The Physics of Metals and Metallography, Vol. 76, No. 3, 1993.
Original Russian Edition Copyright © 1993 by Fizita Metallov | Metaliovedenie, Yonsovskii, Katsnel'son, Trefilov.
English Translation Copyright © 1993 by Interperiodica,

THEORY

OF METALS

Localized and Itinerant Behavior of Electrons in Metals

S. V. Vonsovskii*, M. 1. Katsnel’son*, and A. V. Trefilov**

*Institute of Metal Physics, Ural Division, Russian Academy of Sciences,
ul. Kovalevskoi 18, Ekaterinburg, 620219 Russia

** Kurchatov Institute Russian Scientific Center, pl. Kurchatova I, Moscow, 123182 Russia
Received March 30, 1993

PREFACE

Chapter 1.
1.1.

1.2.

1.3.

Chapter 2.

2.1.
22,

2.3.
2.4.

2.5.
2.6.

2.7.

Chapter 3.

3.1

32,

33.
3.4.

3.5.

3.6.

CONTENTS

INTRODUCTION

Electron localization and Delocalization:
The General Concept

The Evolution of Views on Electron States
in Metals

A Guide to the Chapters

THE DIVISION INTO CORE AND DELO-
CALIZED ELECTRON STATES

The Ion Core and the Idea of Pseudopoten-
tial

Pseudopotential, Valence, and Chemical -

Bonding in Metals

Polarizability of Metal Tons

The Effects of the Nonpoint Nature of Ions
in the Total Energy of a Metal

The “Soft” Core Case

The Collapse of f Electrons and intermedi-
ate Valence

Conclusion

DENSITY-OF-STATES PEAKS:
AN ANALOG OF LOCALIZATION
INTHE BAND-THEORETIC APPROACH

On the Nature of Narrow Peaks in the Elec-
tronic Density-of-States

Density-of-States Peaks and Anomalies
of Observables in the Single-Particle
Approximation

Screening Anomalies

Phonon-Spectrum and Anharmonic-Effect
Singularities Caused by Screening Anoma-
lies

The Effect of the Density-of-States Peaks
on the Structural and Magnetic Stability
of Metals and Alloys: Specific Examples

Concluding Remarks

Chapter 4. LOCALIZED MAGNETIC MOMENTS
AND MAGNETISM OF THE TRANSI-
TION METALS IN THE SPIN-DENSITY-
FUNCTIONAL METHOD

The Problem of Magnetic-Moment Local-
ization in the Iron Group Metals

The Formulation of the Spin-Density-Func-
tional Method and Conditions for Spin
Polarization

Exchange Interactions, Magnetic Structure
Stability, and Magnetic-Moment Localiza-
tion

Spin Splitting and Localized Magnetic Mo-
ments in the Paramagnetic Region
Conclusion

4.1.

4.2,

4.3,

4.4.

4.5.

PREFACE

“An answer to the questions philoso-
phy leaves unanswered is that they
should be stated differently.”

H.W. Hegel

In this overview, we attempt not so much to set forth
finalized, firmly established results of specific studies,
as to formulate in clear terms the problems related to
the dual (localized-itinerant) nature of electron states in
metals. We are aware that many specialists in metal
physics may well see no problem here at all (we hope,
however, that on reading this review they will receive
enough information to change their stand). At present, it
is widely believed that, given a powerful computer, one
can calculate any physical properties of any metals,
alloys, and compounds by state-of-the-art computational
methods based on the density functional formalism.
Admittedly, this belief rests on a fairly strong foundation
supplied by the impressive successes scored in solid-
state physics, at least with regard to ideal crystals.

The view that the density functional method is an
omnipotent device carries a deep truth. According to
Bohr, however, it must have the property that its con-
verse is, likewise, a deep truth (in contrast, of course, to
a trivial truth, for which its converse is an obvious fal-
sity). In the case at hand, this deeply truthful converse
assertion consists in that the band theory, as accepted at
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present (see, for example, [1, 2]), is all but helpless in
cases involving rather strong electron-electron interac-
tions. In this sense, one may assert, for example, that a
sufficiently narrow band is no band at all and that one
should then go over to a “localized” picture. Can one
name a specific quantitative measure that would pin-
point where Bloch’s description [3] underlying the
band theory fails? In a sense (and, of course, to a very

rough approximation), one may take as a natural limit .

the smallest total width W of the energy d band in a pure
transition d metal, namely, nickel (W= 5 eV). Actually,
precisely in nickel one runs into a number of sensible
troubles related to fairly strong electron correlations,
such as poor agreement between calculated and experi-
mental values for spin splitting and photoemission spec-
tra and the occurrence of satellites in the latter, It may be
thought that in d metal compounds, with W < 4 eV, cor-
relation effects can cause electrons to show a strong
tendency to localization. Indeed, when one comes to
the properties of metals at finite temperatures, these
effects can be decisive even in pure metals, that is, iron,
cobalt, and nickel (see Ch. 4). If, however, a substance
contains f electrons, the tendency to localization will
a priori always exist. Of course, this does not mean to
say that the results of a particular band-theoretic calcu-
lation for the rare-earth metals or their compounds may
not agree with experimental data. However, such an
agreement would in most cases be a matter of luck and
would generally call for a special theoretical justifica-
tion in each particular case. Bven in cerium, where
4f electrons are “delocalized” the most (see Sec. 2.6),
the width of the fband is of the order of 2 eV, and many-
electron effects are undoubtedly important, for exam-
ple, in interpreting its photoemission spectra. In the
other rare-earth metals, however, the 4f levels are seen
to have a termlike structure, definitively implying that
the corresponding states have a localized, atomlike
character.

Thus, in some cases a complete quantitative theory
cannot be developed from “first principles,” and one is
forced to turn to many-electron models (or to combined
approaches, such as the band theory in a tight-bonding
approximation, explicitly including Hubbard’s correc-
tions). We hope that the readers interested in such mod-
els will find useful information about relevant methods
and approaches in Chs. 5 and 6. On the other hand, the
same category of readers will probably likewise benefit
from Chs. 3 and 4; which discuss the capabilities
offered by the present-day quantitative methods of the
band theory. For example, it is not at all easy to explain
convincingly in terms of Hubbard’s model [4] why
FePd, and FePt, differ in magnetic structure, but this
problem is readily solvable by direct band-theoretic
calculations (see Sec. 4.3).

Whereas metal theorists, most likely, will have to be
convinced of the validity of the localized electron con-
cept, the converse will probably be true of materials
scientists and chemists. They have traditionally been
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using a language based on the views that atoms pre-
serve their individual identities in metals and alloys and
that electron states have, as a consequence, an atomlike
character. Therefore, it is quite possible that the attempt
we set out to make, to correlate this language with
the pseudopotential [6] (see Ch. 2) and band theories
[1 -3, 5] (see Ch. 3), will not be wasted.

Lastly, a few words are in order as regards some
important and interesting matters related in a way to the
problem of localized and delocalized states but not
touched upon in this review.

1. Polarons. In the review, we consider the possibil-
ity of electron localization and self-localization (in
Sec. 5.7) owing to electron-electron interactions, with
the lattice assumed to be “dead.” Actually, electron-
phonon interaction leading, among other things, to the
formation of polarons is probably essential for Mott
insulators, intermediate-valence systems, and other
cases.

2. Disorder and nonperiodicity effects. In the
review, we invariably limit ourselves to ideal crystals,

thus leaving out important and interesting entities, such
as metallic glasses, quasicrystals, and disordered
alloys.

3. The actinides. The elements in the 5frow of the
Periodic System distinctly differ from the 4f elements
and the transition d metals. As to the pure actinides, the
elements from thorium to neptunium (or plutonium?)
are, roughly speaking, similar to the 34 metals (the
5f electrons are delocalized), and the elements from
plutonium (or americium?) to the end of the series are
similar to the 4f elements (the 5f electrons are local-
ized). These elements and their compounds were not
easy to study for obvious reasons; fortunately, recent
years have seen a sizeable increase in accessible exper-
imental findings.

4. Biology. The variable valence of the d elements,
usually iron (Fe** or Fe*"), lies at the basis of many
life processes. For example, the reversible transition
Fe?* & Fe™ in the enzymes called cytochromes is
essential for cell respiration. The ideas and views
developed by physicists in their studies of variable
valence in crystals might be highly beneficial when
applied in biophysics.

5. Structural phase transitions. Except for a few
remarks in Ch. 3, the review does not touch upon the

wide range of matters bearing on the relationship that
exists between the electronic and crystal structures of
metals, lattice stability and structure, and, notably, mar-
tensitic transformations. Among others, we have left out
the extremely interesting and nontrivial electronic struc-
ture of y-Fe, crucial in the martensitic transformation.
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Chapter 1. INTRODUCTION

The gist of the problem of localized and delo-
calized electron behavior in metals is outlined
and its place among the general concepts and
problems of physics is defined. The history of
the problem is traced from its inception imme-
diately after the advent of solid-state quantum
theory to our time,

1.1, Electron Localization and Delocalization:
The General Concept

The theory of the metallic state of matter has as its
objective to explain, describe, and, ideally, predict the
properties of metals, their alloys, and compounds from
the general principles reliably and long established by
quantum mechanics and statistical physics. In this
sense, the theory of metals (and, more broadly, the the-
ory of the condensed state) is of “applied” character in
comparison with the divisions of physics that deal with
fundamental physical laws and stand at the forefront of
science (at present, these are elementary-particle phys-
ics, high-energy physics, and some sectors of astro-
physics and cosmology). This contraposition is rather
arbitrary, and a number of results falling in the class of
nature’s fundamental laws were obtained through
research on metals. Here are a few examples of this
“feedback” from applied to “fundamental” forefront
physics. The concept of the spontaneous breaking of
symmetry, which has its origin in the theory of ferro-
magnetism and the theory of superconductivity (in
works of Bogolyubov, Ginzburg and Landau, and other
physicists), is at the same time a pivotal one in the mod-
ern physics of elementary particles (for example, it lies
at the basis of Weinberg—Salam’s theory of electrically
weak interaction). The quark confinement, a fundamen-
tal concept of strong-interaction physics, has a very
close analog in Kondo’s problem related to the behav-
ior of a magnetic impurity in a metal. (It is no coinci-
dence that one and the same physicist, K. Wilson,
substantially contributed to the solution of both prob-
lems). Lastly, resorting to the Mossbauer effect (the
recoilless emission of gamma quanta by some atomic
nuclei in crystals) offered the first opportunity to verify
to a high degree of accuracy the slowdown of time in a
gravitational field — a dramatic prediction of the general
relativity theory.

In all of these cases, a solid, as a physical entity, dis-
plays a substantially many-particle character. It is pre-
cisely the interactions of atomic nuclei and electrons in
the crystal, though rather simple in themselves (they
reduce to the Coulomb law) but not small in magnitude,
that make the task of deducing the properties of solids
from known laws of physics a challenging and often
intractable task.

As to metals, an especial difficulty arises in connec-
tion with the electronic subsystem because the problem
of motion of atomic nuclei (or, more accurately, ions,
which additionally include the electrons of the closed
and slightly perturbed inner shells) “decouples itself”
owing to the smaliness of the so-called adiabatic
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parameter defined as the ratio of the mass of an electron
to that of an atomic nucleus.

In fact, to obtain insight into the properties of a sys-
tem of interacting electrons means to describe it in
terms of effective noninteracting species (“quasiparti-

‘cles”). In most cases, this is quite feasible because the

quasiparticles are similar to free electrons and differ
solely in the magnitude or sign of mass (more accu-
rately, in the form of the dispersion law) and in mag-
netic moment. This is what we will call the delocalized
(itinerant) behavior. If, however, the interaction is suf-
ficiently strong, it may turn out that the properties of a
many-electron system can be approximated far better
and more accurately if it is visualized as a multiplicity
of localized quasiparticles, each of which behaves more
like an electron in an isolated atom than a free electron.
This is what we will call the localized behavior of elec-
trons. In either case, however, the problem can be sim-
plified only to a certain degree of accuracy. Indeed, it
may so happen that electrons behave as delocalized
(itinerant) in terms of some properties and as localized
in terms of others in the same substance. In still other
cases (fortunately, rather rare and exotic, such as one-
dimensional chains), the concept of quasiparticles will
be inapplicable in either sense. In this review, such
cases will be discussed seldom, if at all.

The most “pure” examples of the itinerant and local-
ized behavior of electrons in metals are, respectively,
conduction electrons in the alkali metals and the felec-
trons in the rare-earth metals, except cerium. The tran-
sition d metals and especially their compounds abound
in examples of the most difficult intermediate case.

From a more general point of view, the essence of
the problem involving the itinerant and localized
behavior of electrons in metals can be stated as follows.
The “itinerant-vs.-localized” contraposition is in fact
embedded in the wave-particle dualism of quantum
mechanics. The ability of an electron to move without
dissipating energy and momentum in an ideal crystal
lattice, that is, its delocalized (band) behavior, is purely
a wave property related to the diffraction of the electron
on the lattice. Owing to the interaction of electrons as
species that repel one another by Coulomb’s law, the
wave can break up, and the electron can be almost
trapped in a finite region of space, that is, change to the
localized state.

By Bohr’s complementarity principle, the wave~
particle dualism arises from the fact that one is forced
to describe quantum phenomena in a classical lan-
guage. Such a representation is feasible only if one
resorts to mutually complementary pictures (for exam-
ple, wave and particle). Similarly, one may say that the
problem of the localized and itinerant behavior of elec-
trons arises when one attempts to interpret the behavior
of a substantially many-particle, strong-interaction sys-
tem in a “quasielectronic” language.

In theory, one can calculate the properties of some
not too complicated many-particle system without
resorting to model representations (by, for example, the
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quantum Monte Carlo method). Nevertheless, even in
such a case, one faces the need to interpret the results
thus obtained. The need for such a suggestive language
is even more urgent when one considers real systems.

In cases where a purely band-theoretic description is
not completely adequate, one has to admit a combina-
tion of traits of localized and itinerant behavior. Such a
situation sometimes arises with 4 electrons and, even
more so, with f electrons. Quite often (but not always),
it can be demonstratively described as an outcome of
the existence of some characteristic time for spin or
charge fluctuations, T, such that electrons show an
itinerant behavior at ¢ 1. and a localized behavior at
t <€ 1, In other words, the localized state exists for a
finite time 7, and then breaks up.

1.2. The Evolution of Views on Electron States
in Metals

The first attempt to obtain insight into why the elec-
trons in the crystal divide into the localized type and the
itinerant type was made in the polar model [8 - 11]. In
between the early works of Schubin and Vonsovskii in
the mid-1930s and the 1960s, one should mention Pei-
erls’ fundamental remark that he made during the dis-
cussion of de Boer and Verwey’s work [12] at a confer-
ence in Bristol, Mott’s famous work of 1949 [13] on
NiO, its “many-electron” discussion by Svirskii and
Vonsovskii in 1957 [14] (see also their later works
{15 - 17]), and, lastly, Hubbard’s model [4], a particular
case of the polar model which appeared in 1963 and has
been widely used by the scientific community since
then. However, no definitive answer was obtained and
no unambiguous statement was formulated as to what
is the main thing in the problem of Mott insulators
(more generally, in the problem of metal-insulator tran-
sition) and of the correlations that arise from the polar
model treatment (the so-called Hubbard correlations).
These matters will be discussed in sufficient detail in
the second part of this review.,

When considering the general issues of the quantum
theory of metals, the question inevitably arises as to
why the band theory, despite its explicit one-electron
character, is excellent for describing the huge assort-
ment of properties one finds in solids. An opportunity
to answer this question presented itself with the advent
of L.andau’s theory of normal Fermi liquid [18], its gen-
eralization to the case of electrons in metals [19], and
its microscopic verification (see [20]). Within this the-
ory, it is an easy matter to show that the electron corre-
lation does not qualitatively and radically change the
thermodynamic and many kinetic properties of the
electron Fermi gas; everything reduces solely to a
renormalization of various parameters. The physical
cause of this somewhat peculiar “insensitivity” to cor-
relation is the fact that in a metal the electronic system
is of the Fermi type and obeys the Pauli principle [2].
Thus, the band theory holds as before, with one excep-
tion. Now it concerns not only the motion of an electron
in a fixed crystal potential, but also a more complex
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quasiparticle obeying its own dispersion law that
determines all observable electronic properties of the
crystal.

A relatively small number of entirely new effects
show up solely in the high-frequency properties of
crystals [21, 22]. Things, however, stand that way only
as long as the Fermi liquid remains normal; that is, as
long as the basic state of the system undergoes no radi-
cal rearrangement. This kind of rearrangement takes
place, for example, when the substance changes to the
superconducting state, or when magnetic order (ferro-
magnetic or antiferromagnetic) is established, or when

various metal-insulator transitions occur. Interestingly,

all of these cases strongly involve metals, alloys, and
compounds containing transition (d or f) elements. It
seems reasonable to think that this is probably related
to the important trait noted previously in the electronic
structure of many of these substances. This trait is a
considerable degree of localization, almost complete,
first of all, for felectrons and at least partial for 4 elec-
trons, so that they retain their “atomlike” character as
noted earlier. In a homogeneous electron gas (in the
complete absence of localization), magnetic ordering
and a metal-insulator transition might occur, at least in
principle (the latter in the form of Wigner crystalliza-
tion). As Monte Carlo calculations [23] showed, how-
ever, the corresponding values of electron density are
unattainably small. Experience seems to indicate
unambiguously that, in the case of, for example, the fer-
romagnetism of the iron group of metals, the system of
d electrons displays both a collective (itinerant) and a
localized behavior. Perhaps nobody doubts now that the
d electrons of iron show a noticeable degree of itinerant
behavior (see [26]). However, the existence of local-
ized electronic magnetic moments in such a system
remains a debatable issue. Here, one faces a question
that stems from a well-known experimental fact — the
Curie-Weiss law for the paramagnetic susceptibility of
Fe, Co, and Ni is observed at above the Curie tempera-
ture. If electronic spin magnetic moments displayed a
purely collective behavior, the paramagnetic suscepti-
bility would be completely independent of temperature.
Sometimes, alternative attempts are made to interpret
the fact that the Curie-Weiss law is observed in ferro-
magnetic 3d metals as being related to some particular
features in the electronic structure, such as, for exam-
ple, sd hybridization, interaction with phonons, etc.
(see, for example, [24]). Recently, Guletskii et al. [25]
and Clauberg et al. {27] reported direct spectral find-
ings, both optical and photoelectric, on this matter.
Among other things, they demonstrated that the elec-
tronic structure of iron changes only slightly as the
specimen passes through the Curie point toward the
higher temperatures. This indicates that at T'> 7 some
analog of Stoner splitting exists, which may be related
to the existence of localized magnetic moments.

The situation outlined above indicates that the tradi-
tional approaches to correlation effects, notably, Land-
au’s theory of Fermi liquid, may prove inadequate in
considering the coexistence of localized and delocal-
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ized states in the electronic subsystem of metals. This
is associated with two things. First, the exchange split-
ting of the energy spectrum in the paramagnetic phase
violates the key postulate of the Landau theory that
there must be a one-to-one correspondence between the
states of particles and quasiparticles. Second, it is
obviously important to take into account short-wave
spin fluctuations because, in real space, localized mag-
netic moments have an atomlike character. The latter
occurrence can be described in semiphenomenological
terms within the modern functional integration method,
such as the “static” approximation for Hubbard’s model
(see, for example, [28]). This enables one to relate the
usual definition of local magnetic moments in terms of
the Curie-Weiss law to the behavior of the electronic
spectrum.

Undoubtedly, the development of spin-fluctuation
theories markedly advanced the theory of the magnetic
properties of metals, notably, magnetic ordering. How-
ever, this has not unraveled completely the detailed
microscopic mechanism responsible for the fact that
d electrons display features of both localized and delo-
calized behavior. Moreover, many questions are raised
here by the fact that the original many-particle transla-
tion-invariant system is identified with a “disordered
alloy” (which is the basis of the static approximation),
although such a treatment is fruitful.

The quantitative band theory owes its recent signif-
icant headway to the local spin density functional
method and partial consideration of correlation effects
through the introduction, for example, of exchange-
correlation potential [29 - 32]. True, the latter point
raises a number of questions that call for further verifi-
cation, although this method made it possible to calcu-
late several complex parameters of the transition metals
and of their compounds, which are in good agreement
with the experiment. Among them are equilibrium lat-
tice constants [33], the energy of formation of chemical
compounds [34], elastic constants [35], and various
magnetic characteristics [36, 37].

In the latter “magnetic” case, when one considers
the paramagnetic phase, one essentially invokes the
ideology of spin-fluctuation theories, carried over from
the conventional Hubbard model [4] to the local spin-
density-functional method. This approach, whereby
one considers magnetic materials at finite temperatures
as disordered alloys, is in fact traceable to Slater’s long-
time ideas [38].

Yet, for all of its successes, the solid-state quantum
theory today faces the question: To what extent does the
band theory, even in its “revised” modern form, take
care of correlation effects? Here, two priority subques-
tions stand out, One is, “Can correlation effects, even as
weak as they are, lead to qualitatively new effects
because of some divergences?” The other is, “Can cor-
relation effects grow so strong that the band theory, cor-
rected as it is, will fail even as a first approximation?”

As to the first subquestion, it is noted in [39 - 41]
that, if the electronic density-of-states function N(g) has
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narrow peaks near the Fermi level £, (a situation typical
of alloys and compounds of the transition, especially 4d
and 5d, metals), the electronic energy spectrum and, in
consequence, the thermodynamic properties of the
crystals may receive singular contributions as a result

.of virtual transitions from the peak of the N(g) curve to

the Fermi level €5 or back. These “dynamic screening”
anomalies are especially accentuated in transitions
between closely spaced filled and empty peaks. For-
mally, these anomalies imply the need to apply nonlo-
cal corrections to the spin density functional [40].

One should bear in mind, however, that anomalous
contributions of the same sign as the one-particle con-
tributions related to the peak on the N{(g) curve prima-
rily serve to expand the domain of the singularity and
sometimes to enhance it or to change its character (for
more detail, see Ch. 3).

The other subgquestion is related to the “catastro-
phe” of the present-day band theory, similar to those
of its predecessors, beginning with the classical
Drude-Lorentz theory {2]. Here, too, instead of hailing
the truly impressive advances of the modern band the-
ory, one must stress the necessity of a careful search for
facts that explicitly contradict it and cannot be done
away with through a simple “face-lifting” operation,
Two such facts come to one’s mind at once. The first,
known for a good half-century, is the existence of Mott
insulators [42, 43]. The second, of a more recent origin,
is related to the discovery of 4f and 5f compounds, or
heavy-electron (fermion) systems {44, 45]. Here, one
runs into a new scale of electron energy. Instead of the
usual energy bands 1 to 10 eV or 10% - 10° K wide, one
observes narrow peaks just several hundred or even
tens of Kelvins across.

