=Jp O (Bpby)s
P

(6.93)

(2) take into account the contribution to the average
magnon occupation numbers from the s—f exchange
interaction in the second-order perturbation theory

fki (1 '"fk+p,1‘)

Kk (akL - Sk-i-p,T -,
(3) define the contribution from the layer C <&, < C+8C;
and

(4) replace I by I {(C) in the corresponding equation for
0w,/ dC. Generally, the renormalization of ®,; will be
different for different ¢. If, however, one applies the
nearest-neighbor approximation to J(r), then dw,/dC
will be proportional to m, with coefficients independent
of g, and the scaling equation will take the form

WO -t [CH+BO)
ac - 4 gef(c)ln W

where o = (sinkgr/kgr) 2 [cf. (6.84) and (6.75)]}, and
r is the distance between the nearest neighbors.

_ Finally, the magnetic-moment renormalization
8.+(C) can be determined in a similar way subject to the

equality
§=8- 2<b;bp>’
P

which follows from (6.88). As a result, all scaling equa-
tions will be written as

(6.92)

(6.94)

8(byb,) = 2I’S

2’

, (6.95)

(6.96)

agef(c) _ .
5 = A; (6.97a)
dln®,.(C) I-a
5 =~ A; (6.97b)
aingef(c) _ 1 .
—sE T = ~§A, (6.97¢)
2 ——
_ () ®,(O)
A = A, B0) = g"é O (=), (6979
where
o) = %m é_i_i : (6.98a)
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It can be shown [184] that the equations for a ferromag-
net and a paramagnet will differ only in the form of the
function @(x), that is,

R S
o) = S tan X (6.98b)
for a paramagnet, and
—~In[1-+1, 3D,
X
00x) = 1 (6.98¢)
2D,

A/l—xz’

for an antiferromagnet in the three-dimensional (3D)
and the two-dimensional (2D) cases. We included the
result for a two-dimensional antiferromagnet because it
may be of interest for copper-oxygen antiferromagnets,
such as Pr, _,Y,Ba,Cu,;0; (see [184]).

In all cases, the function @(x) satisfies the condition
@(0) = 1, and this ensures a correct limiting transition
of equations (6.97a) - (6.97d) to the single-impurity
case for @, tending to zero.

We will now analyze the system of equations (6.97).
We can express ©,:(C) in terms of g(C) from (6.97a)
and (6.97b)

B.(0) = Gexp {3 (1) [8(O)~ g}, (699

where ® is the initial frequency of Kondo fluctuations
(without Kondo renormalizations), and S.(C), from a
comparison of (6,.97b) and (6.97c)

1

40] . (80T

In view of (6.99), there remains only one equation for
Zer» Which we will write as

2.
gaf) = g4@W[ A+ 5 (1- ) g, & -], (6.101)

where

(6.100)

yx) =™, yx= =1, (6.102)
£=m|%, r=n/¥s1, (6.103)
(4

and W is the truncation energy of the order of the initial
width of the conduction band.

The initial condition for the differential equation
(6.101) is g.(§ = 0) = g [see equation (6.91)]. In view of
this, equation (6.101) can be written in integral form as

L1
® "z X&), (6.104a)
5
1-
X® = [dy[r+— g, @)-E].  ©.10)
0

Here, we will limit ourselves to the Kondo case g > 0
(I <0). Whereas y(x) is a positive monotonically
increasing function of x, g.,(£) is a monotonic increas-
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ing function of &. The ground state of a Kondo lattice is
determined by the behavior of g.(E) for & tending to
infinity.

A general analysis of equation (6.104) for & tending to
infinity can be done without finding the specific form of
the function @(x) and, consequently, of the function y(x).
To demonstrate, let

8*= gorl(§ = 00) < oo, (6.105)
Then
M) < X(e0) < M + 1—;—9‘ &), (6.106)
where
M(x) = {d&w(x—&) = _{ T CRE N

for x»1,

by virtue of (6.102). Substitution of (6.105) - (6.107) in
(6.104) yields

AL~ — g KA+ ——g . 6.108

Equation (6.108) demonstrates that the finiteness con-
dition (6.105) for g* leads to a contradiction if Ag > 1,
that is,

B<Ty = Wexp(~—é) . (6.109)

Then there inevitably exists a point £* where g, ,(§*) = oo,
By equations (6.99) and (6.100), at that point both @,

and S, tend to zero. Thus, given that the condition

(6.109) is satisfied, a tight-binding state is formed with
a completely suppressed spin dynamics. The energy