Precisely these two important physical problems
should serve as case histories through which one can
draw the attention of those who wish to give new impe-
tus to the quantum solid-state theory.

On the whole, no solution has yet been found to
what is a crucial problem of the quantum theory of con-
densed system and the subject-matter of this review —
the coexistence of localized and collective (delocal-
ized) traits in the behavior of electrons in the transition
metals, their alloys and compounds, although it was
actually known and formulated more than fifty years
ago. On the other hand, further meditations on the sub-
ject may do a lot to stimulate the evolution of views on
many-particle systems in general, including systems of
former valence electrons and the electrons of former d
and f incompletely occupied electron shells in the
metallic substances listed above. This review was
intended to precisely serve this aim.

1.3. A Guide to the Chapters

As is noted in Sec. 1.1, the need to introduce the
concept of localized electron states arises when one
encounters rather strong electron—electron interactions.
Here, it is important to differentiate between two
aspects of the problem. In metals, a special role belongs
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to the electrons of the partly filled shells, Therefore, one
should consider the interaction of these electrons with
those that are part of the ion core, on the one hand, and
with one another, on the other. Hence, the first step is to
define what the ion core is like and which electrons
should be included in it. From the viewpoint of metal
physics, the states of the completely filled electron
shells are “of no interest” by themselves (except in
studies of X-ray and, sometimes, optical spectra). It
makes no sense to ask whether these states are of the
localized or the delocalized type, because a completely
filled band can be described by the Slater determinant
built from either Bloch or atomic functions. Actually,
the question is, “How do they affect the states of con-
duction electrons?” Either one of two approaches can
be used to answer it. One involves the pseudopotential
method, in which the ion core is treated as a “black
box” having particular parameters; the other relies on
the band theory, in which the core is “disassembled”
completely or in part.

Then comes the question of interactions in the sys-
tem of electrons belonging to unfilled shells. As long as
the interactions are not too strong, one may use the
band theory within the framework of what is known as
the density-functional method. Effects due to a very
strong interaction are currently investigated solely
within simplified models.

The foregoing sets the pattern for the presentation of
material. On the whole, it evolves from weak-interac-
tion to strong-interaction systems.

Chapter 2 investigates the interaction of conduction
electrons with ion cores, the applicability of the con-
cept of pseudopotential, and the division of electrons
into those belonging to the core and external electrons.
It also considers the criterion of a well-defined “rigid”
core (the alkali metals), and its limiting inverse —a “soft”
core {(cerium).

Chapter 3 considers the interaction of localized and
delocalized states in terms of the band approach. It
explains in detail how the difference between the two
states appears in this approach.

Chapter 4 takes up the case of an interaction that is
sufficiently strong to result in magnetic ordering and
localized magnetic moments. Beginning with Ch. 4,
resorting to the concept of localized electron behavior
becomes more a matter of necessity, rather than simply
of convenience.

The second part of the review, to be published in the
next issue of the Journal, consists of three chapters.

Chapter 5 examines d-systems with an even stron-
ger interaction and sets forth purely model approaches,
It discusses the polar model of Schubin and Vonsovskii
and its most popular version, the Hubbard model.
Methodologically, the pivotal point is the introduction
and use of the atomic representation and of its mathe-
matical implementation, the so-called X operators. In
strongly correlated (that is, strong-interaction) systems,
the states of charge carriers are produced not by the
usual Fermi creation and annihilation operators, but by

b'¢ operators that involve a far more complex algebra
(commutative and anticommutative relations).

Chapter 6 describes unusual substances, such as
intermediate-valence and heavy-fermion systems, in
which electrons display their dual “localized-delocal-
ized” nature most strongly. As in Ch. 5, this chapter
deals with too “hot” problems and cannot therefore
claim in any way that it covers the matter fully. None-
theless, we hope the readers will be able to pick the basic
ideas in this field and to acquire prehmmary knowledge
that would help them take their bearings in the latest
publications on the subject.

Chapter 7 concludes the review. A formal mathe--

matical derivation of the results is not given in all
cases. Where, however, it conveys an ideological mes-
sage, the derivation is given, as a rule, in sufficient
detail. The results of specific experiments and calcula-
tions are likewise given, solely to illustrate the key
points of the presentation, such as when a “flourishing”
theory fails completely (as in an attempt to describe Mott
insulators within the conventional density functional
scheme), or, on the contrary, when a seemingly oversim-
plified treatment turns out impressively successful (as
with the theory of local pseudopotential for the lattice
properties of the alkali metals). Each chapter starts with
a historical overview and a qualitative presentation of
the problem involved and is gradually “formalized.”

Of course, it would be a folly to think that a small
team of authors could have been able to cover all the
problems listed above from all angles and within a lim-
ited space. Rather, emphasis in the review is placed on
the issues associated with the authors’ original works
and their own views on the matters.

“...But let your communication be, Yea,
Yea’; Nay, Nay: for whatsoever is more
than these cometh of evil,”

The New Testament, Matthew 5:37

Chapter 2. THE DIVISION INTO CORE
AND DELOCALIZED ELECTRON STATES

2.1. The Ion Core and the Idea of Pseudopotential

Situations are discussed where a line can be
drawn between the states of the ion core and
conduction electrons with a good measure of
unambiguity. Formal criteria are developed
which, when satisfied, permit one to infro-
duce the pseudopotentzal as a parameter of the
ion core independent of the environment
(a “rigid” core). In such cases, one can
develop a consistent microscopic approach
and describe quite successfully a very broad
range of properties for a wide gamut of metals.
The converse limiting case of a “soft” core is
likewise investigated. The relation between
the collapse of the wave function, known from
atomic physics, and the intermediate valence
of cerium is discussed.
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The idea to divide the electrons in metals into “core”
(or “bound™) electrons and “quasifree” (or conduction)
electrons falls among the most fundamental ones in
solid-state physics. The concept of a free electron gas in
metals was first developed as far back as Drude’s clas-
sical theory; then, within Frenkel’s theory of “roaming”
electrons; and, lastly, in Pauli and Sommerfeld’s model
of the ideal Fermi gas [2]. The statement of Bloch’s the-
orem [3] and Wilson’s metal-nonmetal criterion made it
possible, for the first time ever, to reveal the physical
causes of such a division. According to Wilson, this
division fits in with the division of electrons into those
belonging to partly or fully filled energy bands. A very
important step was made by Peierls [5], who proposed
a free-electron model, thus establishing the connection
between the energy spectrum of quasifree electrons and
the Fourier components of the crystal potential V,
(where g is the reciprocal lattice vector). Arguments
supporting the applicability of this approximation to real
metals were discussed, among others, by Schubin [48]
(see also [11], p. 308) from an analysis of variations in
the electric resistance of metals on melting.

It was not until the 1950s - 1960s that the hypothesis
about the adequacy of the nearly free-electron model in
some metals was directly confirmed after a systematic
study of the Fermi surface for many real metals by the
de Haas—Van Alphen method. (A great number of spe-
cific experiments were made by Shoenberg on the basis
of the theory developed by Lifshitz and, independently,
by Onsager [49, 50]). From an analysis of these find-
ings, Harrison [6] demonstrated an unexpectedly broad
applicability of the nearly free-electron approximation.
This seemed more surprising because the real potential
of electron-ion interaction in metals cannot obviously
be small (at least because it involves bound states). The
snag was removed with the advent of the pseudopoten-
tial concept [51] at about the same time. Formally, the
idea of pseudopotential can be summed up as follows
[6,7, 52].

The properties of a metal are defined by the states in
the conduction band, that is, in an energy interval of the
order of the Fermi energy €, which is a small fraction
of the characteristic energies of the excited core states.
Therefore, infinitely many potentials must exist,
equally adequate in describing these properties: they
must lead to scattering phases coincident solely within
this finite energy interval. Among such potentials, one
can choose those which have no bound states, that is,
significantly weakened at small distances from the
nuclei in comparison with the initial potentials of the
ions.

An important step in the evolution of the pseudopo-
tential concept was made when it was realized that
knowledge of the detailed behavior of the wave func-
tions of conduction electrons “inside” the ion core (that
is, at small distances from the nucleus) was immaterial
for a description of the properties observed in metals.
Noteworthy, the idea (close to that of pseudopotential)
that one need not know in detail the character of inter-
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action in order to describe the scattering in a limited
range of energies was advanced much earlier by Fermi
in connection with the theory of neutron scattering on
atomic nuclei [53]. A physical picture thus arises,
where the metallic crystal is visualized as a crystal lat-
tice whose sites are occupied by spherically symmetric
regions, or ions, “washed by a sea” of electrons only
slightly scattered on them. Moreover, the manner in
which conduction electrons are scattered by these
regions (ions) is determined by a “pseudopotential”
whose magnitude depends on which ion occupies
which lattice site and not on the crystal environment,
The parameters of the pseudopotential can, in theory,
be deduced from the calculated properties of the ion
(for example, spectroscopically), and the task of describ-
ing the properties of the metal thus breaks up into two
subtasks. In one, the objective is to “construct” pseudo-
potential, and in the other, to calculate the characteris-
tics of the metal with this pseudopotential. Supposedly,
one is in a position to derive a pseudopotential V, that
would enable one to successfully describe (wzthout any
change in the parameters of V,) all the crystal forms of
the metal, as well as the hquad phase, the properties
under pressure, and even the properties of alloys and
compounds containing this metal. Although this pro-
gram cannot be implemented in such an all-embracing
form, its realization for a series of sunple metals has
yielded many new physical results.

The idea of constructing V), can be illustrated best
by taking as a very simple exarnple the pseudopotential
of the Heine~Abarenkov type [7]:

A s Z

P, = ; | 4800 - )P~ Z6(r - ] @
where 0(x)=1,x20,08(x <0} =0, Z is the charge of the
ion (atomic units are used: % =m=|e}= 1), P, isthe oper-
ator of projection onto a subspace of states with the
orbital quantum number /, and r, is the radius of the ion
core. (Schematically, the potential V(r) acting upon a
state with the specified / is shown in Fig. 2.1). The
parameters 7, and A; should be specified so as to
describe the energy levels &,, of a free ion (here, n is the
principal quantum number). The potential Vs in (2.1)
is nonlocal (unless the 4, are the same for all /). Because
of this, the matrix element of V on plane waves
k| ‘VJM Ik + q) is a function of both k and k + q, and not
only of g, as is the case with the usual potential scatter-
ing. Moreover, the constants A, and, in consequence,
V,,s, may be chosen energy-dependent. These are first-
principle pseudopotentials, because they use solely
information about the properties of a free ion (atom)
and not about those of the metal itself. At present, far
more elaborate techniques are used to construct the
ﬁrst—pnnmple f/ (see, for example, [54, 55]), and the
propemes of metais are calculated ab initio by using
various V [54 - 58]. Unfortunately, at present, these
approaches cannot be used to calculate the more com-
plex parameters of the crystal, such as thermodynamic
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Fig. 2.1. Illustrating the Heine-Abarenkov pseudopoten-
tinl (Ay . 2 = Ag); v{r) is the atomic potential.

.= EV+ EO L E® 4

Fig. 2.2. Diagrams for EV, B?, and B, with electron—
electron interaction neglected.

properties and anharmonicity effects. The point is that
they involve a prohibitive amount of computations, which
presume, among other things, a self-consistent solution of
the Schrodinger equation with V,, at every step.

In some cases, however, it proves more efficient to
use a far simpler approach, based on the theory of per-
turbations in 17‘,,5. As already noted, the almost free-
electron approximation often proves quite good in
describing the shape of the Fermi surface (in any case,
for simple metals). This prompted Harrison [6], in the
early 1960s, to make an attempt at calculating the total
energy of the metal and the associated quantities (for
example, pressure and bulk modulus) in the form of a
series expansion in f/ps. His results appeared fairly
encouraging, and this stimulated rapid advances in the
relevant theory [6, 7). This was stated in a most consis-
tent form and with due regard to many-electron effects
and higher order perturbations in ¥, (up to the third
order) in [46]. We give the derivation of the expansion
for the total energy E of the metal in the case of a non-
local V,, that is independent, however, of the energy of
the electron.

The series expansion of E in terms of V,, takes the
form

E=EQ+EQ+ EO 4+ E® ¢, (2.2)

where E® {n = 1, 2, ...) is the energy of the nth order

with respect to V,,, and E® is the Madelung energy of

electrostatic interaction between point ions in a homo-
geneous electron gas that ensures electroneutrality

2
o 270,
Y
2Q,

Here, Z is the charge of the ion; £, is the volume per
atom; Oy is a structure-dependent factor (see, for exam-

ple, [61);

2.3)

) 3 3

A 4
is the energy of a homogeneous electron liquid
(gp = ki/ 2), and E(r,) is its correlation part, depen-
denton r, = (3Q,/4nZ)"" = (9n/4)k7 (the first two

terms describe the kinetic energy of the free-electron
gas and the exchange energy in the Hartree—Fock

approximation [2]). At present, the following interpola- -

tion formula is believed to be most adequate for E(r):

Z 0.1471

- 21,
21 4 11581, + 0.3446r, °
E‘(r’)=z 0.0311
£222 +0.0014 (1 +1nr) --»0.0108], r<1,

§ 2.5)

derived from numerical calculations {23] by the quan-
tum Monte Carlo method. On neglecting electron~
electron interaction, the diagrammatic expressions for
E® (n=1,2,3) take the form shown in Fig. 2.2, where
the full line represents the electronic Green’s func-
tion [20], and the wavy line with a cross represents V.
Consideration of the electron—electron Coulomb inter-
action (the dashed line) in the graph for E™” Jeads to the
replacement of the free-electron Green's function G, by
its exact equivalent G and to the following result [46]:

EY = ¥V, (2.6)
k

where n, is the exact distribution function of electrons
wéth a quasimomentum k ([for free electrons,
n, = B(k,— ik|)]. Foralocal pseudopotential [Vy x4 q=
V,(q)], we have

bz,
Q!

0

EV = @.7)

b = Q,lim [:Vps(q) + iff%] 2.8)
q—0 Q(} q

Here, b is the “forward” scattering amplitude minus the
Coulomb term balanced out owing to electroneutrality;

for the hydrogen atom (a point ion), b = 0.
Consideration of electron-electron interaction in
E® brings with it various inserts in the diagrams and
the need to take the sum over the series shown in
Fig. 2.3, where the shaded rectangle I" (see Fig. 2.4) is
the scattering amplitude of a particle and a hole, irre-
ducible in terms of the “longitudinal” Coulomb interac-
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tion, and v (see Fig. 2.5) is the scattering amplitude of
a particle and a hole, irreducible in terms of both par-
ticle-hole and longitudinal Coulomb interactions [59].
For a local pseudopotential,

R(g) = |V dlPl(g), T(g) = V(@@

Expljcit expressions for energy in the case of a nonlo-
cal V,, can be obtained only in what is known as the
local field approximation [46], where it is assumed

that v depends solely on the transmitted 4-momen-
tum g = (@, q) (where q is the wave vector and @ is the
frequency subsequently assurned to be @ = (), and not
on ail terminal 4-momenta. With this approximation,
one is in a position to reduce the integral equation
shown diagrammatically in Fig. 2.4 to an algebraic one.
Then, one has

IV 2.9)
1 - AT (q)

where Ily(q) is the Lindhardt polarization operator (an
“empty loop™) equal (see, for example, {7]) to

I'(q)

Hy —H
M@ =Y,
k k+q—ak
2 2
kel 1 Ake—q . 12k 4 g
=227 B
rq 2kp—gq

(2.10)

)

r

where k; is the Fermi wave vector, and 82 =K/2 is

the energy of an electron. The function v{(q) is usually
written as

v(q) = v(QG(q), (2.11)

where v,(q) = 41t/g* is the Fourier component of Cou-
lomb electron—electron interaction, and for the function
G(q) various approximate expressions are known to
exist. For example, in a most fitting approximation [60],
the expression for I(q), related to G(q) by (2.12) (see
below), is found by adding together diagrams up to the
second order with respect to-v,(q), and the result thus
obtained is then corrected using the exact asymptotics
for q tending to zero.

Copsider the exact electron polarization operator I1(q)
(see Fig. 2.4), which appears in Fig. 2.3. From Fig. 2.5
:Lhnd subject to (2.11), one has IT = Iy — TTpvIl, + ...,

at is,

y(q)
(g = d
R T Ol R
Then, introducing the permittivity
&g) =1+ vIl(y) (2.13)

Fig. 2.3. Diagrams for E% with allowance for electron—
electron interaction.

AN/

Fig. 2.4. Expression for the polarization potential IT in
terms of particle and hole scattering amplitude T

v 1,

Fig, 2.5, Expression for I in terms of the “twice irreduc-
ible” amplitude .

and “elementary™ blocks

e 0
n.—n
Ry(q) = zin.mqlz;—Esq:
" x4 q = & (2.14)
n?‘ = B(kp— |RE):
ne—nd

T@ = Y Vixeqg—p » (2.15)

k k+q Tk

we have

R= RO + TorTo, T= TO + TOITIO. (2.16)

As a result, for the contribution E@ described by the
sequence of diagrams in Fig. 2.3, one has

Q 1
E? = -2Y IS F(@),
B

2
F(q) = R(q) ~ Vc(q)G(q)M~

&@ " 2.17)
v G(@)| To(@)
1 - v (@G (g’
Ty
1 - v QG q)’

where g are the vectors of the reciprocal lattice
(the prime on the sum implies that g # 0), and

R(q) = Ry(q) +

I(q) =
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Fig. 2.6. Phonon spectrum of sodium. The full lines are cm}~
culated dispersion curves, and the dots represent experi-
mental data. The frequency @ s expressed in units of plasma
ionic frequency ©,; (for Na, fi@,; = 342.8 K).

vl
S(q) = éZei”‘ is the structure factor (p; are the

i=1
basis vectors in a unit cell with v atoms), The expres-

sions for local V,,, are greatly simplified

Q
E? = -2 |S@I*Fla),

S
T
Fg) = ivps(q)ﬁag; 2.18)

Ry(@) = |V, @ TT(@),
To(@ = V, (DI (q).

This is an exact expression for local ¥, (that is, it can
be derived without resorting to the local-field approxi-
mation [46]).

The higher order diagrams with respect to V,,,
shown in Fig. 2.2, may be discarded if |V, (@)} < &.
Then, one has a closed expression for the total energy of
the metal, (2.2) - (2.6), (2.18). By differentiating it with
respect to deformation parameters, or atom displace-
ments, one can obtain the applicable equation of state,
elastic constants, phonon spectra, thermodynamic

parameters, etc. Let us see how successful this program
can be when applied to several specific metals.

2.2. Pseudopotential, Valence,
and Chemical Bonding in Metals

When discussing the applicability of the pseudopo-
tential concept to real entities, it is natural to begin with
the alkali metals. They may be regarded as a base refer-
ence from the viewpoint of the simplicity of chemical
bonding. Their electronic structure is ultimately simple,
and the experimentally determined Fermi surface
comes very close to spherical [61]. Under normal pres-
sures, they have a bee structure typical of metals near
the melting point. Lithium and sodium undergo a low-
temperature phase transition to a hep (9R) structure [62].
For this reason, they can be used as an example on
which to verify how accurately the properties of vari-
ous crystalline phases are desctibed with the aid of a
“unified” pseudopotential. Lastly, because the alkali
metals have a low melting point and a high compress-
ibility (a relatively small bulk modulus), their proper-
ties were well studied in the liquid phase and under
heavy compressions.

Following the suit set by Vaks and Trefilov [63],
consider the simplest model, that of a local pseudopo-
tential of the Animalu-Heine type (§ = 0.03)

singrg

4nZ ~ cosqry)
V.{q) = “‘g—)——z [COS‘I"{)“ v{ cosgr,

od

g .
X exp (_E’(fi&:) ). (2.19)

Leaving out the last factor (introduced to imprqve the
convergence in calculating the sums over the reciprocal
lattice; ks, is the Fermi momentum at zero pressure and
temperature), (2.19) is the Fourier transform of the
local potential (2.1)

V() = %Y 8(ry~ 1)~ %9(1‘0“ A (220
0

In contrast to the transition metals, the alkali metals
pose no problem with the choice of the charge (valence)
of the ion; it is Z = 1. It is important to dwell on the
choice of the parameters v and ry. Generally speaking,
the form of the pseudopotential defined by (2.19) and
(2.20) is clearly too oversimplified for one to be able to
determine the parameters from the properties of a free
atom (ion). The point is that this is a local pseudopoten-
tial, whereas all known techniques for constructing
first-principle pseudopotentials lead to nonlocal V.
However, one may relax accuracy requirements for a
description of detail in the electronic spectrum if one
limits oneself to the lattice properties (pressure, phonon
spectrum, elastic constants, etc.) dedumb}e in the final
analysis from the total energy — a quantity integrated
with respect to the electronic spectrum. If, furthermore,
one opts to determine v and ry by the physically reason-
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able procedure of fitting to the experimental values of
physical properties, one may expect to make up for
inaccuracies in the original statement of the model.
Then the validity test for the model would be its ability
to describe the largest possibie range of lattice proper-
ties for the same values of these two parameters. As is
shown in [63], for the alkali metals, the optimal proce-
dure of determining V, is the one proposed earlier in [46]

P =0; Cy = CF, .21

where €, is the experimentally found volume (per
atom) at zero pressure p, and C,, and C5,” are the calcu-
lated and experimental values of one of the shear mod-
uli. For the screening function G(g) [see (2.12)], the
best choice is the approximation used in [60]. Note that,
with the other simple local expressions reported for
Vos{q) and G(g) in the literature, the properties of the
alkali metals are described less successfully than with
the model (2.19).

It was shown in [63, 65 - 67] that, within the pro-
posed model, the largest possible set of atomic, ther-
modynamic, and anharmonic properties of the alkali
metals can be described with an accuracy in no way
inferior to state-of-the-art experiments. Among other
things, the investigators were able to calculate such fine
properties of the crystal lattice as the thermal expansion
coefficient, anharmonic frequency shifts and damping
of phonons, the heat of the martensitic structural transi-
tion in sodium, the structure factor, and the thermody-
namic properties of the liquid phase, and to derive the
equation of state at finite temperatures. The most illus-
trative of the results are given in Figs. 2.6 through 2.15.

Against the background of the overall precision of
the experiment, one’s attention is immediately drawn to
the qualitatively improper behavior of the phase dia-
gram for lithium under pressure (in contrast to sodium)
(see Fig. 2.12). The physical causes of this occurrence
will be discussed in Ch. 3. Another point worthy of
mention is the discrepancy between theory and experi-
ment in the equation of state for sodium under a pres-
sure of about 1 Mbar and, similarly, for other alkali
metals (Fig. 2.11). Quite likely, such pressures might
cause changes in the very properties of the ion core (see
Sec. 2.4).

One is prompted to wonder if it is not a lucky chance
that the lattice properties can be described so well
within the framework of such a simple model. The
answer is “no.” For one reason, this success by itself sup-
ports the possibility of using V,,, as a characteristic of an
individual ion. Why this is so will be discussed in
Sec. 2.4. For another, what is involved is a specific
form of the pseudopotential (2.20) with the ion core
having a “sharp edge” at r = r, [because of the small-
ness of the smoothing exponential factor in (2.19)].
Figure 2.16 gives the electron density distribution p(r)
in metallic sodium obtained by first-principle band-
theoretic calculations {68]. As is seen, the hypothesis
that the jon core has a sharp edge is physically tenable.

Finally, one is concerned with the applicability of the
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Fig. 2.7. Heat capacity of bee sodium. The full lines are
calculated curves, and the dots represent experimental
data. t = T/, Bis the Debye temperature, T, [ the melt-
ing point (for Na, 8 = 152.5K, T,, = 370.7 K).
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Fig. 2.8. Mean-square displacement of atoms, xz(D, inthe

alkali metals in relative units: 8T) = 4 (1)/d4T), where

d(T) Is the nearest-neighbor distance with allowance for
thermal expansion; t = T/%a@,;; the curves are drawn as far

as T, of the corresponding metals.
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Fig.29. Thermal expansion of sodium, AV/V, =
(VIT) - Viy)/Vo, where Vy is the atomic volume (V, =
254.5 a.u. ). The full lines represent calculated data, and the
dots, experimental data.
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Fig. 2.10. Derivative of the relative frequency shift
dinw,/dT with respect to temperature for the phonons of the
(g, g 0) branch in the bee phases of sodium and lithium.
The full line is the theoretical curve for sodium, the dashed
line is the theoretical curve for lithium; circles represent
experimental data.

theory of perturbations in V.. This is validated by the
fact that an explicit calculation of contributions of the
third order with respect to V., discarded in the model
in question, proves their smaliness [69]. Note that, from
the viewpoint of the nature of chemical bonding, the
third and higher order pseudopofential terms describe
the effects associated with nonpairwise ion interaction,
that is, with covalency {7]. In this sense, the applicabil-
ity of the model in question to the alkali metals implies
the possibility of introducing pairwise potentials @(r)
(see Fig. 2.13). These are, however, strongly dependent
on electron density, that is, volume — a feature that sets
metals apart from, for example, ionic crystals. This
explains, among other things, why metals violate the
Cauchy relations for the elastic constants [46].
Experience with calculations by the perturbation the-
ory in terms of local psendopotential demonstrates its
limited capabilities in the sense that, for all metals,
except the alkali metals, it either fails completely or

Table 2.1. Effective ion charge in the pseudopotential
description of the properties of the transition and noble metals

Metal Z
Ti 2.0
7r 2.0
Fe 1.95
Ni 1.50
Cu 1.50
fr 4.50

describes only some of the lattice properties and to a sig-
nificantly lower accuracy than for sodium. For example,
in the case of Ca and Sr, one of the shear moduli calcu-
Jated within this model even turns negative [701,
whereas in the case of Al, a poor result is obtained for
the bulk modulus [46]. For Pb, as follows from our cal-
culations, the discrepancy between the theoretical and
experimental values of some phonon frequencies is as
great as 25%. In some cases, it is possible to find out
why the model gives a poor fit and to remove the
causes. In Ca, for example, the discrepancy is traceable
to the rearrangement of the electronic spectrum near the
Fermi surface because it touches the faces of the Bril-
louin zone (see Ch. 3); after proper care was taken of
the corresponding contributions to the total energy, the
description of the lattice properties becomes fairly
accurate, even within the pseudopotential model [70]. In
most cases, however, the causes of the impediments are
not so easy to remove. Thus, for the transition metals,
one does not even know the exact valence of ions, Z, or,
in other words, to what extent the d electrons must be
regarded as being part of the ion core of treated as
quasifree. This might sound somewhat naive because
the present-day band theory need not know this distinc-
tion at all. However, this kind of skepticism will remain
justified as long as first-principle approaches are unable
to yield as diverse information, for example, as shown
in Figs. 2.6 through 2.15. That is why attempts are still
being made to construct efficient pseudopotential mod-
els for the transition metals. As Vaks et al. [71] and
Greenberg et al. [72] showed, it is possible to apply to
the transition metals Ti, Zr, Ni, Cu, Fe, and Ir a maodel
that uses a pseudopotential of the type (2.19) and takes
into account V,, terms up to the second order. This
model gives a fairly accurate description of the equilib-
rium volume, phonon spectra, and structure factor in
the liquid phase for some, generally nonintegral, values
of Z (see Table 2.1). An important fact is that the prop-
erties of fec metals (Ni, Cu, and Ir) are described signif-
icantly better than those of bee metals (e-Fe, B~Ti, and
B-Zr), whereas in the case of polymorphous metals (for
example, Ti and Zr), the properties of the hep phase are
defined better than those of the bee phase. In turn,
among the fcc metals, the properties of a 5d metal (Ir)
are described substantially better than those of the 3d
metals. Finally, a successful description of all the prop-
erties of the above metals, except Ir, is feasible for Z = 2,
and those of Ir for Z = 4.5. The last point may be
regarded as an indication that, when it comes to
describing the lattice properties, the 3d electrons in the
34 metals behave as the “core” electrons because Z=2
roughly corresponds to the number of s and p electrons.
This fact deserves a more detailed discussion.

Figure 2.17 gives the density distribution for s, p,
and d electrons in metallic vanadium as found by band-
theoretic calculations [68]. As should be expected, the
d electrons are concentrated predominantly in a region
closest to the nucleus. If one takes as the edge of the ion
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core that of the muffin-tin sphere, r = ryy (see, for
example, [2]) and finds the number of “frelg}; ciect,rons

by spreading the corresponding electron densi
over the unit cell P & ron density p(ryr)

Z*¥= p(rvm) S, (2.22)
one will obtain values of Z* fairly close to those found
by the pseudopotential method (see Table 2.1). Note-
worthy, as direct calculations show, the value of p(ryy)
in the 3d metals is mainly determined by s and p elec-
trons, and in Ir also in part by d electrons because the

3d electrons are significantly more delocalized i
than the 34 electrons. alized in space

The relative proximity of the d electrons to the
nucleus is, however, only a part of the story. As follows
from band-theoretic calculations (see, for example, the
results .repprted by Ho et al. [73] for niobium and
shown in Fig. 2.18), the fraction of the electron density
p(r) associated with d electrons is strongly anisotropic
and mainly concentrated along preferred directions in
space. Therefore, one may roughly take that the s and p
electrons in the transition metals provide the metallic
component of chemical bonding and the d electrons are
responsible for covalent bonding. The latter is more
favorable for the bee structure, which admits partition-
ing into two sublattices, than for the close-packed
structures, which do not admit such partitioning. In the
latter case, not only the bonding, but also antibonding
orbitals become inevitably filled, thus implying that
some of the chemical bonds “jut out” into emptiness.
This is the reason why the transition metals with a band
ﬁllqd about half-full have a bee structure (the bonding
orbitals are filled, and the antibonding orbitals are
ﬁmpty). By contrast, in the close-packed structures the
covalent” component of chemical bonding makes a

relatively small contribution and the “metallic” compo-
nent can be described in terms of pseudopotential the-
ory. Of course, this is a rather crude reasoning and may
only be regarded as explaining the difference in results
between band-theoretic and pseudopotential calcula-
tions. As is seen, only band-theoretic calculations can
yvield quantitative values of occupancy for states of dif-
ferent symmetries, their hybridization, etc.

. In the case of bce metals, a simple empirical crite-
rion can be proposed for the degree of covalence of
chemical bonding. If the covalence is negligibly small
the lattice properties can be described in terms of pair:
wise cqntral forces with a potential ©(R), where R are
the lattice vectors, Then (assuming zero pressure p) for
the two shear moduli Cy, and C'=1/2(C;; - C,y) in
cubic structures, one has nee

1 R’R? a‘%p oQ
Cuy = ‘““"“2 LY R Rt
“Q, = R ( art OR) (2.23)

= Racp

Q, 4 I3 oR" IR

and one can see that in the case of the bee structure the
first coordination shell makes a zero contribution to C".

1 o RURE-RY) (50"
Zm___’.-(RZ_f‘i ) (2.24)

p, kbar
60 Li Na K
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o 2 o) A
40. « 3 och
a4 4
+ 8 A
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20+
0 01 782 03 04AwWY,

Fig. 2.11. Equation of state p(V, T) for the alkali metals

» at
T=205K AV=V~ Vo. The full lines represent calculated
data, and the dots, various experimental data.

LK
40-

10- \

L]
1
1
t
I
¥

0 i 3 p. Kbar

E‘:E. 2.-1f2t.h Phase diagram for ;odium. The starting temper-
re of the martensitic transformation, M (p): (1 j-
ment, (2} calculation. o(p): (1) experi

200

~200+

-400

Fig. 2.13. Pa'ir potentials o(r) for liguid alkali metals. The
solid arrows indicate the position of the nearest neighbors
in the bee lattice with the same atomic volume V(1) for
T =T, the dashed arrows for T = 0; r is in angstroms, and
ofr) in Kelvins. ’
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Fig. 2.14. Structure factor S(k} in liquid sodium for T=T,
The full and dashed lines represent calculation in the
Percus—Yevick and hyperchain approximation; the dots rep-
resent experiment. The dotted line represents the phonon
contribution to S(k) in the bec phase of sodium averaged
over the angles of the vector k for T = T, The arrows indi-

cate the position of the first three nearest neighbors in the
reciprocal lattice. dgy = jg dr[1—exp(~op(r)/T,)] is

the effective diameter of the solid sphere after Barker-
Henderson; © is the first zero of the potential ¢(r).

Tm’ K Gg"' Gs: K
500 ®)

400
50+ L
300// \Texp )
m \
200 Yoo 600 T.K
11

!

=50

0 10

20 15, %

Fig. 2.15. (a) Melting curves T,(u,) of the alkali metals;
ut™P is the experimental value of compression. For clariry,
the result for every next heavier metal is shifted 50 K down-
ward with respect to the previous lighter metal, The values
on the T axis are given for Na; for K they should be reckoned
as T+ 50K, forRbas T+ 100K, and for Cs, as T + 150 K.
The full lines represent calculation, and the dots, experi-
ment (a) and (b). (b) Temperature dependence of the differ-
ence between the Gibbs thermodynamic potentials G(p, T}
in the liquid (G,) and solid {G,) phases of sodium {expressed
in Kelvins) at p = 0. The solid curve represents the Weeks—
Chandler-Anderson approximation; dashed curve, the
hard-sphere approximation using a diameter that provides
the free energy minimum.

Because @(R) drops with distance rather quickly (see
Fig. 2.13), it necessarily follows that C' <€ Cy,. Indeed,
for sodium, C,, = 62 kbar and C' = 7.4 kbar. If, how-
ever, " = Cy, (as in W, Mo, the bee phase of Ti, and Zr)
or even if C' > C,, (as in Nb), then the importance of
covalent bonding effects is obvious. Similarly, it can be
shown that for bce metals the consequence of using the

THE PHYSICS OF METALS AND METALLOGRAPHY

pair central force model in the nearest-neighbor
approximation is a minimum on the Jongitudinal
branch of the phonon spectrum in the (111) direction of

. . 2r 2 2 2
the Brillouin zone near the point Q, = — (3, 3 3)

(where a is the lattice constant) and the frequencies of
longitudinal (L) and transverse (T) phonons are in the
ratio @, (Qo) : W{(Qy) = 1: 2 (see Fig. 2.6). The absence
of such a minimum or a strong deviation from the 1: 2
ratio are likewise indicative of covalent-bond effects
(a strong pseudopotential and the need to consider
many-particle forces).

After a brief discourse on a specific pseudopotential
model, we now proceed to discuss general conditions
that permit one to divide electrons into “inner” and
“outer” and to introduce pseudopotential. Before we do
that, we need to examine some of the properties of
metallic ions and to estimate the real values of their
characteristic parameters, This is what we are going to
do in the section that follows.

2.3. Polarizability of Metal lons

The crucial question of pseudopotential theory is the
possibility of a “rigorous” division of electrons into
inner and outer. In such a division, the ion core, which
includes all inner electrons, is treated as a “black box”
that can be described by a certain definite set of param-
eters — the same under any conditions. Actually, when
conduction electrons experience a Coulomb interaction
with ion cores, the latter are polarized. Among other
things, this changes the asymptotics of electron interac-
tion at long distances r. In addition to the Coulomb
interaction —Z/r, a contribution of the type —o(0)/r*
appears, where o(0) is the static polarizability of the
ion. On its part, the polarizability of the ion may
strongly vary with the medium in which it is placed - an
action that can by itself cast doubt on the validity of the
idea of a black box with fixed parameters. Moreover,
the polarizability of ion cores leads to direct van der
Waals interactions between ions, not accounted for in
the simple pseudopotential approach. To take one’s
bearings in this mix of issues, one must above 2ll take
at least a rough “microscopic” inventory of the ion core
and to estimate its principal parameters.

The simplest integrated characteristic of the ion core
is dynamic polarizability o). In this section, taking as
a guide the atomic calculations reported in [74], we will
discuss a number of important properties of 0(®) with
special reference to the jons of the metals in the first
two groups of the Periodic System. This will yield char-
acteristic energy scales that can be used as points of
departure for the microscopic verification of pseudopo-
tential theory discussed in Sec. 2.4.

To begin with, let us recapitulate a few definitions
and some of the general properties of a(). In the self-
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consistent field approximation, the ionic polarizability
o) is defined by the well-known expression

1-

ow) = 22M (vl u)lzmm, (2.25)

vp Gy — @

where v} and €, are the one-electron wave functions
and state energies of the ion, f,, is the Fermi distribution
function, ¥ is the coordinate operator, and ©,, =€, ~ &,
is the frequency of transitions from the Iv) state to the
lu) state. The overall properties of the generalized sus-

cef)tibility [75] suggest the following important sum
rules:

Z,
o ch;i’ © 3o, {2.26)

wl:;:re Z, is the total number of electrons in the ion core,
an

-
- (j)' doa(io) = % 2, 2.27)

where () = 3 f,(1-£,}|x,,|" is the average of

1A%

the many-electron operator of the squared radii of elec-
trons in the ion at zero temperature. For purposes of
estimation, the approximate Kirkwood formula for the
diamagnetic susceptibility of an ion (an atom) [76] is
often used '

1 /2 1
X ==l P) = —— JZ,0(0), 2.28
d 66’2 4C2 i ( ) ( )
where ¢ is the velocity of light. This formula will imme-
diately follow from (2.27) if one assumes for o(i®w) the
Lorentz approximation

o(0)
——203, (2.29)
1+ —
0)0
and determines @, from the condition (2.26):

®, = (Z,/ 0(0))!"2, and, taking advantage of the elec-
tron-gas approximation, sets <ri,> a 32<v|x2f v>f‘,.

iw) =

Interestingly, for one electron in the external potential,
the Cauchy inequality

(2] =(2))

with

Lz 172
X = {|<V|):|Ll>| |m1wE]

yi = [Kvtii u)EZT

|

and
2
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Fig. 2.16. The full curve represents the distribution of the
radial density of charge 4np(r)r® in an atom of Na in the
metal according to band-theoretic calculations [68] (the left
scale, in atomic units). The dashed curve shows the differ-
ence of radial densities in an atom of the metal and in a free
atom (the right scale, multiplied by 100),

250 4015
2.00 - 198
< 0.10
150 P - 008
1.00 - 700
4003
0.50 [
+ 0.0
T~ i

0.0 : -0.0
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Fig. 2.17. The full curve represents the distribution of the

. radial density of charge in an atom of V in the metal accord-
ing to band-theoretic calculations (the left scale). The.

dashed curve shows the difference of the radial densities
benfien an giom in the metal and a free atom (the right
scale).

Fig. 2.18. The distribution of the charge density p{r) in Nb
in {110} and {160} crystal planes [73]. Decimal numbers
stand for the values of p(r) at the corresponding lines {in
atomic units). The values of p are normalized per one elec-
tron in @ unit cell.
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Table 2.2, Calculated results for light elements Table 2.3. Calculated results for heavy alkali and alkaline-earth metals

Calculated values Data on &(0) Calculated values Data on a(0)
Element ] Toni In ionic ) Element - —
oz | Ay | (e | €9 | o | Freeion | LR | Gy | T soludons 1- Oioz A0zl @i (A St | ¢ | a, Freeion TR |10 OER BN
1 Li* 23 0.09 0.3 1 02 0.2 0.2 0.17 : he3 K* 1075001 5.9 [0.66(0.01)] 0.75 7.4 20 10 5.7 6.2 9.0 5.7
= : pd - o .
Be™ 4.5 0.03 02 051 006 ‘ 0.05 N Ca** [0.97(0.02)| 4.7 |1.02(0.04)| 0.35 74 | 16 6 - - 481 132
) Na* 1.1 0.12 0.2 7 2 1.1 1.2 28 1.2 5:_; ned Rb* [0.64(0.03)| 8.9 [0.54(0.04)] 1.66 9.8 33 13 94 10 13 9.6
n= = .
Mg 1.9 0.05 0.1 5 |1 0.5 0.6 12 0.6 St 1 0.83(0.04)| 7.7 |0.80(0.04)| 0.85 | 10 27 9 ~ - 84| 63
Note: 1 — 2 stands for ns — (n + Dp transitions; (r*); 2= (372)A0 _, 200 2 - Cst |0.51(0.06)1 18 0.44(0.06)| 3.18 16 53 23 16 18 23 17 |
2 | ; Ba** | 0.65(0.08)| 15 0.64(0.08)| 1.74 16 45 17 - - 15 12
implies that <r > < (3/2) Jo0) (Z,=1). Incontrastto  Tables 2.2 through 2.4 (all values are given in atomic Fr* 050002 | 20 0.42(0.2) | 6.42 19 68 24 )
2 . . \ units). n=6 . . - - . - - - -
<r”">’ the quantity (%) defines {h¢ d:amagnetlc suscep- The metals in question divide quite naturally into Ra™ 1064(0.2) | 16  |0.59(0.2) | 3.60 19 59 18 - - - -

tibility of an ion [76].

To obtain microscopic estimates for the characteris-
tics of free ions, Katsnel’son ef al. [74] used the approx-
imations of Band et al’ [77] and calculated the
contributions of the individual transitions to the polar-
izability of the ions of the metals in the first two groups
of the Periodic System within the relativistic version of
the self-consistent Xo method. In the relativistic case,
[V} = |nlj), where j = I £ 1/2 is the quantum number of
the total moment. After summation over the projections
of the total moment, the contribution to o(0) from the
transitions |nd) — | (' = 1 £ 1) takes the form [81]

- . Pyl
g 2 v [ ndirdn L3 W v

W'l T A e
33‘:1'1»1/2 Ot j il }
j=i +t1/2 (2‘30)
Lol 3 " .
(j +§) { +§)/'(J +1)’, i=i-1,
W, = { @+ D/ (DL =

. 1 ar ]- 7 1] FLI ] | T -
(j _2.)(‘_;4-2)/1, ji'=jitl. >

In calculating both the frequencies of transitions and
the matrix elements, Katsnel’son et al. [74] used Slat-
er’s transition-state approximation [38). That is, the
population of the orbitals was assumed equal to the
arithmetic mean of the populations in the initial and
final states (for example, in the case of a transition from
the filled np shell to the empty nd shell, calculations
were done in the np>3nd®> configuration, etc.). Also,
they calculated {+*) and Kirkwood’s polarizability

4 n2
o, = §Z<r>, (231

which would be the same as o(0) if (2.28) were exact.
The basic results of the calculations done by Katsnel’-
son et al. [74] are given along with known experimental
{79, 80] and calculated {78] total polarizabilities in
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three groups. Among the light metals, except perhaps
Li and Be (see Table 2.2), one can isolate no particular
transitions that might be responsible for the principal
contribution to polarizability. Most likely, the latter is
determined by transitions to the continuous spectrum,
Kirkwood’s formula gives a fairly good approximation
for static polarizability in the sense that o, is close to
calculated or experimental values of a(0). In these met-
als, the polarizability is very small, and its effect on
their properties is insignificant, which is why we will
not discuss them.

In the second group, which includes the heavy alkali
and alkaline-earth metals (see Table 2.3), the contribu-
tion to the total polarizability o from the np — nd tran-
sitions (where n is the principal quantum number of the
shell to be filled last) is practically the same as the ¢
calculated by Nieminen and Puska [78] (for K, Rb, and
Cs) or found from the optical properties of ionic crys-
tals (Ca, Sr, Ba). In the first three cases, the correspond-
ing contribution is seen to be somewhat greater than the
calculated o for the free ion. This is of course traceable
to the fact that Katsnel’son ef al. [74] and Nieminen and
Puska [78] used different computational techniques.
Anyhow, it is seen that for the Subgroup Ia elements,
beginning from potassium, and for the Subgroup Ila
elements, beginning from calcium, almost all values of
o, for the ion are determined by one selected group of
np — nd transitions. It is to be stressed that for heavy
elements (with Z = 48) it is essential to consider rela-
tivistic effects, such as the frequency splitting of the
transitions. Kirkwood’s rule, o(0) = ,, is pootly satis-
fied for K+ and Rb* and a good deal better for Cs* and
alkaline-earth jons. As is seen from Table 2.3, the polar-
izability of heavy free ions is from 0.7 to 0.75 of a,,
and that of an ion in a metal, 0.8c.,. These correlations
can be used to assess the polarizability of the ions for
which experimental and calculated values of a(0) are
not available. According to Nieminen and Puska [78],
the difference in polarizability between ions in a metal
and in a vacuum is not very great (being about 10%).
Therefore, one should expect that in the alkali and alka-
line-earth metals the factor responsible for a decisive
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Note: 1 — 2 st itions; tions; = ‘
potei 1 2+ gfd; _Zor np —» nd transitions; 3 — 4, np = (n + 1)s rm'ns:rmns, zrf_) ;=320 20 5 F O3 403, 4). In the columns
e and in Toble 2.4, o; _, ; are the average values of the corresponding transition frequencies; the figures in brackets are the difference

between the maximum and minimum values due to relativistic effects.