Ty = Wexp(-£%) (6.110)

plays the role of the boundary of the tight-binding
region, that is, of the effective Kondo temperature for
the lattice. As will be shown in Section 6.9, even in this
case, the ground state can, in theory, be magnetically
ordered if the number of electrons is not equal to the
number of f spins because one charge carrier can form
a singlet coupled state only with one spin. For Ag < 1,
afixed point with the effective coupling constant g*
exists. The inequality (6.108) implies that variations of g
in the interval

1 1 ¢

7L<g<7_u+ﬁ (6.111a)
or, equivalently,

Ty < © < AT, (6.111b)

where ¢ and A are numerical factors of zero order in g,
cause g* to vary from a value of the order of g to values
substantially greater than unity. Also, by virtue of

(6.99) and (6.100), the effective spin 5 = S;(& = o)
and the effective frequency @*= @ (£ = ) vary from
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the initial values to zero. These sudden changes occur
within a small range of the initial coupling constant
{0g| ~ g2 [see equation (6.111)]. This explains the high
lability of magnetic Kondo lattices. Finally, for

o> Ty (6.112)
g* = g, and we have the case of Kondo-corrected ordi-

nary magnets that can be treated within the perturbation
theory.

We now turn to a more detailed analysis of the most
interesting case of a tight-binding solution.

6.9. The Ground State of Kondo Magnets
in the Mean-Field Approximation

As we saw in Section 6.8, it is rather difficult to
describe the crossover during a transition from the
high-temperature region (where the perturbation theory
is applicable) to the tight-binding solution. It is, there-
fore, of interest to consider the low-temperature region
T <€ Tg. This can be done within the formalism recently
developed by Coleman and Andrew (for details of cal-
culations, see [172, 173]). Following {1541, we will use
the saddle-point method in evaluating the functional
integral that describes the system. Then, in the mean-field
approximation, the Hamiltonian of the s—f exchange
from (6.67) (for spin § = 1/2) takes the form

+ 1 -
—Izciaciﬁ (GGBS"M Esaﬁ) — C? V:f:
ap (6.113)

+ £ Ve, - %Tr(ff: ).

: . + + .+
Here, we use the spinor notation ¢, = (c¢;ic;; ), €t}
f,ff, are the pseudofermion creation operators [154]; and

¥, is the effective hybridization matrix whose elements
are defined so as to minimize the free energy. In con-
trast to Coleman and Andrew [154], who derived the
anomalous averages corresponding to the spin-liquid

state from the Heisenberg Hamiltonian A, we consider
the simpler case of long-range magnetic order. For a
ferromagnet, we have [172]

V?GI = Vcaac’;
N (6.114)
Hf= _-](SZ)ZGﬁ'afic; J= ‘]q =07
f- pﬁ = 2 [ (Sk” w) c;ockc W, f:c fkd
k.o
+ Vc (CZGfkc*'fi:ccka) + COIlSt, (6 1}‘5)
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=

Fig. 6.9. Schematic representation of the complete density
of electronic states (including the density of states for
pseudofermions) in the effective hybridization model (6.115)
for the ponmagnetic case.

where w, = w — 6J{§%, |w] ~ T, and w plays the role of
the chemical potential for pseudofermions. By diago-
nalizing the quadratic form (6.115)

Cro = €08 (8, /2) 0, — sin (8, ,/2) By ;s

oo = sin (8, ,/2) oy + cos (8,,/2) By 5

sinb, = 2v,/Ey.; (6.116)
cosB, = (g, ~H—w,)/ E;
2 2 1/2
Eo=[(g,—U—w,) +4vy]
we obtain for the spectrum of quasiparticles
1
gl=eyl = 5 (8- B+wtEg).  (6117)

The quantities v, and w,, the chemical potential |, and
the magnetization (§%) are determined from the equations

20y (Mg~ o)
Vg = 212<c:cfkcr> = - E
k

1 . .
n = Z<C:‘°C’“’> =5 Z [1- (-1)cos8, ]ni,;
ko ko, j=1,2 (6.119)

; (6.118)

ko

e = 3 fucfea) = 5 + (59
ke (6.120)

1 . )
= 32 [1+4 (=1) cosB, ] nig,
K/
where n is the concentration of conduction electrons,

. i -1
and m, = [expBe, +1] .

Thus, with the approximation in question, the
energy spectrum is of hybridization character, that is,
near Ep there is a “Kondo™ bandgap centered at w, with
sharp density-of-states peaks at the edges (Fig. 6.9).
The principal contribution to the density of states near
E; comes from the pseudofermions that arise upon the
“disassembly” of localized spins. This picture of a
spectrum has been confirmed for heavy-fermion sys-
terns by IR and microcontact spectroscopy [141], and
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the delocalization of “heavy” pseudofermions by
observations of the de Haas-Van Alphen effect in
heavy-fermion systems with large m™* [142]. In the case
of ferromagnetic Kondo systems, the hybridization
form of the spectrum is apparently suggested by the
nonmonotonic temperature dependences of magnetiza-
tion in Sm,Sb, and SmyAs, [174]° (compare with
the temperature-induced ferromagnetism  discussed
in [175)).

If { v,] < W, then cos 8, = sgn(€; — jL — W,,), and this
simplifies equations (6.118) - (6.120). We define the
function p(c) by the equation

e
c =2 j dep(E), (6.121)
0
where p(g) (0 < & < W) is the initial density of states.
Then, equation (6.119) takes the form ji(n) = J.

Consider various types of ferromagnetic solutions,
For definiteness, we will limit ourselves to the case
n < 1. If{8%) is not too great, then, as in the nonmagnetic

case, wy > v/ (W~ ) for both spin projections, that

is, p lies below the energy gap. Then, from equations
(6.118) - (6.120) we obtain

R+,

1=-2 | € 612
o [(e—w)’+4vi]
A= Va/we = [ (n+2n5) ~ ). (6.123)

By evaluating the integral in (6.122) with due regard to
the terms of the leading and subsequent orders with
respect to 1/Infv,/W] = 4Ip, we find the ratio wy/w,
from (6.123) and derive the self-consistent equation for
magnetization

Ry
tanh Z}m Idap(g) —P = J<Sz>,
p ; E—H w (6.124)

K= pn+1F 2<Sz>)

This equation has only trivial solutions for
p(e) = const. However, solutions with ($% # 0 may arise
for some p(g) if the right-hand and left-hand sides of equa-
tion (6.124) are on the same order, that is, if J ~w ~ T.

If wi>vi/ (W= W), then —vi /L < wy < vi/(W—L),
that is, |1 lies in the energy band for 6 = T (this is called
a semimetallic ferromagnet), and we have npp =1 -n/2,
ng = nf2, and (§% = (1 — n)/2. Such a solution exists if

—y/p< [p@2n) ~ )7 - T (L-n) /v < g/ (W—p);
2 W
AN 1 ¢ dep(e)| (6.125)
= () “°""[5u£,,) e_u]
If p = const, then (6.125) takes the form J < T /(1 —n).

3 A similar M(T) dependence recently was reported for the mixed-
valence ferromagnetic EuNi in [176].
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In order to investigate the energy stability of the
state in question, we first calculate the corresponding
total energy

B = (H-ph)+pn—-w, p=pm, n=1,
(6.126)

(A-pny = 3 &l nl,+I5)~ 51?2 Vi, (6.127)

kio .4

Integration in the case of p = const gives

n

2

which is always lower than the energy of the nonmag-
netic Kondo state E(n) = n?/4p — nTx /2. Thus, the sat-
urated Kondo ferromagnet (the semimetallic ferro-
magnetic state), in which every conduction electron can-
cels out one localized moment (as in the s—d(f) model
with ] — —o0), is stable at small J. We must compare
(6.128) with the energy of the ordinary magnetic state
(v =0, (89 = 1/2), E(n) = n*/4p — J/4. As can be easily
seen, the energy of the latter decreases at J(1 —n/2) =Ty,
and, as J increases, a transition of the first order with a
complete suppression of the Kondo effect takes place at
that point.

2
n 2 1
Em) = 35- 5Tk~ KEY, Ty=Wexp 57> 6128)

Still another possibility is solutions with w, >

vi/(W-p) and wr <-vi/p (U lies in the lower
hybridization subband for ¢ = | and in the upper one,
for o = T). Notably, for p = const, the solution takes the
form
WS = Ty, 1P <(SV<t, To<i< I
) 2 K 1~n’
(6.129)

The corresponding total energy is
A 2
E(n) = n2/4p+%(1 ~n) T+ J{(S%),

that is, the state (6.129) is energetically unfavorable.