Table 2.4. Calculated results for Subgroup Ib and IIb elements

Calculated values Data on o(0)
Element Py 3 2 }‘ . In
© s U I o5 eIl o o Free | Ion in ioni In solu-
3 » " . nic .
g g” g - #¢ | jon |a metal crystals tions
=3 Cu* |0.28(0.01)] 5.6 [2.6(0.1)| 0.02 - - 125121 1104 - - 1n
Zn*t | 0.58(0.01) 1 1.6 |3.0(0.1) | 0.02 - - t15|16] 4105 - - 6
hed Agh 1033(0.02)| 7.2 | 2.1(0.2)| 0.06 [ 0.62(0.02)[038| 4.1 {37| 13 {031 - - 16 i2
Cd** 10.57(0.03) | 3.1 |2.4(0.2)} 0.06 {1.0(0.03) |0.65]| 3.8 130! 9 |04] 53 13 11 8
nes Aun* 1031{0.06) |12 [ 2.2(0.6)] 0.12 ] 0.59(0.06) {0701 65 {50 14 |03 - - - -
Hg™ 10.51(0.07) | 5.5 [2.500.7yf 0.11 1093000113 | 651431 11 |04]| - - - -

Note: 1 - 2 stands for nd — (n + 1)p transitions; 3 ~» 4, np — (n + 1)s transitions; § — 6, nd — nf transitions; Zr? N =:3/2(a, 2@ 2+
O3 5405 4 + Os 505 6} Wy, IS the plasma frequency in the free-electron model. Note the proximity of @y _,; and @, For the metals in

Tables 2.2 and 2.3 all @, _, ;are markedly greater than e

contribution to the static ionic polarizability o(0) and
the related properties is the proximity of the empty d
band to the Fermi level. At the same time, the corre-
sponding contributions to (/%) are not so great (see
Table 2.3).

Into the third group, one may class the Subgroup Ib

~.__ and IIb elements (see Table 2.4). In them, one observes

the same tendency: as one moves down the Periodic Sys-
tem, the a(0) of ionic crystals approaches the calculated
o,. An important contribution to «t(0) comes from the
nd — (n + 1)d transitions (where nd is the d shell that is
filled last), beginning from Ag", the nd — nf transitions
come to play a prominent role. The frequencies of the
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nd — (n + 1)p transitions are then of the order of the
plasma frequency of conduction electrons, @,,.

Thus, as should be expected, whereas no significant
change occurs in the properties of alkali and alkaline-
earth ions when they are placed in a metal (in any case,
at not too high pressures), this appears doubtful for the
Subgroup Ib and IIb elements. The point is that the
large contribution to 0/(0) from the nd — (n + 1)p tran-
sition at a frequency close to @, implies the possibility
of a strong (“resonance”) interaction between inner and
outer electrons, ' .

In summary, it may be concluded that the alkali and
alkaline-earth metals have two natural smallness
parameters related to the properties of an ion in a metal, -
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SR - e -t ——-{YEO are the Hamiltonians of electron—¢lectron, ion—ion, and
R
(@) (®) © electron~ion interactions, respectively; and P, (q) and

Fig. 2.20.

One is the “energy” parameter T} = 0,/ 0, where @, is
the characteristic frequency of core excitation (in the
case at hand, this is, for example, the frequency of the
np ~> nd transition), and the other is the “space” param-
eter ¥ = 4noi(0)/Q,. When one uses the values of 0(0)
calculated by Nieminen and Puska [78], the parameter K
in the case of the alkali metals ranges from 0.02 for Li
to 0.3 for Cs. In the approximation (2.29), these param-
eters are not independent. Noting that ,, = (4nZ/Qg)'?
and ), = (Z,/a(0))?,

7 1/2
K Y-
n = [MZI ) : 2.32)

Because usually Z/Z, < 1, thenm <€ 1 even for x ~ 1.
We will use this estimate in the next section.

2.4. The Effects of the Nonpoint Nature
of lons in the Total Energy of a Metal

For simple metals, as was pointed out earlier (see
Sec. 2.3), one may take advantage of the fact that jon
cores are small in comparison with the interionic dis-
tance and that the characteristic energies of conduction
electrons are small in comparison with the excitation
energy of core electrons. That is, one may assume that

k<€l, n<l. (2.33)

Subject to the above inequalities and drawing upon
the findings reported in [82), we will give the micro-
scopic derivation of the expression for the total energy

of a metal. Using this as an example, we will then dis-
cuss the possibility of introducing pseudopotential.

We write the complete Hamiltonian of the electron-
ion system of a metal as

B =Hy+ A, Hy= HQ,_,-i-thg,
' R (2.34)

B=H,+H;+H,.

Heré, ﬁﬁ is the Hamiltonian of the Rth ion; Hy, is the
Hamiltonian of free electrons;
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p,(q) are the Fourier components of the charge density

of the Rth ion and conduction electrons, respectively.
* -~ R
Owing to the smallness of an ion, we may write p; as

R
i

~

= ™ (Z+iqdr+...), (2.35)

where Z is the charge of the ion and dg is the dipole
moment operator. We choose H, in (2.34) to be the zero

Hamiltonian and A' to be a perturbation. As in Sec. 2.1,
the electronic Green’s function in the diagrams will be
represented by a solid line, and v,(q), by a dashed line.
The additional element introduced by Rehr et al. [83] is

the dipole vertex iqdg. We will designate it by an
unfilled circle. When averaging diagrams with such
unfilled circles over the ground state H,, we will bear

in mind that <an> = 0. Averaging two dg operators at
one site yields their causal Green’s function [83, 84]

a() = -i{0|Tdy(Hdx(®)/0). (2.36)

Thaus, to the graph in Fig. 2.19a, where the rectangle
denotes averaging over the ground state Ag, there cor-
responds an expression ' :

i) (i) e -, @37
0

where o{m) is the Fourier transform of the function (2.36).
After summation over R, we replace the term
exp(i(q — q)R] in (2.37) with the structure factor. Sub-
sequently, the corresponding expression will be repre-
sented by a filled circle (Fig. 2.19b). We consider
contributions of the zero, first, and second order in X to
the total energy E.

The zeroth approximation is described by the graph
of Fig. 2.20a and the expression [compare with (2.3)]

2
! 2 2 Loy
Ey = “ig‘;‘z @ISO = - o @23

The first-order contribution in x is shown in
Fig. 2.20b, and : :
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z
AEy =73 D, 82 v @ v )5S @)
g=0g' =20 (2‘39)

Y do .
X jmﬁa(:m)uo.

The contribution with g = 0 vanishes because of elec-
troneutrality (see Fig. 2.20c). Thus, in a systemn with an
inversion center, the polarized ions do not screen the
direct ion—ion interaction E,,. All contributions to E,; of
higher order x can be likewise shown to be zero.

In an analysis of the first-order-in-x contribution to E,
one has to take into account the effect of polarized ions
on the electron-gas energy E,. Because of this, filled
circles are inserted in the dashed lines in the diagrams.
For example, the graph of Fig. 2.21a corresponds to the
first-order correction in terms of x to the Fock energy.
Let us demonstrate that the summation over all inserts
in the dashed lines (both ionic and electronic) results in
the replacement of v,(q) by v.(q)/g,(q, iw), where

. . in
£,,(Q, i) = £(q, iw)+ ﬁ—a(zm) (2.40)
9

is the total permittivity, and aiw) is the polarizability
of the ion with allowance for local-field effects; for the
cubic lattices

ofie) = a(im)/[l - ;gma(im)]. (2.41)
0

To demonstrate, the series of diagrams shown in
Fig. 2.22a (with a zero momentum transfer at each ver-
tex) is readily summed to give

Vg, iw)
_ V@ guiof v 7T
g0 0y Q [agq, im)} T 4
v (@)

" e(q, i0) + dmalin)/Q,’

Between two dotted lines with momentum ¢ one can
insert any number of lines with a nonzero momentum
transfer at each dipole vertex. The simplest diagram of
this type is shown in Fig, 2.22b. The contributions of
these diagrams correspond to local-field effects. For
simplicity, let us neglect the screening action of con-
duction electrons on these effects. Then the expression
gorrcsponding to the diagram of Fig. 2.22b takes the
orm .

rfcoc(im)Jzq‘“qB (q+2)*(q+g) B_

(2.43)
Q 1 &L g+’
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(a) (b)
k-g e~

Fig. 2.21.

By writing the sum over g ag

(@t (g+e)’
o= 2. iq+g’
: _ (2.49)
__ 82 Ie:(q+g)l’
apaapﬁ " |q+g!2 p=0’
we obtain
s -1 O
®b" 4nap,dp,
(2.43)

equ ew—iqr
x| -
["};amm fdr“wJ ;
p:

Then for cubic lattices (S5 = —8,/3) the expression
(2.43) takes the form

4t 4n '
a oL(im) gooc(zco). (2.46)
By the same token, we find that summation over all dia-
grams with a nonzero momentum transfer at the dipole
vertex between two v, (q) lines is equivalent to the
replacement of c(im) in (2.42) by ofim):

. 4moio)
| afio) = 0((10)){1 + W
Amatio) ? ] _ agw)  @4D
m——-é—ﬁ(;—m) + rua —- w,
-3,

which corresponds'to the application of the usual local-
field correction. It can be shown that consideration of
eleciron screening effects in a local field yields the
result

i)

41 ) -
1— 532—(;&(“0) {1 + zg" [1- se‘(g, i(ﬂ)]}
(2.48)

afiw) =

3

4n
(g, iw) = 1 + < Tl(g, w),
q

obtained by Sturm [85] in a different way.
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(@) (®) of 1”2, By contrast, consideration of the ¢ dependence
e et & e —-twe —— 4—— -4 and the retention of (g, k) in comparison with (®, q)
e e T T g q+G g  yield the contribution on the order of 7). Any inserts in
the diagram of Fig. 2.21a (see, for example, Fig. 2.21b)
Fig. 2.22. give rise to small factors on the order of 1, and we will
neglect them. As a result, at the lower orders in x and 1,
the total contribution from ionic polarizability to the
(a) G (©) structurally independent part of the energy is
prafe SbZ
‘E, i® g-k[¥-a i Y - - @2.51)
] P iOpege= | ’
k~g,io 0L} i To calculate the pairwise interaction energy of non-
b, ie point ions, we first turn to the diagram of 2.23a. At the
lowest order of 1, we replace Gy(ie — i), p+ g — k) by
Fig. 2.23 Gy(—im, q — k), and the diagram takes the form shown
in Fig. 2.23b, where the wavy line corresponds to the
J(g) block in Fig. 2.23b:
(a) (b) (c)
.:' ------ :’ *:'U‘::‘ + .:::D O:::. + e "O""“'O“O“"‘ b J( ) dm (- )I 4n
”””” ~ 2 2n e (0, iw)
Fig. 2.24. 47t kk - q) (2.52)

For a further examination of the first-order-in-x cor-
rection to E, we take advantage of the smallness of x
and 1 and limit ourselves to the diagrams containing
one filled circle each. In the diagram of Fig. 2.21, we
may neglect the energy € in companson with @ ~ @) in
the upper line because 1} <€ 1. It is likewise seen that the
main contribution to the integral of q comes from

q-~ co:)/z, which is why we may neglect x (x <€ ¢). Then

the expression corresponding to Fig. 2.21a, with allow-
ance for the screening effect v,(q), takes the form

1 dk dE zso
E,= 5;-[ (2,5) 2m Glie, k)

2 2 .
J J‘ Kl a(’f)) (2.49)
(2n) q ’e (0, iw) J in+qg7/2

= 8b2 J’ j - '“Go(ae, k).

(2m)° 2,

Here, Gy(ig, k) is the unperturbed Green’s function, and

m%}dm oio) | dq 4n. 1

Lm0, iw)? 2m® § io+q 2

“doolio) [ o \
- I (mz+m2 ) (2.50)
Jo >,

In (2.49) and (2.50), we retained the ® dependence in
£,(g, iw) because it leads to the corrections on the order
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X ; ’
(k-q)e,(0,iw) _ m+§(qu)2

and the energy correction is

A Vc(g) 2
AE = wmgmﬂgmo@mg); . (253

Here and elsewhere, the dotted line represents the
screened Coulomb interaction v.(q)/e(q, i®). Any
inserts affecting the internal electronic energy of the
block in Fig. 2.23c give rise to additional factors of the
order of w™!. Therefore, the “bold-facing” of the dia-
gram in Fig. 2.23a due to the electron-electron interac-
tion at the lower order of 1| reduces to the replacement
of Tly(g) in (2.53) by the exact I(g).

We now turn to computing the second-order contri-
butions in terms of x to the pair ion interaction energy.
The simplest graph shown in Fig. 2.24a describes the
usual van der Waals interaction

Evawm WZQ 2.[ (27:) IZTE (0})

viq) -
e, (q, i)’

@54

x [qlg+g)]°

On excluding the self-action, the expression (2.54) can”

be reduced to the form

Evew = 3 Evew(R), (2.55)
: R

Vol.76 No.3 1993

LOCALIZED AND ITINERANT BEHAVIOR ' 267

where

wdco .
Veaw(®) = —j% (i)
0

, . (256)
’V(R, fm)J 2 (BVC(R, i)
" ( R i JR J
and
V(R) = j it BV "iqf‘ 2.57)
¢ (2m)® © 7 Elg, iw)

is the potential of the screened Coulomb interaction. This
expression was first derived by Rehr er al. [83]. They
estimated the contribution (2.55) to the energy of Cu,
Ag, and Av; it was found to be significant. The expres-
sions (2. 56) and (2. 57) provided the basis for further
inquiry. The investigation of the expression (2.56)
undertaken by Mahanty and Taylor [86] demonstrated
that consideration of space dispersion in &(q, i®)
yielded two added terms in comparison with the usual
1/R® terms. One varied as [exp(~R/R)J/R5"? (where
R, is on the order of the screening radius), the other
behaved as cos®(2kR)/R5? (where ky is the Fermi
momentum), and both were found to be small. Con-
sideration of the frequency  dependence

e(0,i0) = 1+’ /0" (where ), is the electronic
plasma frequency) for the noble metals was found to be
significant. A similar conclusion was drawn by Rehr
et al. [83] who calculated (2.56) by numerical methods.
Considering solely the o dependence in £,(q, iw), we
have

VyawlR) = “£§

) 2 (2.58)

C= —fdma (zm)( ) .
w° +m

To find the total energy of pairwise interaction, we
need to calculate the contributions shown in Fig. 2.24b
and 2.24c. Their sum, together with the first-order
terms, is the same as the usual second-order contribu-
tion in terms of pscudopotentiai [see (2.18)]

E® = -2 2&((:))“’@)‘ IS,

provided that

V@ = 5 ZV@+I@l. 259
0

’I‘l‘i_us,‘ a “pseudopotential” naturally arises when the
energy is consecutively expanded in terms of x and 7).

If one abandons the dipole approximation (2.35) and
constructs the perturbation theory in terms of the
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Hamiltonian H,;, then the expression qg'o(w) in
(2.37) will be replaced by %(q, q'; ®), which is the Fou-
rier transform of the causal Green s function of the total
ion density p':

, .; — i d ior
24, q';0) agi te e

x (0| 78py(q, H3py(-4. 0)[0),

3pR(Q. ) = pp(a, H — Fr(@),
Fp(@) = {0|py(q, 0){0),

and Z is replaced by Z — Fy(q) (where F is the form-
factor of the Rth ion). As a result, the expression for E,,
is complicated because one takes into account the non-
point property of ions. As will be recalled [87], this
leads (in the case of spherically symmetric ions) to the
appearance of additional terms of the order of exp(—yR)
in the ion-ion interaction energy. Terms of the same
order come about owing to the effects of electron—elec-
tron exchange interaction at different sites; they can be
taken into account in, for example, the He:tier—London
method [87, 88]. As a result, (2.55) is extended to
include the term due to the Born—Mayer interaction,

Foy = EVBM(R) As a rule, for v, (R), one uses the
approximation vpy(R) = Aexp(~YyR). In the end, the
total energy can be written as
E=Eqg+ Ey+E® + Eygy + Egyg Enm EO 4 ED,
(2.62)
Here, EW takes the form of (2.51), and 8b is defined by

an expression of the type (2.50) [considering that
i) — g 2(q, q; i®)] and by an add1t10nal term

(2.61)

4n 2n
s =Jiny — (2~ Fe(@)] = m§-<O!rZI0>

(2.63)
= 2jdma(im).

V]
The rate of fall of %(q, ¢'; i®) with q is then determined
by the ionic radius R,. If the parameter A = R;/R, (where
R, is the interionic dlstance) is not small and n<li,
then in Fig. 2.21a one can neglect € in comparison with
®, but one cannot neglect |k{ in comparison with [q|.
Then, instead of (2.51), one obtains

EY =0 j o (2.64)

Viw= 29.[ I

3%(q, q;im)
(2.65)

« 41 (k o i) + db,
e » i el
[4282(% ico)} 2,
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70 T
1) 1.0 20 1=The,

Fig. 2.25. Thermal expansion of Rb (£ is the atomic vol-
ume): (1) calculation by the pseudopotential theory; (2) cal-
culation with allowance for Egy and (3) calculation with
allowance for Egyy and Eygy The dots stand for the experi-
mental data.

Equation (2.64) is the same as the usual expression for
EY in the case of nonlocal pseudopotential (2.6), and
(2.65) is a microscopic expression for the diagonal
matrix elements of the latter. It is thus seen that the
pseudopotential owes its local character to the smallness
of A and 1, and that (2.50) holds only for ()2 < A.

The analysis presented above implies that, in the
case of A, <€ 1, all effects associated with the non-
point nature of the ion can be accommodated within the
usual local pseudopotential scheme extended to include
Egyy and Eygy. To form a quantitative estimate of these
interactions, Katsnel’son and Trefilov [82] calculated
the atomic properties of K, Rb, and Cs with allowance
for Egy and Eygw. Benedek [89] calculated the parame-
ters A and ¥ of the Born-Mayer interaction for K and
Rb, using atomic calculations by the Hartree~Fock
method, and Upadhayaya et al. [90] found them for Cs
by extrapolation. Upadhayaya et al. [90] found the con-
stant C in Eyqw by (2.58), where a(iw) was determined
by applying the numerical procedure of analytic contin-
uation to the function Im a(w) derived from optical
data for the corresponding metals. The calculations per-
formed by Katsnel’son and Trefilov [82] demonstrate
that the elastic constants, the Debye temperature
expressed in their terms, and the phonon spectra of the
alkali metals are only slightly sensitive to the addition
of Epy and Ey;y. On the contrary, the inclusion of vgy
and vyaw causes appreciable changes in the volume
derivatives of the elastic constants and the associated
Griineisen parameters. For example, dB/dp (where B is
the bulk modulus) for Rb decreases 7%. The effect of
Vygw and vy on the phonon frequencies o, is insig-
nificant, being 1 or 2%. In the microscopic Griineisen
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parameters ¥, = —d1n @, /dln Q, the effects are far
stronger. In this case, the change is 5% for K, 25% for
Rb, and 16% for Cs, Moreover, consideration of vgy
and vygw causes an increase in 7Y.,. As is seen from
Fig. 2.25, the values of thermal expansion AQ(T)/$,
calculated with allowance for vy and vy occur at
elevated temperatures markedly closer to their experi-
mental counterparts than when these interactions are

neglected (as an example, the results for Rb are given).

The above analysis demonstrates that, when one
takes into consideration both Eyy and Eygy, this has a
negligible effect on the calculated properties of the
alkali metals, except the Griineisen parameters, which
are especially sensitive to the strong volume depen-
dence of these interactions.

This fact actually completes the proof that the the-
ory of pseudopotential is fully applicable to metals with
a “rigid” core (n <€ 1).

2.5. The “Soft” Core Case

As follows from the previous sections, the concept
of the ion core in a metal may be regarded as well-
defined if the core is rigid, that is, if it is characterized
by high excitation energies in comparison with the
characteristic energies of conduction electrons (1} <€ 1),
Furthermore, the very procedure of introducing the
concept of core states consists in that one should go on
“stripping” the ion until the minimal core excitation
energy satisfies the condition of smaliness (2.33). In the
transition and noble metals, where 17 = 1 and even the ion
charge Z is not defined quite well (see Secs. 2.2 and 2.3),
it is natural to abandon all attempts to divide the elec-
trons (at least, d electrons) into core electrons and col-
lective electrons, and to go over to a purely band-
theoretic description. Then, even if it is possible to intro-
duce pseudopotential at all (see, for example, [54]), its
use is, in effect, a technical device that helps one to
carry out band-theoretic calculations [57, 58]. There-
fore, the concept of an ion core is, one might think,
applicable solely when it is rigid. Otherwise, its states
diffuse into fairly broad bands and hybridize with
the states of conduction electrons. This appears to be
exactly the case with, for example, the pure d metals
(among the transition metals, the narrowest 3d band
about 5 eV wide exists in nickel). For, for example, the
4f metals and their compounds, however, the concept of
an ion core can have a clear-cut meaning even if the
core is “soft”; that is, it has excited states with an
energy @, small in comparison with the characteristic
energies of conduction electrons (1 > 1):

Wy < Ep, 0, (2.66)

On their part, the states, transitions between which
give rise to these excitations, may not diffuse into a band
owing to the strong Coulomb repulsion of f electrons.
Why this is so will be discussed in Chs. 5 and 6. From
simple physical considerations it is almost obvious that
if the overlap of the f wave functions on different atoms
is rather small, the f states will be characterized by the
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quantum numbers of a free atom even in a metal (the
terms [LSJ), where L, S, and J are the orbital, spin, and
total moments of the f shell, split into sublevels by
weak crystal fields [91]). Then one can identify ,
either with the splitting of the basic term in a crystal
field or, if it is not degenerate, as in the case of a “Van-
Vleck” Smt** ion for which J = 0, with the distance to
the next term (for a free Sm* ion, ®, = 410 K [92]).
The level splitting in the f subsystem in a crystal field
and its effect on the properties of the f metals are dis-
cussed in a review [91].

Thus, situations can exist where the ion core may be
regarded as soft [in the sense of the inequality (2.66)]
and still remain well definable. Let us see how conduc-
tion electrons can be affected by scattering on so
readily excitable ions.