As is seen, for the criterion of ferromagnetism an
important factor is the dependence of the effective
hybridization on ¢. By contrast, in the case of antifer-
romagnetic order, when in the mean field approxima-
tion, we have

Hy= "JK<Sf<>Z Ueswifior +fl:'rfk+x,f) ,
k

Je= mz‘a}x Jq,

(6.130)

2
the corrections to v and w are on the order of J K(Sz /W

and immaterial. Therefore, the criterion of antiferro-
magnetism takes the usual form J, X, > 1, where % is

the inhomogeneous magnetic susceptibility of pseudo-
fermions in the effective hybridization model (6.115).
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The principal contribution to it comes from transitions
between the hybridization subbands

B o
50\ = 23,005 (8,/2) sinf (8, , ./ 2) < k1
k k+k ™~ Ex
w1
w1 6.131
SAL (6.131)

Thas, the antiferromagnetizm appears at J,, = T.

Another substantial contribution to the formation of
the ground state can come from fluctuations. For exam-
ple, calculation of the correction for the magnetization
due to Heisenberg interaction fluctuations (actually,
due to perturbations in J/Ty) gives

&S ~ —~( T In(T 1), (6.132)

so that for J ~ Ty one has 8(5%) ~ (59, and a state with a
low saturation moment can be formed.

Although the model with a hybridization spectrum
of Fermi excitations examined in this section is one of
itinerant magnetism, the criterion of magnetism in it dif-
fers radically from the Stoner criterion. Roughly speak-
ing, in the latter [with a density of states N(Eg) ~ 1/T],
the interaction within the atom is replaced by the
Heisenberg interaction between sites. In this sense, one
may say that Kondo lattices are “localized.”

6.10. Separation of Spin and Charge Degrees
of Freedom and the Problem of Heavy Fermions

In Sections 6.5 through 6.9, we discussed the view,
widely accepted at present, according to which heavy-
fermion systems are described as Kondo lattices. In our
opinion, such a physical picture is well-founded for
most heavy-fermion systems. However, a wide range of
systems (see below) do not fit such a description. A dis-
tinction of such systems (which include not only f but
also d systems) is the lack of correlation between the
linear term in the heat capacity Y7 and the electrophys-
ical properties (the number of charge carriers). Some of
them, with large v, are semiconductors and not metals.
At the same time, the value of 7y closely correlates with
the presence or absence of magnetic or charge order.
This apparently suggests the non-Kondo origin of large .
The point is that, as was shown in Section 6.8, the con-
dition for the formation of the Kondo lattice state only
slightly depends on magnetic order, being qualitatively
the same for the paramagnetic, ferromagnetic, and anti-
ferromagnetic phases. In this section, we will dwell in
brief on the likely nature of such “unusual” heavy-fer-
mion systems.

To begin with, we should answer the question: Is the
linear term in the heat capacity always of an electronic
nature, that is, related to charge carriers? The answer is
undoubtedly “no” in the one-dimensional case, where
the heat capacity is linear in temperature, for example,
in the antiferromagnetic Heisenberg chain with § = 1/2
[186], which has no charge carriers at all. The linear
contribution to heat capacity in the Kondo problem,
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discussed in Section 6.5, is traceable to the interaction
between spin and conduction electrons. Therefore,_ it
may, in theory, be interpreted as the spin heat capacity
(renormalized at the expense of s electrons) or as the
electronic heat capacity when due regard is given to the
Suhl-Abrikosov resonance. The latter approach is
more generally accepted and, apparently, more correct
in substance. The point is that in Kondo lattices high
densities of states at the Fermi level show up, as a rule,
in the properties where the charge-related degree of free-
dom is obviously essential. These are the behavior of
resistivity with temperature, IR spectra, the jump in heat
capacity in the superconductivity transition [135, 138],
and sometimes the de Haas~Van Alphen effect [142]..It
must be admitted, though, that in the latter case the sit-
uation still needs to be clarified completely. An alterna-
tive view is also discussed in the lterature [187].

For three-dimensional systems, the possibility of
zero-current excitations contributing to y was first
pointed out in [188]. Later [80], it was shown that in a
narrow-band Hubbard ferromagnet with a low hole
concentration the principal contribution to y comes
from zero-current “nonquasiparticle” states. It was not
until Anderson {17] had developed his resonating
valence bond (RVB) theory for high-temperature
superconductors, however, that the possible nonelec-
tron contribution to Yy received proper attention.
Although rigorous results are still lacking (especially
for the three-dimensional, and not for the two-dimen-
sional, case), the idea appears attractive and can appar-
ently throw light on the properties of “nontraditional”
heavy-fermion systems. Anderson’s theory assigns the
crucial role to spin-spin exchange interactions.