To begin with, let us determine the contribution to
the “self” energy of a conduction electron, Z (K, £),
described by the graph of Fig, 2.26

oo 2
1 1 dw [ 4né
(ke) = ﬁg‘.‘(%’t)s 5555( 2+73)

e P
%D, P; ) (2.67)
e~0-8  +idsgn § _°
&k = &, ~ €,

where we put &(p, ®) = 1 + A*/p?and A? = d4me?/nk,
because only small @ are of importance. Suppose for
simplicity that kxR; <€ 1, where R, is the ionic radius.
Then we can approximate the function x(p, p; i®) by its
value for |p{ tending to zéro

2 2 CWy
X(p: P;0) = po®) = p'——see,  (2.68)
0, — o —id

where o) is the dipole polarizability, and the contri-
bution of the transition with a small @, is identified; ¢ is
proportional to the corresponding oscillator force. We
next calculate the frequency integral in (2.67) [upon
insertion of (2.68)], while assuming for definiteness
thate =20 :

dw 1 1
2ne—a -+ idsgn ga)g—mzmiﬁ

I& &) = |

1 1
T 20,e-E~ @, +idsgn &’

(2.69)

On inserting (2.69) in (2.67) and integrating with
respect to p (By = me®/nky = 1), we have

2 (k+kp)2+ M2 £~

(ke mﬂ_c_i [:____..mimmm_:'} 0

(k&) == Qon (k—kp) 2+ A2 ne+o)G
2.70)
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pw PO

ke k-p,e~® ke

Fig, 2.26.

Equation (2.70) implies that in the lowest order pertur-
bation theory X. diverges for £ =+ ,. Moreover, the jump
of the distribution function at the Fermi level [20] is

- [1_ 3% (kp, €) T
EmO

e
2me* ¢ 1.7
o~ 1+_———ln(1+—)]
[ kpod, Q 0

2.71)

and, therefore, the effective mass m*/m ~ Z*~ of con-
duction electrons contains corrections on the order of
7!, which may become large for small .

In structure, equation (2.70) is similar to the one
describing the interaction of a conduction electron with
a dispersionless phonon [93].

The corresponding contribution to the total energy
(or, more accurately, to the thermodynamic potential Q)
is defined by the graph of Fig. 2.21a. Standard manipu-
lations yield

me*c 1

and one thus finds that the total energy is not analytic
in wy. Similar results were reported in [39] and [40].
For a specific case where @ is the splitting between the
Ievels of an ion in a crystal field, the result m*/m ~ (05’
was discussed in detail by Fulde and Loewenhaupt [91].
According to them, such a renormalization of the effec-
tive mass is significant in, for example, Pr. As was noted
earlier, a rare-earth ion with an flevel split in a crystal
field is a most illustrative example of a soft core.

Because the renormalization of £, especially near
€ =, is not small, the question arises about the role
of the higher order interaction between inner and outer
electrons,

This question was examined by Irkhin and Katsnel’-
son [94] for a contact interaction model described by
the Hamiltonian

H=Ytut-05+I8Y tee, @73
k kK

Ep

0

) @,ln (2.72)

where § are the “pseudospin” operators (5% = 1/2 is the
ground state of an ion and §¢ = —1/2 is its excited state);

at .
the terms with S describe inelastic scattering pro-
cesses. This Hamiltonian describes the simplest model
situation where the ground state of an ion is a weakly
split doublet (wj is the splitting energy). As Irkhin and
Katsnel’son [94] showed, all of the key results obtained
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with this model hold in the more general case as well.
Scattering processes where the pseudospin flips (that is,
the ion moves from the ground to the excited state),
describable by the interaction constants J, and J,, lead
in the lowest order perturbation theory to results similar
to (2.70) and (2.71). Using the renormalization-group
method, Irkhin and Katsnel’son calculated and summed
up the divergent contributions to X(k, €) and the Q
potential for the higher orders in |J{. Without going into
technical details of these rather tedious computations,
we will dwell on the idea of the procedure and the most
important results thus obtained.

With second-order perturbations with respect to J,
there appear contributions to Z(g)

1 - /. £
2Pe) = (ST (—p - )
2 g -, +0, E-§ —,
= %(SZ)J*J‘NFIn E= % (2.74)
£+ W,

which are singular for £ tending to +e, and similar
to (2.70). Here, J* = J, + iJ,, Ny = N(g;) 15 the density
of states at the Fermi level, and

(5% = Lianh =0

2 2T
is the average value of the pseudospin. For T < m,,
{§%) = 1/2. Similar divergencies arise in the next higher
orders of perturbations with respect to NJJ|. Thus,

direct calculations up to the third order, inclusive, for
T =0 yield

(2.75)

N _
2¥e) = ~Fgtg [1n 5T %
4 £+ W,
| (2.76)
+ N, (14 2T 1028 P ]
®, ’ 0,

This implies that, for & tending to £, the perturbation
theory ceases to be applicable, and one has to carry out
summation over all divergent terms of the series. Most
conveniently this can be done by “a poor man’s scal-
ing,” that is, the renorm-group method’s simplest form
proposed by P. Anderson [95]..

-The structure of the perturbation series (2.76) implies
that the singularities at € tending to —, and to + o, may
be regarded independently (there are no divergent
“cross” terms of the type In|(& — W)/ Inf{e + @)/ ).
For the subsequent discussion, it is likewise important
that there are no terms divergent at the very Fermi level
(of the type Inje/ay]). Let us consider one of the singu-
larities at € tending to Tty Because our task is to carry
out summation over the most singular terms in each order
of N¢J |, the answer we are interested in must not depend
on the exact truncation parameter in (2.76) (for example,
on the replacement In|(g £ @)/ wy| — In?|(E £ wy)/2w,])
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and will lead to the appearance of less singular addi-
tional terms. Consider the quantity

1 f
800 = 5 2 sTEva 2.77)
where summation is carried out over a layer of thick-
ness 0, near €. We reduce the thickness of the layer by
going over from @, to @, — 8,. In the case at hand, the
rationale of the scaling hypothesis is briefly this: after
one “discards” some degrees of freedom, the remaining
degrees of freedom can be described (in the sense of
their behavior at € tending to + @) by a Hamiltonian of
the form (2.73) but, possibly, with modified parame-
ters: J — J — 8J. This change can be calculated by the
perturbation theory. For € tending to o, the result takes
the form

dw
8/'=0;  8JF =N,

¢ (2.78)

8 =5 ! N J* T oo,

) o,

The final step is to go over from the equétions (2.78) to

the differential equations of the renorm group for the
effective interaction constants J. = J(©,)

Y QT % £
E'E EO’ 'a-g “—NFJeffJeff’

S5y 1 R
€ "—“‘:FENFJefE‘IeH

(2.79)

and to analyze their behavior at & tending to infinity as
£ tends to F@,. Precisely this behavior will determine
the character of the singularity in X(g) at € tending to 0.
Equations (2.79) are easy to solve

exp (FJgNE) - K

2 — .
eff ™ Gexp (:FJONFg) + K’ (2'80)
where
J{)'— <
Jo=lll, K= )
Jo+J°
and
N 4] Kexp(FJ,KE)
o = ——— 0250, (28D)
[exp(FJ N L) + K]

Thus, the singularity in Z(€) is weakened because the
effective constant J*J~ in (2.74) goes to zero

e :F 0.) JDNF
- ( ") . (2.82)
{‘00

mﬂ
EF O,

In

We now turn to the renormalization of the effective
mass m*/m near the Fermi level (¢ = 0). The result of
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the second-order perturbation theory, stemming from
(2.74),
mt 1 Nt

T =1 5, (2.83)

[compare with (2.71)] remains valid even if one takes
into account the higher order perturbations in Nx(J).
This follows from the structure of the series expansion
of Z(g) in (2.76), which may be written as

- £
I(e) = 2_;2 (NAJD)F, (E);) (2.84)
where, as is shown in [94], the functions F(x) are reg-
ular (which is very important!) for x tending to zero.
Then we have

IX(E) 1 .
e a2 WA, (289

and the result (2.83) holds for N J| < 1 and an arbi-
trary ;.

Thus, in the soft core case, the energy spectrum of
conduction electrons has significant singularities.
Notably, the renormalization of the effective mass at
the Fermi level can, in theory, be as significant as one
may wish,

Quite naturally, the question arises about the reverse
effect of conduction electrons on the excited states of
the ion core. That is what we proceed to discuss.

Ordinarily, for the Green’s pseudospin function
D(w) that describes these excitations in the lowest
order of perturbation, one obtains the following expres-
sion:

1
o - o, + i)’

where (at ' =J-=J, and 0 € Ep)

Dyw) = (2.86)

T@) = 3 G £ (g0 8(Ex €+ 0)
k

n
4

is the damping of local excitations owing to interaction
with conduction electrons. Higher order corrections
lead to a strong renormalization of Dy(®) due to Ander-
son’s “orthogonality catastrophe” (see [96]). The
essence of this catastrophe is that a change in the state
of the core (and, generally, of the scattering center)
brings about a'radical rearrangement of the many-elec-
tron system, which tends to suppress the change that
caused it. As with the X-ray spectra of metals [96], the
orthogonality catastrophe changes the analytic proper-
ties of D(m) by transforming a pole into a branch cut

D(®) = ~Ep" [-Dy(w)] =1+, (2.88)

where o = (/92 This must, among other things, lead
to an asymmetric shape of the core excitation spectrum

N2 o (2.87)
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glo) = —%Iml)(m) = Eiﬁ—g {F(co) + o (0~ )
T ©-—o 142
X [5 + atan—rﬁ)—e} }[ (w—m0)2+r‘2(m)} I+y
(2.89)

compared with the symmetric Lorentz line that results
when one disregards the many-electron effects.
Another manifestation of the orthogonality catastrophe
is a decrease in the average thermodynamic potential
{5%) in comparison with 1/2 at T = 0 (a partial occupa-
tion of the upper level)

=1 y=tumr e
2E.° A )
Finally, one can calculate a “singular” contribution
(for oy tending to zero) to the & potential, equal,
according to the perturbation theory, to

s =L E
2 ,

[compare with (2.72)], or, when one considers the
higher order terms, to

Yo, ln (2.91)

s0=-to, (2. 2.92

_—imo(ﬁ.) . (2.92)

Unfortunately, the real numerical values of the power

exponents ¢ and v for specific systems cannot yet be

estimated. By way of explanation, note that (2.92) can

be derived from (2.90) by use of the Hellmann-Feynman
theorem

Q) ofr .
Jo, = <%—0>‘n ~( 8%, (2.93)

Thus, the interaction of conduction electrons with
low-lying excitations can substantially change the
properties of both the electrons and of the excitations
and give rise to contributions, nonanalytic in terms of
@y, to the thermodynamic potential of the system. In the
next chapter, we will discuss physically similar contri-
butions to the properties of metals (“screening anoma-
lies”), which arise even when low-lying energy
excitations are of a purely “band” origin.

2.6. The Collapse of f Electrons
and Intermediate Valence

Situations where the very state of the ion core
changes in response to changes in external parameters
is of particular interest. This above all concerns inter-
mediate-valence systems [92, 97]. These are some
compounds of Ce, Sm, Eu, Tm, and Yb, in which some
of the felectrons become delocalized.

Several standpoints were advanced as regards the
state of f electrons in intermediate-valence systems.
According to the most widely accepted one, some of
the f electrons change to the d states owing to hybrid-
ization and/or exciton processes [92, 97 - 100]. Accord-
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Table 2.5. Level energies, mean squares of wave-function radii, and potential parameters for two Ce configurations (in

atomic units)
2
Configuration |Exchange (rz)f G e. €. <r2>P_ (rdp & W
i sd 65| X© 1.57 161 | 0230 | 0217 | 327 360 | 0930 | 0835
sp2%2% | gy 2.83 335 | 0248 | 0235 0.040
4,65 Xo 3.79 911 | 0051 | 0041 | 346 383 | 0844 | 0.748
nos BH 7.64 816 | 0070 | 0.060 0.078

Note: The subscript “p” labels the states of the filled 5, shell, Xet stands for the exchange after Slater {38], and BH, after Barth and

Hedin [110].

Table 2.6. Parameters of the effective fpotential in the 4754652 and 4/26s2 configurations of cerium and the 5/647s* and

5f*7s? configurations of uranium (in atomic units)

Element | Configuration | (¥ P I /AR r? Tanax Uppax & r& v
o 4]"_1 0.250 | 0.370 -5.62 1.445 2.38 0.172 6.0 12.0 -0.041
e
4f% 0.252 | 0.371 -5.33 1.270 2.095 0.2067 6.0 12.0 ~0.041
5 5f3 0114 | 0.185 | —4329 | 1844 | 2762 | 0140 | 6.0 120 | -0042
Sff 0.117 | 0.185 | -43.15 1.724 2.614 0.162 6.0 12.0 ~0.042

ing to another point of view, intermediate-valence
systems are Kondo lattices with high Kondo tempera-
tures [101]. It is thus presumed that the f electrons in
these systems are completely localized and that the sin-
gularities showing up in their electronic spectra near
the Fermi level are of many-electron origin. These mat-
ters are discussed in detail in Ch. 6.

Recently, however, a growing popularity was
gained by Johansson’s idea [102] about the special
nature of intermediate valence in o~Ce and, according
to Finkel’shtein {103), in compounds of Ce with transi-
tion metals. The rationale of Johansson’s idea is this. In
the intermediate-valence systems based on Sm, Eu, and
some other rare-earth elements, the 4felectron becomes
partly delocalized because it changes to the 5d state. By
contrast, the more likely cause for such a development
in the case of Ce is a change in the character of the 4f
states themselves ~ the transition from the localized to
the itinerant behavior due to the overlap of the f func-
tions at different sites; that is, a Mott transition in the 4f
subsystem. Johansson’s hypothesis, advanced on the
basis of thermochemical findings, has of late been con-
firmed by many spectroscopic studies [103 - 105] and
band-theoretic calculations [106]. The latter demon-
strate a significant increase in the width of the f band
that occurs as one goes over from the lattice constant
corresponding to y-Ce to the lattice constant of w-Ce.
At the same time, the occupancy of f~ and d-symmetry
states changes insignificantly. A good deal of interest is
evoked by the microscopic nature of the ‘mechanism
responsible for the fact that the 4f electron in Ce
becomes itinerant. Inquiry into this matter can offer an
opportunity to demonstrate the fruitfulness of some
ideas from atomic physics in their application to solid-
state physics.
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Finkel’shtein [103] supposes that the state of tet-
ravalent Ce (without localized 4f electrons) corre-
sponds to the 4f> rather than the 4/° atomic
configuration. He further supposes that the change of 41
electrons to the itinerant behavior upon transition from
the 4f15d4'6s? configuration (configuration A) to the
4f?6s* configuration (configuration B) is related to what
is known as the “infiltration” of felectrons through the
centrifugal barrier. This results in an abrupt change in
(the collapse of) the radius and energy of the f state in
response to a small perturbation in the atomic parame-
ters [107]. Kamyshenko et al. [108] investigated the
collapse phenomenon in Ce and some other f elements
on the basis of atomic calculations.

By “collapse” we mean a sudden change in the char-
acteristics of the fstate in response to a small change in
potential (here, this change refers to a change in the
configuration and not in the charge on the nucleus
[107]). The collapse is accompanied by a drastic reduc-
tion in the radius and energy of the corresponding state.
The underlying cause of this phenomenon is the “two-
well” character of the atomic potential for the felectron
and the centrifugal barrier (Fig. 2.27). It occurs when
conditions present themselves for a bound state to exist
in the inner potential well where the electron moves
from the outer well, As is seen from Fig. 2.28 [109], the
collapse causes an abrupt decrease in the energy of the
4f state as one goes across the Periodic System. Calcu-
lations done by Kamyshenko et al. (see Table 2.5) con-
firm that configurations A and B do differ markedly in
the mean-square radius (), and the energy £, of the
flevel. On the other hand, the self-consistent effective
potentials for the f electrons differ only slightly (see
Table 2.6). Thus, on moving from B to A, the felectron
suffers a collapse. .
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The collapse of the felectron in Ce leaves the other
core states almost unaffected. For example, (r%)s, in
configuration A is almost exactly the same as it is in
configuration B. An important question is how the col-
lapse affects various characteristics of the 4f states,
both atomic and those governing their behavior in sol-
ids. To test Johansson’s hypothesis that an increase in
the direct overlap of the 4f functions at different states
plays a decisive role when cerium and its intermetallic
compounds change to an intermediate-valance state,
measurements were made of the width W of the canon-
ical (that is, unhybridized) 4f band. The collapse was
found to be accompanied by a significant decrease in
the width of the canonical 4f band.

A few words are in order as regards the calculations
reported in [108]. The atomic calculations were made
within the relativistic version of the self-consistent X,
method for o = 0.7 adjusted for the Latter correction so
as to ensure a correct asymptotic behavior of the poten-
tial acting on the electron at a large distance r from the
nucleus (see [108]). Calculations were also made, in
which the Xo potential was replaced by the potential
from [110]. As is seen, although the parameters of the
“inflated” state are rather sensitive to such a replace-
ment and to spin-orbital interaction (see the + indices in
the tables}, a collapse does take place with either of the
spin projections and is independent of the choice of the
exchange-correlation potential (Xoo or BH, see
Table 2.5). Note, however, that with o = 1, no collapse
occurs {108]. The width W of the canonical (that is,
unhybridized) band was calculated within O.K. Ander-
sen’s linearized band theory (for more detail, see [108]).

Another interesting issue is the rearrangement that
occurs in the core as a result of a collapse. Quantita-
tively, it can be estimated in terms of the overlap
parameter of Slater determinants [®) developed from
the core functions ¢, in configurations A and B,

(D, I(DB> =det S,

Spv = (@A0p2).

Our calculations show that the overlap of the old
and new functions associated with the same orbital
state are very nearly unity: S(5p, 5p) = 0.9997 and even
S(4f, 4f) = 0.98.

Thus, one may neglect the effect of collapse on core
states, and its practically only consequence is the
increased overlap of the 4f wave functions at different
centers, as revealed by the increased width of the
canonical 4f band.

The spectroscopy of 3d photoelectrons in mixed-
valence intermetallic compounds of cerium, such as
Ce,4Cey; [111] and CeRu, {112] demonstrates the exist-
ence of a triple-peak structure associated by Abbati
etal. [111] and by Schlapbach et al. [112] with the
ground state of the Ce ion in these substances. Under
Finkel’shtein’s hypothesis confirmed by Kamyshenko
et al., the so-called f° configuration (free from localized
felectrons) is in fact related genetically to the f2 atomic
configuration. Then the peak identified by Abbati ef al.
and Schiapbach ef g/. with the contribution from the f?
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Fig. 2.27. Schematic view of the effective potential for an
Sfelectron. The parameter values are given in Table 2.6,
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Fig. 2.28. Changes in the electron bonding energy in various
orbital states in the series of isoelectron ions Cs I {(Cs%—
Ba Il (Ba*j~La Il (La**), Ce IV (Ce***), The energy is
given in eV on the left and in units of the binding energy of
the Os electron on the right of the vertical line [109],

configuration should naturally be assigned to the final-
state effects. Finkel’shtein calculated the states of the
Ce atom in the 4f*54'6s® configuration with a hole in
the 3ds;, subshell. Moreover, (), = 1.3, which is even
smaller than in configuration A. Thus, in contrast to
configuration B, both felectrons in the final state with a
core hole are localized and can give rise to an additional
peak in photoelectron spectra, This conclusion will
remain valid even if, in keeping with Slater’s transition-
state method [38], one takes into account the “hole
effect” by calculating the configuration

3d§f23d?,2...4f1'55d1632 ((r2)4f=1.4) .

_In the case of Ce, the calculations done to date per-
mit one to validate and interpret the conjectures Johans-
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Table 2.7. Energy, mean square of radii and potential
parameters for Pr and Nd (in atomic units}

Potential

) 2
Configuration | Exchange | {r >f- Ef' parameters

¥ | ¥ |Element

1 Xa 1411 0261
4p5d365" | Ry | 142 lo27s | 0P
T Xo. | 233 | 0.070
Afsn 65 BH | 214 | 0093 | 004

Xo 1.28 | 0.287

Nd | 43, 5d;, 65

Nd | 4fs, 6% Xo. | 1.88 | 0.088

Table 2.8. Energies of f levels and mean squares of wave-
function radii for two configurations each of U, Np, and Pu
(in atomic units)

Element | Configuration ) - €.
5f3,6d3,75° 2.814 0.147
v 5fd, 75 4.743 0.058
5f5 63,75 2.460 0.182
P 53,75 3417 0.076
5f5,6d.,75 2203 | 0216
o 55,75° 2.814 0.096

son advanced with regard to the character of changes in
its electronic structure in intermediate-valence sys-
tems. In the case of the actinides, they can yield entirely
new results.

Importantly, a collapse by itself is not a sufficient
condition for intermediate valence to occur by Johans-
son’s mechanism. For example, as one can see from
Table 2.7, which presents calculated results for Pr (and
Nd), a transition from the f? to the f? configuration is
likewise accompanied by a collapse (although less pro-
nounced than in Ce). Nevertheless, even in the delocal-
ized state, the width of the fband is too small for the f
electron to become itinerant (the width W is about the
same order of magnitude as for Ce in configuration A
and substantially smaller than for Ce in configuration B).
Here, a significant factor is the absolute value of {r*),,
with which, as one can see from Table 2.5; the width V{/
correlates, - :

In a U atom, the excited 5/*7s? configuration, near-
est in terms of energy to the ground 5°64'7s? configu-
ration [113] corresponds, as in Ce, to the transition of
the 4 electron to the fstate and not the other way around
(in contrast to, say, Sm). This prompts one to suppose
that in U compounds the intermediate-valence mecha-
nism must be of the Ce type; that is, it must be associ-
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ated with the “inflation” of the wave function in

consequence of the transition from the f3 to the S* state.

To verify this supposition and to investigate the col-

lapse phenomenon in the 5f states, Kamyshenko et al.

[108] calculated U atoms in the two conﬁgurauqns, aqd

also Np and Pu atoms. The results are given In

Table 2.8. Compared with the 4f electrons, the collapse

is seen to be less pronounced and disappears more

gradually as one moves across the Periodic System. .
Still, it does happen, at least in the case of U (upon the

transition from the f* to the f* configuration). This per-

mits one to suppose that in the U-based intermediate-

valence system the nature of intermediate valence is, as
in the case of Ce, more likely related to the fact that the
f electrons become itinerant, than to theil_' transition to
the d state. The parameters of the f potential for Ce and
U are given in Table 2.6.