We first turn to the possible “constructive” role of
site-site exchange interactions in forming states of the
heavy-fermion system type. In this connection, special
interest is evoked by systems with competing exchange
interactions (when, for example, nearest- and next-
nearest-neighbor interactions are comparable in magni-
tude and each favors the formation of a magnetic struc-
ture of its own).

Until now it was assumed that the effects of site-site
interactions reduce the effective low-energy scale Ty
(see the discussion of the spin dynamics above) and
hinder the suppression of magnetism. Recently, attempts
to gain insight into the nature of high-temperature super-
conductivity spurred advances in the resonating valence
bond (RVB) or quantum spin-liquid theory [177].
The state dealt with in this theory is an example of the
reverse situation: the competitive character of site-site
exchange interactions J; leads to the suppression of
magnetic order (see Section 5.8). As the RVB theory
tells us, the spin-liquid state with a low-energy scale |J|
can be formed in purely spin two-dimensional (and,
possibly, three-dimensional) systems with competing
interactions. In these circumstances (in the case of
the zero-gap version of the RVB state with a spin on
Fermi surface), a linear term in the heat capacity with
v~ 1/1J]| appears.
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We will demonstrate the suppression of magnetic
order via a simple spin-wave treatment of a two-dimen-
sional Heisenberg antiferromagnet with S > 1 (see also
{178]). The correction for the magnetization of the sub-
lattice due to zero-point vibrations takes the form

85 =-Y v
% ’ (6.133)

1 1
Vi = 35 A Trqdq =20 /04— 5,

0 = 28" (Je—=JIg) (2= Jsq= =) -
For q tending to zero, let

1 1
2= dra=dk-a= 504 +3BAOG,  (6.134)

where B > 0, () ~ 1 is a positive function of the polar
angle of the vector q. For o tending to zero (frustra-
tion), we find

2n
= B 1 2t 49
§=S-alnt; a= —— (e=Jo) [ =
ot T Gt I )
(6.135)

This implies that § = 0 in some range of parameters
o < Bexp(—S/a). The existence of nonmagnetic spin
liquid in three-dimensional systems with competing
interactions remains an open question. However, as we
will soon see, there is some experimental evidence that
favors both such a possibility and the formation of a

‘state with a partially suppressed magnetism.

In most cases, the Kondo effect is undoubtedly the
principal cause of anomalous properties in the f sys-
tems. Yet, the f-f exchange interaction, too, makes a
substantial contribution to the formation of their energy
spectrum [173]. Apparently, a state standing midw.ay
between Kondo magnets and spin liquid occurs quite
often. In Kondo lattices with a small number of charge
carriers, competing exchange interactions may be even
more influential than the Kondo effect. For instance,
the semimetal CsSb is a classical example of a system
with competing exchange interactions and an elaborate

. magnetic phase diagram (a devil’s ladder). According

to Sera et al. {179}, Ce,gl.a,,Sb has a very high elec-
tronic heat capacity at low temperatures.

The Y, -,Sc,Mn, system, too, exhibits unusual prop-
erties. The compound YMn, is an itinerant antiferromag-
net with a complex magnetic structure. At x = 0.03,
magnetic order disappears, and 7y goes as high as
140 mJ/(mol K?), which is a record-breaking figure for
the d systems [180]. The magnetic insulator NiS, has
magnetic order, but one may speak of the suppression
of magnetism because Ty, = 45 K is small in comparison
with the paramagnetic Curie temperature |81 ~ 1500 K.
Moreover, the slope of the line in the phase diagram sug-
gests that the insulating phase has a large entropy [25].

A striking example of the spin-liquid state is, it
appears, the intermediate-valence semiconductor
Sm,Se,, which is a system with charge (and not spin)
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degrees of freedom. In contrast to some isostructural
compounds, Sm,Se, has no charge order, and v has a
giant value of 4500 m}/(mol K?) at low T'[181]. The
derivation of the effective anisotropic pseudospin
Hamiltonian for a model system with charge frustration
is given in [182], In the Yb,As, _ P, system (which has
charge order near 300 K), v is large and increases from
200 to 400 mJ/(mol K?) as x changes from 0 to 0.3,
whereas the charge-carrier concentration (about
0.001 per atom) remains practically unchanged [183].
Quite likely, doping with phosphorus augments frustra-
tions and partly destroys the ordered state.