2.7. Concluéion

This chapter focused on the concept of pseudopoten-
tial, a detailed inquiry into the conditions under which
this concept can be introduced, and the demonstration of
its high efficiency in cases where these conditions are
satisfied. The pseudopotential theory of simple metals is
a relatively rare example of a consistent microscopic
description of a many-particle system. It enables one to
advance, step by step, all the way from the summation of
Feynman diagrams to the numerical calculation of, say,
anharmonic effects and the melting curve, and to com-
pare calculation with experiment. This explains why we
have covered all of these matters in fair detail.

What follows is a sumimary of the most fundamental
ideas and results. ‘

1. The possibility of introducing pseudopotential as
an intrinsic characteristic of the ion core can be justified
in rigorous terms if the core excitation energy @y 1s
large in comparison with the conduction-electron
plasma frequency ®,, (a rigid core). Among the alkali
metals, even singly charged ions satisfy this require-
ment, which is why the pseudopotential V,, is relatively
weak, and it is legitimate to apply the perturbation the-
ory in terms of V. This allows one to calculate the fine
characteristics of the solid and liquid phases with high
accuracy. In the noble metals, however, one has to
“strip bare” all of the d shell in order to satisfy the con-
dition @y > W,,. As a result, V, will be so strong that its
introduction will actually offer no advantage over a
complete band-theoretic calculation.

2. The soft core case, W, <€ @, can hold, for exam-
ple, in rare-earth compounds, where @ is the local-
excitation energy of the f shell. Now the interaction of
conduction electrons with the core gives rise to sub-
stantial anomalies in the electronic spectrum, notably,
to a significant increase in the effective mass.

3. Cerium supplies an interesting example of a situ-
ation where an analysis of ion core properties enables
one to get deep insight into the properties of the metal.
The mixed valence of 0-Ce is apparently related to the
“swelling” of the wave function of the 4f electron as it
changes from the 4154 to the 412 configuration.
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Chapter 3. DENSITY-OF-STATES PEAKS:
AN ANALOG OF LOCALIZATION
IN THE BAND-THEORETIC APPROACH

Anomalies in the physical properties of the
transition metals, their alloys, and compounds
are discussed. In many cases, a common factor
responsible for these anomalies can be identi-
fied ~ the existence of electronic density-of-
states peaks near the Fermi level. In turn, these
peaks may arise owing to the localized behav-
ior of the electrons and to the geometry of the
crystal lattice; in the latter case they can appear
even with almost free electrons. As the results
reported herein imply, an analysis of elec-
tronic density-of-states and of its behavior
with changes in external parameters can be an
efficient tool with which one can qualitatively
explain and predict the anomalous properties
of metals.

3.1. On the Nature of Narrow Peaks
in the Electronic Density-of-States

Thus far, we set the ion core against the system of
quasifree conduction electrons treated as a single entity.
Actually, even within the one-electron approximation,
these quasifree electrons “live” in the crystal lattice
and, in consequence, have properties strongly different
from those of the “truly” free electrons. Small groups of
electronic states near so-called critical points, k = k.,
where the electron velocity v(k) goes to zero, can also
play a special role in the properties of a metal. In this
sense, such electronic states come closer in some prop-
erties to “localized” states, although they remain delo-
calized (“Blochlike”) in strict terms. More specifically,
this implies that they can make a significant and
strongly energy-dependent contribution to the elec-
tronic density-of-states N(E). This situation stands mid-
way between the “smooth” behavior N(E) ~ E2 for
free electrons and the “diffuse” 8-like contribution to
N(E) from quasilocalized states (see, for example, [2]).
It is the density-of-states N(E) and, especially, its
behavior near the Fermi level E; that govern many
properties of a metal. From the viewpoint of an analysis
of the form of N(E), the degree of localization of partic-
ular states in real space is a special case of the question
about the role of small groups of electronic states
responsible for singularities in N(E). That is what we
are going to discuss in this chapter.

Asregards the degree of the localized and delocalized
(itinerant) behavior of electrons we are concermned with,
there is a “nafve” belief that narrow N(E) peaks directly
reflect strong electron localization in real space, whereas
a broad energy band is associated with a “truly itinerant”
behavior. As early as 1953, van Hove [114] demon-
strated that, given any two- or three-dimensional lattice,
N(E) singularities would arise within each energy band
for purely topological causes. Those are van Hove singu-
larities associated with points v(k) = 0. Three-dimen-
sional lattices have root-type, one-sided van Hove
singularities: SN(E) ~ [*(E ~ E)}20(+(E - E,)), where
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E, is the singular point of the spectrum, 8(x > 0) = 1 and
6(x<0)=0.

These singularities are rather weak (IN(E)/OE
diverges) and, generally, one ought not to expect any
sudden “peaks” or “crevasses” in N(E). On the other
hand, specific band-theoretic calculations revealed
very narrow and abrupt peaks in N(E) in the conduction
band even in some simple metals (Ca, Sr, Li, and some
others), where, it would seem, one has no reason at all
to expect electron localization. Such a situation is even
more typical of many classes of metal compounds (see
the discussion in [39]).

Thus, whether or not the degree of electronic-state
localization is related to the presence of narrow N(E)
peaks is not a very simple question. A need, therefore,
exists to inquire into the possibility of their purely geo-
metrical origin (that is, one conditioned on the crystal
structure). A most illustrative example of such an
inquiry into the “geometrical enhancement” of van
Hove singularities is Gor’kov’s model [116, 117] for
compounds with the A-15 structure (such as V,Si and
Nb;Sn). In these compounds one can, however, isolate
“quasi-one-dimensional” motifs — ¢hains of (V or Nb)
atoms running in three mutually perpendicular direc-
tions. As Weber [118] demonstrated, with these com-
pounds one may speak of a noticeable localization of
electron density p(r) in real space, but along the chains
rather than on atoms. On the other hand, in Ca and Sr,
which have an fec lattice and a nearly spherical Fermi
surface [119, 120], the narrow N(E) peaks come as a sur-
prise. A detailed study into the origin of these peaks was
undertaken ift [70]. Van Hove singularities arise from
points where the group velocity v,(k) = 9E,(k)/ok goes
to zero (here, E, is the electron energy and k is the
quasimomentum). The calculation of E,(k) and v,(k)
performed in [70] showed that near the Fermi level Ey
the fcc and bee phases of Ca and Sr exhibit extended
segments where lv,(k)! is small (see Figs. 3.1 and 3.2).
In the bece lattice of Ca, these are some of the P-N and
N-H lines, and in the fcc lattice of Sr, these are some of
the X-U, U~L, L-K, K-U, and K-W lines. All of these
lines lie at the boundaries of the Brillouin zone
(Fig. 3.3); by virtue of symmetry, (v,(k)), = 0 on the
I'-N and N--H lines (where (v,), [sign: perpendicular]
are the velocity components in the perpendicular direc-
tion). If such a line has two van Hove singularities
closely spaced in terms of energy, they will show up in
N(E) as an almost single “quasi-two-dimensional” sin-
gularity.

Consider this matter in more detail with reference
to [701. (For the density of phonon states, a similar '
enhancement in van Hove singularities was discussed
earlier by Gilat [163].) Assume that along some segment
in k space we have (v,); = 0. Then, near that segment
we can write E(K) as

Ek) = Ey+vE(k) + & + &
0T ) T 2y’

where, for definiteness, the coordinates of the segment

are defined as k, = k3 = 0 and k, <k, < k,, where k, and

3.1
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Fig. 3.2. Same as in the previous figure, but for the fcc phase of strontium.

kg are the coordinates of two nearest van Hove singu-
larity points on the line, and y= E, ~ E, is small. Then
the singularity contribution to N(E) takes the form [70]

;
k

Q b
° [ i mthy) OLE - E, ~ Y&k,
@n’;]

X sgnmy(k)),, My, >0,

SN(E) = 4 . v (3.2)
Q, -

=2 [ die iRy n | E— E, ~vE (k)

@)~

myn, <0,

\
where m = [|my(k,)my (k|17 and €, is the volume of
the unit cell. For y tending to zero, the van Hove singu-
larity takes the form typical of the two-dimensional case.
Notably, it may so happen that 8N(E) ~ —In(E — E),
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which is a two-sided singularity associated with the
divergence of N(E) and not only of dN/JE. Generally,
the P-N line in bee metals (such as Li, V, Cr, Fe, and
Ba) [68, 115] quite often yields “giant” van Hove sin-
gularities. A special trait of Ca is that this singularity
lies close to Eg.

In Sr, which has an fcc lattice, these lines do not
have the property that (v,), = O by virtue of symme-
try, and van Hove singularities are enhanced owing to a
somewhat different cause. The point is that the Bril-
louin zone of an fcc crystal is approximated quite
closely by a sphere. In the free-electron approximation,
this sphere for divalent metals is almost identical to the
Fermi sphere, which implies that in the zero approxi-
mation the energy is constant all along the boundary of
the Brillouin zone. This is a prerequisite for the exist-

ence of lines of a nearly constant energy close to Ep at
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the boundaries of the Brillouin zone in fcc Ca (and to a
lesser degree in fcc Sr {70]).

In addition, one should expect narrow N(E) peaks in
metals with narrow energy bands. As an example, con-
sider the results of band-theoretic calculations {121] for
the & phase of fcc plutonium (Figs. 3.4 and 3.5). To the
narrow N(E) peak above E; (see Fig. 3.4), a multiplicity
of almost “merged” van Hove singularities and a multi-
plicity of lines with a low electron velocity (see Fig. 3.5)
correspond. The van Hove singularities closest to E are
located near the points U and K (E, — E; = 4 x 10~ Ry).
As can be seen from Fig. 3.6, the Fermi surface neatly
“fits” into the corresponding corners of the Brillouin
zone.

Now let us sum up a few facts. In the general case,
the root-type van Hove singularities are the only type of
N(E) singularities in a three-dimensional lattice. All of
the stronger singularities result from their merger
(degeneracy), which may be either the effect of a struc-
tural cause (for example, symmetry) or occur by chance.
But then, as the examples given above show, such
“chance” occurrences are not at all rare. A change in
external parameters (for example, pressure) may, how-
ever, cause a different change in the position of the van
Hove singularities that form, for example, an N(E) peak.
This will then cause a change not only in the distance
from the peak to Ej, but also in the shape of the peak.
Such a change is illustrated in Figs. 3.7 and 3.8, which
give the values of N(E) calculated for the various phases
of Sr and Ba and for different lattice constants [122].

3.2. Density-of-States Peaks and Anomalies
of Observables in the Single-Particle Approximation

Singularities in N(E) that occur near E, show up
directly as anomalies in the electronic and lattice prop-
erties of metals. In turn, the singularities themselves
can be detected through an experimental inquiry into
such anomalies. For example, in the one-particle
approximation, spin susceptibility y and electronic heat
capacity C, are expressed in terms of N(E) by the for-
mulas [2]

P 3
= i famve(-52 ) ey

- )
C(T) = % jdEEzN(E) (——g—?), (3.4)

where {E) = [expE/T + 1} is the Fermi distribution
function, E is the energy reckoned from the chemical
potential W(7T), and y; is the Bohr magneton. Consider
the simplest case where, a short distance A from Eg,
there is a peak of width I <€ A, whose contribution to
N(E) is ad(E — A). Here, the corresponding contribu-

THE PHYSICS OF METALS AND METALLOGRAPHY

Zi @ Zy

Fig. 3.3. Irreducible part (1/48) of the Brillouin zone for
the bee structure (a), and 1/12th part of the Brillouin zone
Jor the fce structure (b)),
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Fig, 34. Total density of states and partial relativistic (f;,

Japh and spin {f, o f. 1) contributions to electronic density
of states in &-Pu.

tions to (T} and Y(7) = C(T)/T are described by non-
meonotonic functions of temperature

- a
@ = 4Tcosh® (A/2T)°
" (3.5)
T)

" 4Tcosh® (A/2T)

which have a maximum at 7 ~ A. The anomalous behav-
ior persists even in cases where the peak has a finite
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the corresponding E(k) curve in the units marked on the right of the scale.

width. Model calculations of %(7) for various forms of
singularities in N(E) (triangular, “twisted™ triangular,
jumplike, etc.) are given in [123]. When N(E) has a two-
dimensional van Hove singularity SN(E) ~ ~In(E — E,),
as, for example, in the Gorkov model for compounds
with A-15 structure [116, 117], one has

XD = %(0) ~ (5)

(3.6)
A 1 1.

= ln"j‘“.. + ‘v(i) - Rﬂ\y(i + l'z—n—‘),

where W(x) = I"(x}/T'(x), and T'(x) is the gamma function.
A graph of the function 1/(7/A) is given in [117, p. 275].

r

Fig. 3.6. Section through the irreducible part of the Bril-
louin zone by the Fermi surface for 8-Pu. In the neighbor-
hood of the points U and K (shown on an exaggerated
scale), the Fermi surface almost exactly fits into the Bril-
louin zone.
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In the case at hand, the temperature dependences of
the kinetic coefficients likewise turn out to be anoma-
lous. For example, in the case of elastic scattering the
electrical conductivity o(7) and the thermo-emf S(T)
are defined by the expressions [124]

o(T) = jdEo(E) (m%%@), 3.7

1o HE)
T JdEEG(E) (’“"'3’"1?"“]’ (3.8)

where G(E) is the conductivity function proportional to
N(E). Then, the anomalous part of 6(7) is proportional
to the anomalous part of }(7) and has a singularity of
the same character. The temperature dependence of
S(T) will likewise be nonmonotonic.

If one considers the electronic properties of a metal
as a function of pressure, deformation, or impurity con-
centration for T tending to zero and for the N(E) peak
approaching Ej, then (3.3), (3.4), (3.7), and (3.8) will
imply that %, v, and ¢ demonstrate anomalies of the
same character as N(Ej), and S, of the same character as
ON(E)JEy, that is, far stronger anomalies. Among other
things, this implies that the thermo-emf is subject to
strong anomalies [of the form (Ex— E,) *0(X(Ez— E)),
even if an ordinary root-type van Hove singularity
approaches E for E = E, (the Lifshitz’s electronic topo-
logical transition [125]). These anomalies were first
predicted by Vaks ef al. [126] and were observed in a
number of systems (see, for example, [127, 128]).

As N(E) peaks approach Ep, this may give rise to
anomalies not only in electronic but also in lattice prop-

S =
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Fig. 3.1. Electronic density of states in the bec and foo
phases of Sr. The full, dashed, and dotted lines correspond
to the compressions u = 0, 0.25, and 0,50, respectively.

erties. For example, by differentiating the band energy
E, with respect to deformations u; under the assumption
of noninteracting electrons, one can obtain the follow-
ing expression for the band contribution to the elastic
constants C,, for T'= 0 [129, 122]:

(3.9)
1

5? 5 de, 0,
= _Q_(; ; [9("81)%(81 +Eg) ~ (Sx)ﬁzmj )

where £, is the atomic volume and ¢, is the one-parti-
cle energy reckoned from E, Owing to the second term

in (3.9), the function C,.(kb ) (E) contains the same singu-~
larities as N(E) does. At reduced temperatures, the
Ci(T) singularity behaves as %(7), thereby rendering
the temperature dependence C,(T) nonmenotonic,

Notably, the Gor’kov model for compounds with A-15
structure gives Cy(T) ~ M(T/A), and for A = () (when the
N(E) singularity occurs exactly at Ey),

8C,{T) ~ In T/E + const. (3.10)

This explains the observed “softening” of the shear
modulus with decreasing temperature that leads to a
structural (martensitic) transformation (see [117]).

Thus, the observed nonmonotonic behavior of elec-
tronic and lattice properties with temperature may indi-
cate the presence of narrow N(E) peaks (or other
singularities) near £ As an example of the experimen-
tally observed minimum in Cy, which might be associ-
ated with narrow N(E) peaks, we can mention the
change in the bulk modulus B in CeBe,,, observed by
Lenz et al. [130]. If the peak occurs right at Ex (A =0),
the temperature dependences turn monotone and are
now determined by the peak’s width I rather than by A.
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Fig. 3.8. Electronic density of states in the bec, fee, and hep
phases of Ba. The full, dashed, and dotted lines correspond
to the compression u = 0, 0.2, and 0.35, respectively.

3.3. Screening Anomalies

Sometimes it may prove advantageous to analyze
the N(E) structure on a relatively large energy scale.
Then, as the basic “structural element,” one takes not a
van Hove singularity but the entire N(E) peak (which
may contain several van Hove singularities) located a
distance A from Ep: T = A <€ W (where T is the width
of the peak and Wis the width of the conduction band).
This relationship between the parameters holds for
most alloys and compounds, especially for d and f met-
als, compounds with A-15 structure [117, 118], the
intermetallic NiTi {131], dilute PdFe alloys [131], to
say nothing of heavy-fermion systems {132], mixed-
valence systems [92], and other compounds of 4fand 5f
elements {133]. The influence of M(E) peaks “as an
entity” on the various electronic and lattice properties of
metals and alloys was qualitatively analyzed in [39 - 41],
[134], and [135]. Here, we will briefly discuss their
principal results. Transitions from narrow N(E) peaks
to Ep (or vice versa) or between filled and empty peaks
(in which case A is the spacing between the peaks) give
rise to an anomalous frequency dispersion of permittiv-
ity or polarization operator Il(r,, r,; @) (screening
anomalies) at 0 ~ A <€ Er. We will denote the corre-
sponding contribution by 1.

Consider the singularities that arise in the electronic
spectrum owing to screening anomalies. The corre-
sponding first-order-in-I1, contribution to the self-
energy part £ takes the form [compare with (2.67)]

2riX(r, x', E)
= [drdr,doGe, v'; E- o) G.11)

X Vel P Ve (T T IT (1, 15 @) .
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Here,

, VO, )
Glr, ;) = ;E—Eﬁ i5sgnk;,

(3.12)

y,(¥) and E; are the one-electron wave and energy
functions, and v(r, r') is the Coulomb potential with
allowance for normal screening (minus the singular
contribution IT.).

Using a spectral representation for [T, we may write
the contribution II as
Ary, 1))

kL (3.13)
o2 -0’ ~id

M, r50) =

v
The eigenstates |v) may be a pair of electron-hole states
A A (Ey <0, E) >0), or they may be of many-

electron origin (collective degrees of freedom, such as
in ion excitation with a strong correlation, caused by,
for example, the splitting of rare-earth terms in a crystal
field, see Sec. 2.5; excitons, faramagnons, etc.). Insert-
ing (3.12) and (3.13) in (3.11) and noting (2.69), one

observes that for |E| <€ E, a singular contribution fls
oceurs

I iE) = Y LEW,Ew ),
A

such that

OX 7 (E)

= ~§(E
= )

ExQ 3.14)
X Jdrldrz Vet ETL (0 T030) Vpe(ry0 1),

Thus, the singularity at the discontinuity of the distribu-

tion function at Er, z," = [1-03%,(E)/9E1™| _ ,is

of the same order as in [I (= 0). The singularity in £
at E = 0 is weaker

Z(r,1;0) = G(r, r;0)
(3.15)
X J'drla'r2 Vol s Tp) V(1 £')88(ry, 1),

where
S(ry, 1) = <n(ri)”(F2)> ~{n{r)nlry))

Av(rv rz)

do ¢ .
= | =—I{r,, ryie) =
J 3 F23i0) 20,
— v
is the static correlator of electron density A(r).

In the case of free electrons, Y = |k) is a plane
wave with a wave vector k. The singular contribution to
the effective mass from (3.14) may then be written as

2
e

2
230,

m* 1 =
1+ I1.(0), (3.16)
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where ﬁs((x)) = Zﬂs(q, ) is the average taken over

q
the Brillouin zone [134] [the singularity in 9Z(k, 0)/0k;
is weaker than in Z*).

As will be shown shortly, I, defines the average
anomalous contribution to the frequency of short-wave
phonons, whereas (3.16) [similar to the exact equation
(3.14)] implies that the singularities appearing in elec-
tronic and phonon spectra because of screening anom-
alies are the same in character. Moreover, II,
characterizes the screening of a local static disturbance,
which is why contributions T1_(0) must show up in, for
example, Raman and Mossbauer spectra, thereby deter-
mining singularities in the effective electric-field gradi-
ent. Thus, the expression (3.16) establishes the relation
between anomalous contributions to various observ-
ables: the electronic effective mass at the Fermi sur-
face, quadrupole splitting in Raman or Mdbssbauer
spectia, efc.

We now turn to the anomalous contributions to the
thermodynamic potential ) with particular reference to
the free-electron case. It is convenient to use a known
expression involving permittivity £(q, )

Q=0
i oty
dh 1 dw 1
* '!T;{ 2n j 1- exp(—cu/T)IfIIEJL @ )
. Z?mez} (3.17)
2 b
q

where g, = 1 + v(q)AML(q, ®) and, in computing I1,
e* — Ae?;, and T is the temperature. Proceeding as
in [134], it is an easy matter to derive from (3.17) the
singular contribution to :

Q, = —g [dool (), (3.18)
0

where o, ~ Ej is the cutoff energy and B = me’/ Tk
is the usual parameter of electron—electron interaction.
If N(E) has a narrow peak at a distance of A from Ep
{see [39, 400), then

TT () ~~In|® - A (3.19)
and, as (3.16) and (3.18) imply,
Sni* ~ (Z) " ~—InjAl, 8O ~A'In|Al.  (3.20)

Similarly, in the case of filled and empty narrow N(E)
peaks spaced A apart (a “two-peak” situation), we have

(@)~ A2 -0 (3.21)
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H(T)

and, accordingly,

dni* ~(Z) A7, 80 ~-AlnjAl  (322)

[compare with (2.71) and (2.72)]. The treatment in this
section s to the first order in I1_. The higher order sit-
uation was discussed in Sec. 2.5.

We now turn to the temperature dependence of
anomalous contributions associated with screening
anomalies. Substituting in (3.17) the expression for
I)(q, ®) in the random-phase approximation, integrat-

ing with respect to e, and isolating the singular contri-
bution yield an explicit expression for Q_ [39 - 41]

Q==Y fi 1-f) K ®E,~Ey),  (323)
A A ‘

where

Kiw = D SEISEN RN v VA, (3.29)
oy

e CECE)

(8+£')2—x2

O@) = J'dada'
(3.25)

oo

= nszRef
0
where A -> A' are “dangerous” transitions yielding a

singular contribution to [T, and &(e) is a smooth func-
tion of divergence truncation for g, €' tending to infinity

[for definiteness, it is chosen that C(g) = eE/W, where
Wis of the order of conduction-band width]. The singu-
Iar contribution (3.3) to the potential Q leads to contri-
butions to the elastic constants

30,
Jdu,;0u,

(where i; are the components of the deformation ten-
sor), which, as will be shown shortly, vary with temper-
ature in a nonmonotonic manner. For T = 0, these
contributions, as immediately follows from (3.20) and
(3.22), are on the order of

dtsinxt
sinh? (°T (¢ —i/W))

(3.26)

0A BA

A
5C, -;ni_w i 3.27)

when a filled or an empty N(E) peak approaches the
Fermi level (a “one-peak” situation), and

10A dA

Aduau,
when a filled and an empty N(E) peak move closer
together (a two-peak situation). Thus, the approach of
two narrow N(E) peaks to E and, especially, their mov-

ing closer together, reduces the elastic constants, that is,
“softens” the lattice.

8C,, ~ (3.28)
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1.0 2.0 30 nIVA

Fig. 3.9, Function H(T) from (3.29).

As (3.25) implies, the temperatﬁre dependence of
the contributions 8C, to the elastic constants is defined
as A

T
sCun ~-H(),

1 pdttsin® (t/x
Hx) = ;J'wmwm__) _
0

(3.29)

sinh®t

in the case of a two-peak situation, and

~{nT -~
scik(n - _H(T: W)

Tcos (T/x)

H(x, W) = Rejdr —
o sinh? (T~ ix/W)
in the case of a one-peak situation [41]. As is seen from

Fig. 3.9, 8Cy(T) has a minimum at T = 0.2A according
to (3.29) and at T = 0.3A according to (3.30).

Similarly, one can use the local-spin-density func-
tional theory to consider “anomalous” contributions to
the paramagnetic susceptibility %(7) [41]. A useful gen-
eral representation for , was obtained by Liu et al. [136]

D
XD = Ty

where %(T) is the spin susceptibility for noninteracting
electrons (3.3),

(3.51)

_ ' ¥Q '
D = —J'drdr YO D s M ) (3:32)

is the Stoner exchange parameter, () is the exchange-

correlation contribution to the Q potential, m(r) is the
spin density, and

_ 1 afv 2
Y, T) = mg(w e WO G33)

By inserting the contribution  to €., in (3.32), it is
possible to show, similarly to the derivation of (3.29),
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that (7) contains nonmonotonic temperature-depen-
dent contributions I{T)

SO
o = ) (3.34)
in a two-peak situation, and
Is('-rj ~ T
m)' OCH(—ZS—’ W) (3.35)

in a one-peak situation, if SA/dm(r) # 0. The latter con-
dition means that one of the N(E) peaks must be asso-
ciated with the local magnetic moment. Then

In

VKV] - in the one-peak case,

Lo~ (3.36)

A™ -inthe two-peak case.

As was pointed out in Sec. 3.2, in the case of a nar-
row N(E) peak, x(7) has a maximum [and Cy(T) has a
minimum] even in the one-particle approximation.
However, consideration of I(T) as given by (3.34) and
(3.35) [and, similarly, many-particle anomalous contri-
butions to (3.29) and (3.3()] shifts the temperature of
the maximum of ¥ (the minimum of C,) toward the
lower temperatures.

On the whole, screening anomalies change Cu (7T},
%(D), and other properties qualitatively in the same way
as the one-particle effects associated with N(E) peaks
do. However, they extend the domain of existence for
anomalies [for example, in the one-particle approxima-
tion of the d-like N(E) peak model, it does not affect the
observable properties at T = 0 if A # 0}, shift the max-
ima (minima) toward the lower temperatures, and may
alter the mathematical character of the singularity. To
iltustrate the latter assertion and to obtain an idea about
the numerical coefficients in anomalous contributions,
we will consider the case where an ordinary van Hove
singularity occurs at £ (an electronic topological tran-
sition) [134].

The most important physical result one obtains
when one takes into account screening anomalies is the
fact that the singularity in the thermodynamic potential
at 7= 0 and, as a consequence, in the corresponding
observable properties becomes two-sided, albeit asym-
metric. Thus, if a singularity in N(E) has the form

ON(E) = -AJz—E6(z—E) (3.37)

(where z = E, ~ Ej), then the singularity in the £2 poten-
tial, if one allows for the one-particle band contribution
and (3.18), takes the form [134]

30 = {%Azme(z)
(3.38)
4w - 7
+ 753 PTNEDA(-2) " 0(-2),
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where

2
]

T = [{n ko - qle™] (n,kp))

k, is the van Hove singularity point in the nth band, and

the overscribed bar denotes averaging over the Bril-
louin zone with respect to . In the weak interaction

approximation, we have I'= 1.

3.4. Phonon-Spectrum and Anharmonic-Effect
Singularities Caused by Screening Anomalies

Thus far, we completely neglected lattice vibrations.
Meanwhile, electron—phonon interaction in a situation
where the electronic subsystem has excitations with
energies A < E, (or even A = ®, where ® is the char-
acteristic phonon frequency) is a nontrivial and inter-
esting case. The basis for an inquiry into the effects of
electron-phonon interaction is the Born—Oppenheimer
adiabatic approximation (for a consistent derivation of
this approximation for metals, see [138]).

In this approach, one considers perturbations in the
adiabatic smallness parameter k = (m/M)"* (where m
is the mass of an electron, and M is the mass of an ion).
As Migdal [138] showed for the first time, in a layer of
a thickness of the order of & ~ k2Ej, the renormaliza-
tion of the electronic spectrum near Ep is not small
(m*{ m = 14 A, where A is the electron—phonon interac-
tion constant, A ~ ¥). Because, however, this layer is
thin, the effects of electron—phonon interaction make
small contributions in terms of « to such integral prop-
erties as the total energy (and, as a consequence, elastic
constants, etc.) [46]. If, however, a significant propor-
tion of the electron spectral density is concentrated in that
layer (which corresponds to the case analyzed in [135],
i.e, A = @), one might, it would seem, expect the adi-
abatic approximation to fail. True, strong nonadiabatic
effects may well occur in both the phonon and the elec-
tronic spectra in such a case. An example of the former
is the splitting of phonon dispersion curves owing to
hybridization with the excitation of rare-earth ions
associated with the term effects, or the term splitting in
a crystal field; such a splitting, for example, was
observed in CeAl, (see review in [91]). The nonadia-
batic rearrangement of the electronic spectrum in cases
where the width I" of the electronic peak and the dis-
tance A from the peak to E are comparable with @ was
investigated in detail by various methods by Hewson
[1391 and by Hewson and Newns [140]. According to
them, if I and A are smalier than or almost equal to ®
(that is, if a significant part of an N(E) peak lies in a
“nonadiabatic” layer), the peak width can strongly
(exponentially) decrease owing to polaron effects. If,
on the other hand, A or T is greater than 0, the phonon
renormalization of the peak width will be relatively
small,

The anomalies that arise in phonon spectra owing to
electron—phonon interaction in systems with narrow
N(E) peaks near E, were investigated for various spe-
cific classes of such systems, including the A-15 com-
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pounds {118], mixed-valence systems [141], and
heavy-fermion compounds [142].

For purposes of this review, we will limit ourselves
to a general analysis of the one-peak situation within
the simple semiphenomenological consideration
reported in [135] (some of these results were later dis-
cussed by Liu [143] with reference to Ce). We denote
the state that forms an N(E) peak by Iv) and band states
by 1), and take into account electron—phonon interac-
tions of the “hybridization” type

Heg = 3 A (By+bp&ie,+he.,  (3.39)
9 |, v

where b}, and b, are the operators of phonon creation
and annihilation with momentum q and frequency 0%
¢ are the electron creation operators; and A, is the
electron—phonon interaction constant. The phonon-fre-
quency correction 6@, due to the interaction (3.39) is
dal/2wm,,

2
S} = —A (g, ©,), (3.40)

where I1(q, ,) is the contribution to the electron polar-
ization operator due to i 2 Vv transitions. Similar to
(3.39), we can isolate the singular contribution to
I'(g, w,) in the random-phase approximation

) At
(g, @) ~B(@ln [—2—2——-]
A -~
(3.41)

B@) = ¥ [(vlevIwy sce, ).

#

At A ~ ®, the contribution (3.41) cannot generally
be treated in the adiabatic approximation [46]
{I1(q, w,] — TI(q, 0)). All of this contribution to 0, is,
however, small because of the small overlap between
the wave functions v) and ) in B(q) [which is a nec-
essary condition for the N(E) peak to be narrow]. Thus,
in the case at hand, the adiabatic approximation for the
phonon spectrum is satisfied not because the parameter
¥ is small, but because this overlap [that is, B(q)] is
small. Moreover, B(q) ~ I'/W, where T is the peak
width because T is likewise proportional to the square
of the overlap of the functions Iv) and {u). The contri-
bution of “dangerous” electron transitions to ®, appear-
ing in (3.40) and (3.41) softens the phonon spectra,
8w, ~~In|W/A| [see (3.40) and (3.41], but not the
elastic constants Cy because I'(q, 0,) ~ G the singular
contribution to €, is determined by the higher order
interactions (see Sec. 3.3). For specific systems (such
as A-15 compounds), this softening of phonons was
calculated microscopically by Weber {118].

At — A > T, the task of determining the singular
contribution to Tl(q, w,) is formally equivalent to the
problem of the “edge singularity” in X-ray spectra
where, as was first shown by Mahan and, more fully, by
Nosieres and de Dominisis (see {96]), one needs to con-
sider electron—electron interactions of the higher
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orders. Then, according to Mahan [96], instead of
{3.41) we have

a

B 1 wo W
Ilq, 0) = ;Al(q)(_x_‘,[(m) '*”(m) —2],
(3.42)
28, O 5,2
o, = M&J—zz (2I+1) (}f) . (3.43)
iI=0

Here, &, is the phase of scattering at the potential of the
hole that is formed as an electron moves from the N(E)
peak to the Fermi level, and A(q) are the coefficients
related to the screening effect of electrons at E with an
orbital moment /. In the d- or f-resonance model, where
account is taken of scattering only with [ = 2, 3,

Friedel’s sum rule %z (21+1)8, = 1 implies that
!

o = [2(2] + 1)]7; that is, o is positive, but small. In the
case of strong s—p scattering (a small ionic radius),
o. may be significantly greater, o0 = 1/2. The contribu-
tion (3.42) to phonon damping v, is defined by

ImIl(g, ®) ~ |©, - A "6(0, - A). (3.44)

Equations (3.42) and (3.44) imply that, for o > 0, both
Y,(®) and the density of phonon states g() increase as
o tends to A. The singular contribution to g(®) is pro-
portional to |® ~ A|™, with o tending to A, As follows
from the above reasoning, the conclusion that a strong
damping takes place when ® is greater than A as ®
tends to A holds not only for phonons but also for other
excitations in the corresponding frequency interval,
including, for example, local excitations associated
with the splitting of the flevel in a crystal field. It is rel-
evant to note the experimental fact that local excitations
in CeAl; (a heavy-fermion compound) strongly damp
at temperatures down to room temperature in contrast
to “normal” systems, such as PrAl; and NdAl,. This
might be explained on the basis of (3.44) by assuming
that one of the sublevels in the f level in CeAl, is
located near Er, so the local excitation energy is the
same as A (the distance from another sublevel to Ep).
This supposition appears rather natural for heavy-fermion
Systems.

When one takes into account electron~phonon inter-
action, the £ potential receives a contribution defined
by the diagram of Fig. 3.10, where the wavy line repre-
sents Green’s function for phonons [20].

1 Ao
8Q =—TY g, i) —2-2.., @=2nnT
2 qu P T T 3.45)
n=0,=%1.

Vol.76 No.3 1993



284 VONSOVSKI et al.

Then, in view of (3.41), one obtains
1 2 2
3Q = —§Zlq8(q)mq
q

2

EF
2 2
A -

In

coth(oq/ZT
x _—
2‘”@

T odx X
a0y % 21

1 2 Ep _
-3 ZB(q)(Dqlqln (——————A "y ), T=0,
q

Ef| oo
+ TZ45% (346

=Ty B(@)*]1n
q

where 05 is the Debye temperature. Equation (3.46)
implies that anharmonic effects, including potential
anharmonism, may be great at small A, because every
variation 8€2 in terms of displacements enhances the
singularity. :

A rise in temperature should be accompanied by a
broadening of N(E) peaks because of electron—ion
interaction [96], and this results in an‘increase in the
effective values of A: dA/dT > 0. If so, the softening of
phonon spectra should increase with decreasing temper-
ature; that is, peaks should “grow up” in g{®) at ® ~ A
[at high T, such singularities will most likely be masked
by a broadening of N(E) peaks]. Such behavior was
observed in reality in, for example, Chevrel phases for
which the presence of narrow N(E) peaks near Ej is a
typical occurrence [144]. Interestingly, the anharmonic
confribution to the lattice specific heat turns out,
dinA

according to (3.46), to be negative (if A = 1)
n

This agrees with the experimental data on A-15 com-
pounds [1451.

The mean-square atomic displacement (*(7)),
which can be calculated similarly to 882, is

1 B@A B
izm, T=0,
Sy =4 ¢ (3.47)
zrz%?xiin %ﬁ“, T5 0,6,
q

Equation (3.47) implies that if A <€ Eg, then {(?) is
abnormally great. In keeping with Linderman’s crite-
rion of the constancy of (xX7)), this must depress the
melting point T,,. The cause of such an occurrence may
be, for example, the addition of substances with narrow
quasilocal levels near the matrix Ep. Quite possibly,
this relative increase in {(x*) and the enhancement of
anharmonic effects at small A (because of which the
anomalous contributions to {x*) are considerably
greater than to (x*)*) explain the very large displace-
ments of vanadium atoms that Stanndenmann and Tes-
tardi {146] observed in V,Si. According to them, this
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behavior, when interpreted in the language of the inter-
atomic potential, implies that it has two minima.

3.5. The Effect of the Density-of-States Peaks
on the Structural and Magnetic Stability
of Metals and Alloys: Specific Examples

As Secs. 3.2 - 3.4 demonstrated, the approach 1o a
narrow N(E) peak has several consequences. Notably,
this softens the elastic constants and phonon frequen-
cies, accenfuates anharmonic effects, and enhances
both the Pauli spin susceptibility and the Stoner
exchange parameter 1. On the whole, these occurrences
may be construed as the display of a tendency toward
structural and magnetic instability. A qualitative insight
into this tendency can be obtained from simple consid-
erations. The variation of the total energy in the case of
the “reoccupancy” dn, of the electronic states takes the
form

-1
HEo O (3.48)

where n is the number of particles, and p is the chem-
ical potential; in the one-electron approximation
on/dl = N(Ey). Therefore, when N(Ejp) is large, 8E is
small, and the system resides, as it were, in a state of
“indifferent” equilibrium that can be disturbed by an
exchange interaction (thereby resulting in magnetic
instability) and by other contributions to the energy,
leading to changes in the crystal structure. The large
N(Ep) may be of a widely differing origin.

OF =

In the bee phase of iron, for example, ferromagnetism
apparently arises owing to the merger, noted in Sec. 3.1,
of van Hove singularities at the high-symmetry P-N line,
which, according to (3.2), results in the logarithmic
divergence of M(E,) in the hypothetical magnetic phase.
According to the band-theoretic calculations [68], non-
magnetic bee Fe has an N(E) peak near E,. In this case,
Er=0.859 Ry, E,=0.851 Ry, and E,, = 0.848 Ry, that is,
in (3.2), Y= 0.003 Ry. Thus, it is the quasi-two-dimen-
sional character of the corresponding van Hove singu-
larity in iron that leads to ferromagnetism. As to the
4d- and Sf-transition metals, this peak would probably
occur at E, in Ru and Os, which are the analogs of Fe,
or even a little earlier (that is, in Tc and Re), if they had
a bec structure (see the-band-theoretic calculations of a
hypothetical bee phase in Ir in [72]), One may, there-
fore, suppose that the behavior of the N(E) peak associ-
ated with the P-N line in the bee structure at the end of
the corresponding rows of the Periodic System results
in magnetic instability for the 3d metals, where I is rel-
atively large, and in the overall loss of stability by the
bee structure for the 4d and 5d metals, where it cannot
be stabilized at the expense of magnetism. Thus, an
analysis of “geometrical” motifs in the N(E) structure
presented in Sec. 3.1 permits one to add more detail to
the general idea about the increasingly more localized
behavior of d electrons toward the end of the 3d row as
the cause of ferromagnetism in iron [26], and about
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changes in the character of chemical bonding in the
series of d metals discussed in Sec. 2.2.

Dilute Pd-Fe and Pd-Ni alloys give an interesting
example of the increase in the Stoner exchange param-
eter that may be associated with the effects in question.
From calculations of N(E) for these alloys [131]
(Fig. 3.11), one can say that a two-peak situation (that
is, an almost completely filled band peak typical of pure
Pd and an empty Fe impurity peak) exists in the Pd—Fe
alloy and a one-peak situation in the Pd-Ni alloy. The
impurities Fe and Ni in Pd possess magnetic moments,
and one can, according to (3.36), expect that 7 will
increase by as much as —cIn|A| (where ¢ is the impurity
concentration) in Pd—Ni and by a considerably greater
amount (~¢cA™") in Pd~Fe. This difference between the
two systems correlates with the experimental fact [147]
that an almost ferromagnetic Pd becomes ferromag-
netic when alloyed with 2.8 at % Ni or with a mere
0.1at% Fe. The increase in the Stoner exchange
parameter for Pd alloyed with Ni was directly verified
by Ohlsen and Nordberg [148] in their experiments
concerned with the de Haas~Van Alfphen effect.

We now turn to examples demonstrating the
involvement of the above effects in structural instabil-
ity. An interesting example of local instability of elec-
tronic origin is supplied by an analysis of the dynamics
of CuQ chains in YBa,Cu,0; [149]. This system has an
N(E) peak with A = —(.2 eV, traceable to the p states of
the oxygen atoms in the chains; when the oxygen atoms
are shifted by an amount (, the peak diffuses owing to
an increased hybridization with the states of the CuQ,
planes, The simplest model Hamiltonian describing
this situation takes the form

H=YeCiC+Ad"a+AQY (a' C+ Cia)

K 2“ (3.49)
co® P

i
2 2M
where Q and P are the coordinate and momentum of
the oxygen atom, and g is the spectrum of itinerant
electrons; the hybridization of the itinerant (C,) and

localized (a) states is proportional to . As is shown in
[149], for

¥

|Al <A, = Wexp (— ) (3.50)

AN(EHA

(where Wis of the order of conduction band width), the
ion acquires a two-weli effective potential — a fact that
seems to check with the experimentally observed large
displacements of oxygen ions in the chains.

Many-well potentials should apparently arise near
martensitic phase transitions, which, as Kurdyumov
[150] argues, are characterized by relatively 16w barri-
ers for the displacement of atoms. The only “first-prin-
ciples” study, done by Chen et al. [58], confirmed such
a picture for pressure-induced bee~hep transitions in Ba.
The graph in Fig. 3.12 relates the total energy E to tet-
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Fig. 3.10.
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Fig. 3.11. Electronic density of states in Pd, PhygsFegps
and Pbg_gsNig‘gj (borrowedﬁ‘om []31]).

ragonal deformations vy; and additional shear deforma-
tion with a doubled period in the [110] direction that
transform the bcc to the hep lattice. As this happens,
one of the shear moduli, C' = 82E/97%, becomes nega-
tive near the transition (the premartensitic softening of
the constants). Vaks et al. {122] showed that this soft-
ening (likewise observable experimentally) is actually
caused by an increase of the band contribution (3.9) in
bce Ba with increasing pressure because Er occurs at an
N(E) peak. Thus, the martensitic phase transition in Ba
may likewise be regarded as an example of structural
destabilization that occurs because of the density-of-
states effects. Similar effects were observed in Ca and

- Sr [122] and, in a weaker form, in Li, thus explaining

why the phase diagrams of Li and Na under pressure
differ in shape [62].

A number of martensitic transitions are characterized
by premartensitic anomalies either in shear modulus or
in the frequency of phonons with a large momentum g.
An illustrative example of this kind is the softening of C'
in A~15 compounds at 7= 20 - 30 K [117] accompanied
by sudden anomalies in shear modulus and phonon
spectra (see, for example, [151]). These anomalies are
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107.5° I of transverse phonons near q = %Tn'(%’ -;;, 0 on
be? approach to the martensitic transition in NiTi [152]. It
112.5° is natural to assume that the stronger the softening (in
the high-temperature phase), the higher the transition

117.5° temperature Ty, The calculations Anisimov ez al. [131]
did for NiTi-base alloys confirm the existence of a cor-

relation between the approach (or recession) of the

122.5° N(E) peak to {or from) E and the increase (or decrease)
in Ty, upon alloying. This is indirect evidence that the

127.5° proximity of the peak to £, and the softening of phonon

I | ! !
000 002 004 006 008 010 0.12

107.5° |~
bee

1125° F .5

117.5° \‘
122.5° \

127.5° ' ! I
000 002 004 0606 008 010 012

107.5° [‘
bce

112.5°

117.5°

122.5°

127.5° ! L : =
000 002 004 0.0 008 0.10 0.12

Fig, 3.12. Contour maps of the calculated total energy of Ba
for a bee—hep transition. The variable along the axis of
abscissas represents the displacement corresponding to a
phonon of the £y branch at the Brillouin zone boundary

{point Ny in units of J2a, where a is the edge of the unit

cube. The variable along the axis of ordinates is the angle of
shear deformation. The energy (in Ry) is reckoned from the
energy of the bee structure. The bee-hep transition is shown
to occur upon compression. atomic volume £2y (reckoned

downward) is 421.771 a.u., 334.572 a.u.,, and 287.398 a.u.
{according to {58]).

obviously of electronic origin (related to specific fea-
tures in the band structure) and were interpreted both
within the Gor’kov model [116, 117] and on the basis
of microscopic calculations [118]. Another interesting
example of “pretransition” anomalies is the softening
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spectra are interrelated events.

On the whole, the issue of electronic mechanisms
involved in or responsible for structural (including
martensitic) transformations in metals and alloys
appears to be among the most interesting and important
in the theory of such transformations. At present, how-
ever, little has been done to investigate it.

The subsequent chapters deal with the properties of
strong electron—electron interaction systems where the
problem of whether electrons show localized or itiner-
ant behavior is especially acute. Indeed, one may even
question the validity of the Bloch picture for some
states. We will begin our discussion of this group of
matters from the problem of localized magnetic
moments in ferromagnetic metals.