The above mechanism of charge frustrations (or the
similar mechanism responsible for the melting of the
Wigner ‘crystal due to zero-point vibrations) can be
realized in some intermediate-valence compounds cus-
tomarily described as Kondo lattices with high T [155].
Examples are Eu-based systems of the EuM,Si, and
EuPd,P, type, where an increase in pressure or temper-
ature brings about a transition from an inhomogeneous
to a homogeneous intermediate valence.

In summary, the problem of Kondo magnets, as can be
seen from the foregoing (see Sections 6.6 through 6.10),
does evoke exceptional interest from the viewpoint of
the general theory of magnetism — it demonstrates a
broad variety of properties, offers examples of both
purely itinerant and purely localized behavior, and
encompasses all intermediate states.

6.11, Conclusion

The fsystems demonstrate what seem to be the most
striking and finest of all phenomena associated with the
localized and itinerant behavior of electrons in metals.
We refer to the properties of two groups of substances:
intermediate (or mixed)-valence compounds and
heavy-fermion systems. In both cases, the f electrons
are rendered, in a sense (see Section 6.5), itinerant in a
narrow energy layer AE near the Fermi level (or, more
accurately, to include semiconductors, near the chemi-
cal potential level) and thus behave as band electrons
over the time interval T = h/AE and as localized elec-
trons at smaller times. In intermediate-valence systems,
AE = 100 - 1000 K and, accordingly, 7T is about 10-13 s,
In heavy-fermion systems, AE is one or two orders of
magnitude smaller, and 7 is longer by the same amount.
For both intermediate-valence and heavy-fermion sys-
tems, the energy spectrum has a characteristic hybrid-
ization structure with narrow peaks of densities of
electronic states, separated by a bandgap or a pseudogap
of the same width as the peaks themselves. However,
for intermediate-valence systems it is generally more
typical that the chemical potential level falls within the
bandgap, and the system is thus a narrow-gap semicon-
ductor. In heavy-fermion systems, the Fermi level ordi-
narily lies near the peak of the density of electronic states.

Such are, in a general outline, the basic points of the
semiphenomenological description of the anomalous
f systems we presented in this chapter. In such a presen-
tation, it appears quite established. The microscopic
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models that lead to this behavior can be different. In
this review, we gave preference to the view that most
heavy-fermion systems are Kondo lattices (which is
almost generally accepted, but see Section 6.10). In
intermediate-valence systems, however, the key factors
are the effects associated with the hybridization of the f

“and d states and the exciton effects (other views are
likewise discussed in the literature, but the one we hold
at present appears to be the most natural).

It appears, however, that a specific description of the
properties of intermediate-valence systems depends lit-
tle on the microscopic model adopted, at least in the
mean-field approximation, to which we limited our-
selves,

Special consideration (see Sections 6.6 - 6.9) was
given to the properties of Kondo magnets, which
include heavy-fermion and some other related systems
(primarily, Ce- or U-based) with a somewhat greater
energy scale AE, that demonstrate ferromagnetic or
antiferromagnetic order.

In contradictory phenomena, we find
distinct but equally essential aspects of
a single, clearly defined compiex of
knowledge about objects.

Niels Bohr

7. THE SUMMING-UP

Throughout the review, we tried our best to demon-
strate the usefulness to metal physics of both a purely
band-theoretic treatment of itinerant electrons and the
views that are based on their localized or atomlike
states. Sometimes, we had no alternative. For example,
the d electrons in Mott insulators or the 4f electrons in
almost all rare-earth metals are truly localized., Some-
times we faced an alternative. For example, when one
calculates the properties of the alkali metals, one may
completely “take apart” the ionic core and analyze the
core electrons as itinerant through the use of the density-
functional formalism. In most cases, however, it is con-
venient to treat them as purely “atomlike,” that is,
belonging to the ionic core, and to use the language of
pseudopotential theory (see Ch, 2). Of course, the Iatter
approach has a more limited applicability, and in con-
sidering large compressions, one has to “unfreeze” the
core. Within its limits of applicability, however, it
offers a way to calculate far more delicate characteris-
tics of a metal. It may also occur that the same electrons
in the same substances must be treated as itinerant in a
narrow energy interval near the Fermi level and as
localized on a larger energy scale (as is the case with
the felectrons in heavy-fermion systems, Ch. 6). All of
this demonstrates that the “itinerant” and the “local-
ized” pictures of the electronic subsystem in a solid are
mutually complementary; in fact, they come about
owing to a simplification of the real, substantially
many-particle picture. Before one can describe a quan-
tum system in terms of “wave—particle” duality, one
must reduce the many-particle quantum system to its
single-particle equivalent because a wave in the multi-
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dimensional space of all coordinates of all electrons is
not a classical entity. In this single-particle description,
the electron may turn out itinerant or atomlike, as the
case may be. A convenient mathematical formalism in
the former case is second quantization that involves the
usual Fermi operators; in the latter, this will be the use
of X operators with their substantially more sophisti-
cated algebra (see Ch. 5).

In the quantum theory of condensed matter, there
are, generally speaking, two fundamental pro_bie;ns.
They are the ground-state problem and the excitation-
spectrum problem. In dealing with them, the represen-
tation of electronic states as either purely itinerant or
purely localized might be imperfect: it may adequately
describe one of the properties of a many-electron sys-
tem and fail to do so with the other properties of the
same system. Here is an example that validates the truth
of the above assertion with regard to the ground-state
problem. An important characteristic for the ground
state of a quantum system is its energy E, and its depen-
dence on the density of particles, interaction constants,
the masses of particles, the deformation constants of
the crystal lattice, etc. Many physical properties can be
found immediately from the expression for E,, and one
need not know the explicit form of the wave functions
for the ground state, | D), in order to do that. For exam-
ple, by calculating E; for various deformations of the
lattice, one can determine its elastic constants. Quite
often, E, can be found by the direct variational method,
whereby the wave function is sought in some trial form
(see, for example, Sections 5.3, 5.5, and 6.4). Impor-
tantly, entirely different trial functions may yield close
values of E,. Moreover, a physically less accurate pic-
ture of the ground state can lead to a more accurate
value of E,,

An apt example is as follows [26]. In the one-dimen-
sional Hubbard model with a number of electrons equal
to that of lattice sites, the ground state is dielectric for
any interaction constant U, and the exact spiution [30]
yields for U < r = 1 (where ¢ is the transfer integral cho-
sen equal to unity) an energy gap G defined by

G~Jﬁexp(~gg).

The trial function (5.34) corresponding to the self-con-
sistent field approximation gives a qualitatively close
result (5.38), which differs only in its pre-exponential
factor. The Gutzwiller trial function (5.73) leads to the
metallic state with any finite U and is inadequate in this
sense, When, however, E, is estimated by this func-
tion [59], the behavior of E,(U) turns out to be closer to
the exact result

4 U 2
EyU) = '%+"3:_0'0”U N

than the estimate based on the function (3.34)
4 U 41 }
Ey) = =t O[exp (w—l—j—} .

Thus, on the one hand, a qualitatively proper choice of
the “localized” (dielectric) or “itinerant” (metallic) pic-
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ture will not, generally, guarantee the best description
of the ground-state energy and of the physical proper-
ties directly related to it. On the other hand, high accu-
racy in describing such properties is not a strong
argument in favor of any choice of the picture.

We dwelt on this point at length because it often
leads to a misunderstanding. For example, the
Kohn-Sham theorem lying at the basis of the density-
functional formalism (see Section 4.1) guarantees only
the potential possibility of calculating E, exactly for a
given density distribution n(r) by this method. How-
ever, apart from the difficulty in finding the explicit
form of the functional that implements this attractive
possibility (“Which mouse specifically will put a bell
on the cat’s neck?”), there is one more stumbling bock.
A good description of Ej is a vital point. Among other
things, it enables one to find equally good experimental
values for elastic constants, etc. However, as we
observed from reference to Gutzwiller’s formalism, it
does not safeguard that what we described as a metal is
a metal, and as a dielectric is a dielectric.

This lack of a direct relation between a good
description of elastic constants and the energy spectrum
(there is or there is not a bandgap) in many-particle sys-
terns has, however, a “silver lining.” If we limit our-
selves from the outset to describing only the lattice
properties of a metal, we may neglect some finer points,
to put it mildly. For instance, in a heavy-fe:nmor} system
(see Section 6.5), the felectrons behave in an intricate
way in a very narrow layer (with a width of about the
Kondo temperature Ty ~ 10 K) near the Fermi level Eg.
The contribution of this layer to E; is Ty /Ex ~ 0.001,
and the standard band-theoretic description, which
neglects a most interesting thing about heavy-fermion
systems — the existence of heavy fermions — is able, at
least in theory, to describe most of their lattice proper-
ties quite well. A more elementary example along the
same lines is the theory of alkali metals, based on the
use of local pseudopotential (see Section 2.2). Being
quite fruitful in describing the lattice properties, it is,
however, unable {as follows from our calculations not
included in this review) to describe the Fermi surfaces
of these metals with reasonable accuracy.

We now turn to describing the excited states of sol-
ids. Almost all successes of many-particle physics,
including solids, are associated with the concept of
quasiparticles or elementary excitations. Even if the
interaction is strong and the electrons are localized in
the ground state, elementary excitations will be coupled
loosely and itinerant. That is, in an ideal lattice, they are
characterized by a certain dependence of energy on
quasimomentum. This is the taditional view first
‘stated, apparently, by Schubin and Vonsovskii in their
works on the polar model of the crystal [6 - 9]. At
present, it is formally validated by the Green’s function
method [71] and, we may say this with certainty, it still
holds in overwhelming number of cases. There are,
however, systems that cast doubt on the omnipotence of
the quasiparticle description. An example of such sys-
tems described with sufficient detail in this review (see
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Section 5.6 dealing with nonquasiparticle states in nar-
row-band Hubbard ferromagnets). Of greater interest in
this respect are, however, low-dimensional systems
existing in the Luttinger liquid state (see Section 5.8).
In one-dimensional (and, possibly, two-dimensional?)
systems of interacting electrons, single-particle excita-
tions cannot be described in the language of quasiparti-
cles even approximately, unless the interaction is
vanishingly small [see, for example, equation (5.182)].
Indeed, here we run into a situation where no simplified
(single-particie) descriptions, including those in the
language of localized excitations, are feasible. Fortu-
nately, many one-dimensional models are exactly solv-
able, and one can do without such simplifications.

In conclusion, we may say that the review was writ-
ten in an attempt to look at the various approaches to
describing metallic systems from a unified point of
view. In doing so, we tried to demonstrate that even
here “the opposites complement rather than exclude
one another” (Niels Bohr).
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Abstract - This work is a continuation of the molecular-dynamics calculations that were performed earlier with
the aim to validate the influence of the phase transitions in metal-deuterium systems on the course of the cold
fusion reactions [1]. An atterpt was made to determine the region in the phase diagram of the Pd-D system

that is most “favorable” for cold nuclear fusion.

INTRODUCTION

A theoretical verification of the hypothesis [2]
assuming the relation between the cold nuclear fusion
(CNF) and phase transitions in palladium deuteride
was performed earlier [1]. To validate the hypothesis
by the molecular-dynamics method (MD), the phase
transition in the Pd-D system was simulated at one
temperature for a particular composition.

When modeling the phase transition at different
temperatures and Pd-D compositions, the intensity of
cold nuclear fusion is clearly determined by several
competing factors. For example, the amplitude of ther-
mal vibrations of Pd and D atoms increases with tem-
perature, which must lead to a continuous enhancement
of the intensity of CNF. However, according to [1], this
intensity also depends on the difference between the
Pd-D interaction potentials in & and B phases. As the
temperature increases, this difference decreases and
disappears completely at T = T, which causes a
decrease in the CNF intensity. In addition, the intensity
of CNF is obviously dependent on the deuterium con-
centration » in pailadium deuteride because the chance
of close D-D approach is proportional to n. The search
for optimum conditions (sufficient amplitude of atomic
vibrations and sufficient difference in the interaction
potentials) is the subject of this paper.

COMPUTATIONAL METHOD, RESULTS,
AND DISCUSSION

We adapted the program for the calculations of
the behavior of D atoms in Pd in phase transitions [1}
to perform the calculations on personal computers:
the results presented in this work were realized on an
IBM PC/AT-286 computer.

Of the phase transition models realized in [1], we
chose the B—o transition in a microcrystallite, one half
of which consists of pure Pd and the second half, of
palladium deuteride PdD, (Fig. 1). The model was
chosen on the basis of the previous calculations
because, in this case, one of the MD calculations led to
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the maximum deuteron kinetic energy (>10 eV) and
to the minimum D-D separation (0.7 A).

Using this model, we carried out four MD calcula-
tions for the palladium microcrystallite with free
boundaries, containing 10 x 10 X 10 Pd atoms, under
the following conditions: the temperatures were taken
to be 300, 350, 400, and 450 K; the [D]}/{Pd] ratio in the

Pd / PdD,

__

Fig. 1. Model microcrystallite used in calculations.
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Fig. 2. Pressure-concentration phase diagram of the Pd-D
system [3].