3.6. Concluding Remarks

To a “pure” theorist, the inclusion of this chapter in
a review dealing with the problem of localized and itin-
erant behavior of electrons may at first glance appear
far-fetched, for all phenomena in question are
described in the language of Bloch (band) states. Even
narrow electronic density-of-states peaks, intuitively
associated with localization in real space, may appear
to be due to the merger of van Hove band singularities
in consequence of lattice geometry. The demonstration
of this (see Sec. 3.1) is among the most important
results of this chapter. One must, however, reckon with
the fact that experimental physicists and metal scien-
tists often use the terminology related to electron local-
ization in an attempt to give a qualitative description of
anomalies in the properties of many transition-metal
alloys and compounds (tungsten-rhenium, titanium-
iron, etc.). In this connection, we showed that it would
be more appropriate to use the language of singularities
(electronic density-of-states peaks). When located near
the Fermi level, such singularities give rise to anoma-
lies in physical properties. This chapter briefly
described specific mechanisms involved in this rela-
tionship. Thus, the results of this chapter are of interest
above all for an interpretation of specific experimental
findings.
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4. LOCALIZED MAGNETIC MOMENTS
AND MAGNETISM OF THE TRANSITION METALS
IN THE SPIN-DENSITY-FUNCTIONAL METHOD

The problem of magnetism in the iron group
metals is discussed. The phenomena in ques-
tion reveal most distinctly both localized and
itinerant traits in the behavior of the same 3d
electrons. Moreover, while the characteristics
of magnetic excitations and exchange interac-
tion in the ground state of ferromagnetic met-
als can be calculated quite accurately within
the present-day band theory, the magnetic and
electric properties observed at finite tempera-
tures and, especially, in the paramagnetic state
are, to a considerable degree, caused by the
presence of localized magnetic moments.

4.1. The Problem of Magnetic-Moment Localization
in the Iron Group Metals

In Secs. 2 and 3, the localized and itinerant behavior
of electrons in a metal was mainly discussed in connec-
tion with their lattice properties. As noted in the intro-
duction, historically this problem goes back to attempts
to gain insight into the contradictory properties of the
magnetic metals of the iron group.

Basically, the snag is that some properties of these
metals can be understood only if their valence electrons
are assumed to have a “band” character, while others, if
the electrons are “atomlike.” Among the properties in
the former group, one may above all mention the large
linear term in the heat capacity and the results of studies
into the de Haas—Van Alfphen effect, definitively demon-
strating the essential role of d electrons in the formation
of the Fermi surface and the density-of-states at £ [26].
In the latter group, the most outstanding are properties
such as the Curie~Weiss law of magnetic susceptibility;
the temperature, momentum, and energy dependences
of neutron scattering cross sections, which are most
conventently interpreted if one assumes the existence of
localized magnetic moments; photoemission [27, 153]
and optical data on the spontaneous “spin” splitting at
above the Curie point T; and, finally, data on the Fermi
surface at elevated temperatures obtained by the positron
annihilation method [154]. Even the Curie-Weiss law is
usuzlly accepted as confirming the existence of local
magnetic moments [26, 28, 155], although some inves-
tigators hold opposite views [24, 156] (not backed,
though, by estimates of microscopic parameters). How-
ever, the observed spontaneous spin splitting poses
even more radical difficulties for the acceptance of a
purely band picture. As is noted in the introduction, the
latter is in effect based on Landau’s theory of Fermi lig-
uid, in which the pivotal postulate is the existence of a
reciprocal one-to-one correspondence between parti-
cles and quasiparticles [18]. The band theory assigns to
each state of a particle a quasimomentum k, a band
index n, and a spin projection ¢, and in the paramag-
netic state, the energy cannot depend on ¢ from sym-
metry considerations. Therefore, the splitting of the
energy spectrum above T suggests the existence of
a quantum number other than @, that is, the absence of
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a reciprocal one-to-one correspondence between parti-
cles (labeled, among things, with a spin index as well)
and quasiparticles.

Recently, a quantitative approach was proposed
toward the problem of local magnetic motnents in mag-
netic metals. Based on calculations of a real electronic
structure, it is the subject-matter of this chapter.
To describe the spontaneous spin splitting and other
anomalous properties of the paramagnetic phase, we
use an “alloy analogy” traceable, in effect, to Slater’s
idea [38] and developed in detail within what are
known as spin-fluctuation theories in Hubbard’s model;
they are reviewed in detail in [28]. With this approach
most consistently set forth by Gyorffy er al. [36], the
problem of local magnetic moments is tackled in two
steps. First, one considers the electronic structure of a
metal with a “frozen” distribution of local moments on
lattice sites, then one averages the distribution of these
moments (in, for example, the coherent potential
approximation). At first glance, this procedure is quite
justified owing to the existence of a small parameter,
Tc/W (where W = 5 eV is the width of the energy
d band), in terms of which the dynamics of spins may
be taken to be slow (an analog of the adiabatic approx-
imation of electron—phonon interaction).

As noted in Sec. 3.5, however, the d metals seem to
owe their ferromagnetism not to the entire d band, but
to a relatively small group of states (arranged along the
PN line of the Brillouin zone in the case of bec Fe).
They form an N(F) peak with a width T of a few tenths
of an electron volt, so T./T" is not at all small. There-
fore, we believe, the alloy analogy remains rather
untenable. Moreover, such a description itself is rather
heuristic in the sense that it does not yet suggest how
one can improve the approximations used by, for exam-
ple, considering higher order effects in terms of some
explicit small parameters,

Thus, despite its sixty-year history, the problem of
local magnetic moments still exists and, we believe, is
far from being resolved. On the other hand, the head-
way recently made in its understanding is impressive
indeed. It is, above all, associated with the development
of microscopic approaches based on calculations of a
real electronic structure within what is known as the
spin-density-functional method.

4.2, The Formulation of the Spiﬁ-Density-F unctional
Method and Conditions for Spin Polarization

As already noted, the current stage in the evolution
of solid-state theory is, in particular, characterized by
the possibility of calculating various crystal properties
from first principles, that is, by specifying solely the
position and charge of atoms in the lattice. This possi-
bility is achieved with rapid advances in computers and
computational techniques. The underlying ideology of
the latter is provided by the spin density functional
(SDF) formalism [29 - 31], usually combined with a so-
called local approximation (the LSDF formalism).
With this method, one is in a position to “split” the task
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of describing the properties of a system of interacting
electrons in the external field of the lattice of nuclei into
two subtasks, one of calculating the properties of a spa-
tially homogeneous system of interacting electrons
(which can at present be handled by, for example, the
quantum Monte Carlo method [23]), and the other of
solving a single-particle Schrodinger-type equation with
a certain self-consistent potential (the Kohn—Sham equa-
tion [31]). Its idea goes back to Slater’s Xo-method [38].
Taking a cue from Gunnarsson and Lundquist [30] and
from Perdew and Zunger [158)], the general scheme of
the LSDF method can be set forth as follows.

Consider a many-particle system described by the
Hamiltonian

A=T+0,+V; 4.1
- 1 +
7= —ﬁfdrwu(r)vzwa(r); (4.2
1 + + 1 '
Uee = 5 [Ardr' V0w () oy VsV, (0); (43)
V= [drVo @iy, (4.4)

where W, (r) and y(r) are the field operators of elec-
tron creation and annihilation at the point r with a spin
projection & = * (summation over the repeated spin
indices is presumed); Voo(r) = V(r)8,5 — B(r)G,y is
the external potential (possibly including the external
magnetic field B(r) that acts upon the spin variables);
T, U, and V are the Hamiltonians of the kinetic
energy, Coulomb interaction of electrons, and interac-
tion with the external field, respectively (use is made of
atomic units, i =m =|ef{=1). Let [$) be the exact wave
function of the ground state ((¢{} = 1), and

Pop® = @ W)y () D) 4.5

is the single-particle density matrix. The rationale of
the SDF method is that the ground-state energy
E = (®| H|®) is regarded as E [P], that is, as a func-
tional of pg(r). The latter is sought as

Pap® = D SWi OV, (r)dr, (4.6)

where 0 < f, < 1, and y,,(r) is so far an arbitrary
orthonormal set

Y Jarvimw, o = 5, 4.7

The constraints imposed on f, arise from the proper-
ties of the density matrix (all of its eigenvalues must
range between 0 and 1) [157]. In explicit form, the
functional E[p] is written as

E[p] = TIPI + VPl + Uy [Pl #E. [P, (4.8)
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where

T(p) = - SA[AVEOVY 0, 49)

VIpl = Y [dr Vo (m) vh®V,®,  (4.10)

n(rn(r’)

TR (4.11)

a1 .
U, [p] = ﬁjdrdr

nr) = Trpir) = D AYLOWD,  @12)

and Uy is the classical electrostatic energy of the elec-
tron gas of density n(r). The term E,, is the exchange-
correlation energy. Of course, unless a specific method
of calculating E,, is suggested, the problem is in no way
simplified.

In a homogeneous electron gas, the total energy E
and, in consequence, E,, are related to pg through the
invariants

n = Trp, m = |Trpd| (4.13)

(the charge and spin density, respectively) of Pauli’s &
matrix, At present, E,, in a homogeneous electron gas
can be calculated most rigorously by what is known as
the quantum Monte Carlo method. Here, the ground
state energy is calculated by a direct variational
method, which involves integration over the coordi-
nates of a large number of electrons, using an antisym-
metric trial function that takes care of correlation
between their positions {23]. The numerical depen-
dences E(n, m) thus obtained are then approximated by
an analytical expression (for the nonmagnetic case, see,
for example, [158]). The LSDF approximation postu-
lates (and this is a crucial point) that the exchange-cor-
relation energy density at the point r is a function of
n(r) and m(r} at that point, and functionally this depen-
dence takes the same form as in a homogeneous elec-
tron gas

E, = [drn()e, (n(x), m(n), (4.14)

where €,, is the exchange-correlation energy in a homo-
geneous gas of density n and of spin density m per par-
ticle. Then the relation (4.8) is completely defined, and
one finds Y, (r) and then £, so as to minimize the total
energy or, more accurately, the thermodynamic poten-
tial {2 = E — UN (where j is the chemical potential and
N is the number of particles). Next, one inserts (4.9) -

(4.11) and (4.14) in (4.8) and varies E(p) for a fixed f, -

and subject to the additional condition of the orthonor-
mality of the function y,,(r). As a result of tedious, but
standard manipulations (see [158]), one obtains equa-
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tions for y,,(r), usually called the Kohn—Sham equa-
tions

12 . n(r') .
{-5V'+ J'dr oSt Vap Vieh w4
= EWyo(), @4.15)
where
ch . 8E"Jcc‘ _ 0 [naxc(n’ m)]
aﬁ(l‘) - apaﬁ(r) = an b
(4.16)
1 9 [ne, (n, m)] e
t o S THPD)

is the exchange-correlation potential. If, then, one var-
ies Efp] with respect to f,, it will, as is shown by
Perdew and Zunger [158], be the same as the Fermi dis-
tribution function of €, for T=0

1, g, <,
fi= 0, & >, 4.17)
and
_ O 4.18
Ev i '8}-: ( . )

is the energy of a quasiparticle in the sense of Landau’s
theory of Fermi liquid [18). For purely formal reasons,
it is convenient to express the total energy E as a sum
of the energies of occupied states, E,,, and a remainder
of what are called “doubly counted” terms E,,

E=E,~Eg; (4.19)
E, =Yg, (4.20)
A%

. OE . .
E, = UH+IdrTr|:p o ] -E,

d(ne,) d (ne,)
p +m py —ng }.

In the absence. of an external magnetic field
(Vg = VOyp), equations (4.15) always have so-called
spin-limited solutions: v = A (where A are the orbital
quantum numbers and 6 =), Y, = 8,4, and g, =g,
(Here, pog = 1/2nd,5, m = 0). Sometimes, however,
there may be an instability in spin polarization. If, in the
case of a self-consistent solution of the nonlinear equa-
tions (4.15) [subject to (4.16), (4.13), and (4.6)], one
specifies for the initial iteration g, #€,_and y,, %y,
these differences in the self-consistent process will
build up, tending to certain finite values. Such a situa-
tion arises if the obvious loss in E,, (in the absence of
an external magnetic field) in consequence of spin
polarization is made up for by a gain in E,,. The point
is that, by virtue of Pauli’s principle, the wave function
@ of a many-electron system is antisymmetric under
the permutation of the spatial coordinates of any two
electrons with parallel spins. For this reason, such elec-

(4.21)

=UH+jdr{n
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trons are, on average, spaced wider apart than electrons
with antiparallel spins, and this leads to a gain in the
Coulomb repulsion energy upon spin polarization.
Consider, as an example, the most important case of
spin polarization along a certain axis, say, z axis. Then

b=(n+0), A e )
0 n_ 0 v*®

and n, = 1/2(n £ m). A “Fermi hole” of radius ~(n,)-"*
then comes about around each electron with spin %, and

this leads to a gain in energy, V;*~ (n,)"" [38]. With

large parameters r, = (4n/3n)"3 (small n), this gain
upon spin polarization can exceed the loss in kinetic
energy [see (3.48), where &n, = m]. As Cepetley and
Adler [23] demonstrated, in a homogeneous electron gas,
this can happen at unattainably high values of r, ~ 102,
Because E,. seems to be a smooth function of r,, one
may hope that if one uses the local approximation, E,,
will be of the same order of magnitude in an inhomoge-
neous gas as in a homogeneous gas for r; corresponding
to an average density n{r), At the same time, the real
values of N(E;) may be considerably greater than in a
free-electron gas with the same r, (see Sec. 3.5), thus
leading, in accord with (3.48), to a substantial decrease
in 8E. In fact, it is this occurrence that makes ferromag-
netism possible at the observable values of r,. Numer-
ous band-theoretic calculations under the LSDF
approximation (see, for example, [68, 1151) do explain
the existence of ferromagnetism in Fe, Co, and Ni, anti-
ferromagnetism in Cr and Mn, and the absence of spon-
taneous spin polarization in the other d metals.
The LSDF method can be used not only to calculate
ferromagnetic and antiferromagnetic polarization in the
entire crystal, but also the magnetic moments of impu-
rities. As a rule, the results of such calculations show
good agreement with experiment [159].

4.3. Exchange Interactions, Magnetic Structure
Stability, and Magnetic-Moment Localization

We now turn to spin fluctuations, that is, magnetic
excitations above the ground state of a system, using
the LSDF approach. As early as the 1950s, Herring and
Kittel noticed the important fact that in any ferromag-
net, with either localized or itinerant electrons, spin
waves exist and any weakly inhomogeneous spin den-
sity distribution can be described with the aid of
Heisenberg’s efficient classical Hamiltonian

H,=-YJee, (4.23)
if

where ¢; is the unit vector in the direction of magneti-
zation at the ith site, and J;; are the exchange parame-
ters [26, 155, 160]. Liechtenstein et al. [37] and
Liechtenstein et gl {161} demonstrated that in the
LSDF method the latter can be calculated, no matter
what specific model one chooses to represent the nature
of ferromagnetism. From a technical point of view, the
pivotal point in [37] and [161] is the use of the “local
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force theorem” according to Andersen [162, 34],
extended in [37] to the case of spin polarization. By this
theorem, given the first-order variation of charge and
spin density dn(r) and dm(r), the total-energy variation
OE is equal to 8*E,, for a fixed self-consistent potential;
the variation 8,E,, is exactly balanced out by variations
of the latter [see (4.19) and (4.21)]:

8E = 6*E,, (4.24)

To prove (4.24), we first calculate the variation of
the sum of single-particle state energies E,, caused by
the variation of the potential in (4.15)

8,E, =Y £y [dryl,m
v af

dr , xe
x {Jl_r_:;.l. 8n(r')d g+ 8Vyp} Wop(r) (4.25)

= jdrdr-w +jdr'rr {(pSV™1.
v

The first term in (4.25) is the variation of Ug[n(r)1, (4.11).
In view of (4.16), the integrand in the second term can
be written as »

o (ne 3’ (ne
Tr {pV*} = o ;c) ndn + (n 2“) mdm
n om
3’ (ne
+ %’;ﬂ (mdm + ndn) (4.26)

d(ne) .
+ Zﬁwpmﬂﬁ (éoug'rr (3p)).

Direct calculation will prove that the last term in (4.26)
vanishes. Then, substituting (4.26) in (4.25) and com-
paring the result with the result of varying (4.21) yields

8,E,, = 8E,,. (4.27)

Thus, the variation of the sum of occupied-state ener-
gies caused by changes in the self-consistent potential
is exactly made up for by the variation 8E,, which
proves (4.24). The variation 8E,, can be expressed in
terms of changes in the integral [n(¢)] and differential
[N(g) = dn(e)/de] densities of states

By

EF
8'E, = [deed*N@) = - [des*n(e),  (428)

where account is taken of the fact that magnetic excita-
tions do not change the number of particles.

The specific exchange parameters in (4.23) can be
calculated by the multiple scattering method (the KKR
method, see, for example, [52] and [165]). With this
method, the description of the atomic state at the ith site
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in terms of the single-center scattering matrix 7; is nat-
urally separated from that of the lattice structure by
introducing a Green’s function for an “empty” lattice,
G; (all quantities are matrices in a space of spin quan-
tum numbers oL =X or 'N, and orbital quantum numbers
L=1Im). Then [52, 165]

n(e) = ngle) + %ImTr In 7). (4.29)

Here, ny(g) is the integrated density of states in the
empty lattice and 7(g) is the total scattering matrix (the
scattering path operator), defined by the matrix equation

(Jr“’),.fdot“,.,u,ﬁ = (t;l)m.ﬂa,.jmG,.L,,.L.aus. (4.30)

To calculate J;; from (4.23), consider the disturbance
associated with the rotation of e, ¢; through small
angles +08/2 from the direction of magnetization in the
crystal. Then, by (4.23), we have

S, = J, 0% (4.31)

On the other hand, the 7 matrix on the ith site has a
spinor structure [164]

L= % (ta +12) + %(fn ~ 1, )(e;5), (4.32)

determined by the requirement that it should be diago-
nal (with eigenvalues £ and ¢,), so that the quantization
axis is directed along the vector ¢,. From (4.32), one can
find the changes 8¢, 8t; caused by changes Je;, de;. Note
that with the perturbation in question ém(r) ~ 62 ~ 8E,,,
so in calculating 8E,, by the LSDF method, one may
use the local force theorem (4.24). Then 6E,, can be
expressed in terms of 8%, 8% by (4.28) - (4.30). By
comparing the result with (4.31), one obtains an exact
expression for J;; in the LSDF method

Ei“
o ) )
Jy = in jdeTr,_{ (7 =) T:j (tj; ~ ) ;':;} ,(4.33)

i

where all terms refer to the ground ferromagnetic state,

A really observable characteristic for weakly
excited magnetic states is the spin stiffness tensor D,
(for cubic structures, it reduces to a scalar) defined
according to a phenomenological theory {155, 160] by

y |
8E.= 5 Duslall (4.34)

Here, M, is the saturation magnetization in Bohr mag-
netons and q is the wave vector (the inclination of the
vector e; is qR,, where R, is the lattice vector). By con-
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sidering such a perturbation in the LSDF method, one
can derive, similar to (4.33), the expression :

I ot
D, = m—ogj‘de

4 . 0T& ., . 3TK
XImTrL{(tri-*ﬁl)—a—k:‘(trl“fi]) 3%, '
_ 2
= E"I";Z‘IﬁjRjaij’ (4.35)
)

which agrees with (4.33) and (4.23). To simplify mat-
ters, we consider here a case where all atoms in the lat-
tice are the same, 0 is the site with R, = 0, and the sum
of kin (4.31) is taken over the Brillouin zone. In theory,
the expression (4.35) is as exact as the multiple scatter-
ing method (4.30) itself and the local force theorem,
and admits a direct comparison with experiment. As an
example, we give the results Liechtenstein e al. [37]
obtained for D,, = D§,, in o-Fe and Ni by (4.33) and
(4.35). They used the cluster multiple scattering method
and considered two coordination shells to obtain:
D =294 meV A? for o-Fe and 386 meV A? for Ni (the
experimental values are 280 and 400, respectively).

Figure 4.1 gives calculated results from [161] for
D(Eg) in a-Fe. Of course, the value of this function has
adirect physical significance only for a real value of E;
yet, the dependence of D on E, is rather instructive
from a qualitative point of view. This dependence
reflects the tendency of ferromagnetism to instability
(D < 0) when the band is about half filled, and toward
stability near the edge of the band. Naturally, it is
assumed that spin polarization as such does exist. Qual-
itatively, such a tendency exists among the magnetic
d metals (and alloys): Cr and Mn are antiferromagnets,
while Fe, Co, and Ni are ferromagnets. We will go back
to this tendency a bit later in connection with the hep
phase of Co.

An important characteristic of exchange interac-
tions is the total exchange interaction parameter. Intro-
duced in [166], it defines the interaction of a given site 0
with all of its environment J, To calculate it, one
should first calculate the change in energy as the vector e,
at the selected ith site rotates through a small angle 6 rel-
ative to the magnetization of the crystal. Then [37, 166]

EF
it 2 _ 1 -1 -l
Jo= lim [BE©)/6] = - jdm [ -6D
- (4.36)
T - - g - - :
X (Too— Tioe) + (g1~ 15) Tog (fgs — 1) Tloo b
If in (4.36) one passes to the limit of an isolated atom
(Gy = 0, Ty — 7o), then J; will tend to 0. Thus, the
exchange parameter J, characterizes “intersite”

exchange interactions and is only indirectly related to
Hund’s “intrasite” exchange that determines the split-
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D, meV A? Er
400
200+
O H T i F I H [
~4 -2 0 E,eV
~200-
~400-

Fig, 4.1. Spin-wave stiffness in the bee phase of iron; calcu-
lated as a function of Fermi energy [161].

Jo, mRy EF
Fe
15 - Co

i Ni
S

e\

-03-02 0 0.1 ERy

8-

154

25

T

Fig. 4.2, Exchange integral J, plotted against Fermi
energy for impurities (Fe, Ni) in the hcp phase of cobalt and
Jor metallic cobalt [167],

ting 75, — f5; . Moreover, using (4.30), (4.33), and (4.36),
one can show that

Jo= 3Ty (4.37)
j#0
is in full agreement with (4.23). From a purely compu-
tational point of view, however, (4.36) is much simpler
than (4.37) or (4.33). Notably, it permits computation
of J, not only for pure metals, but also for impurities.
The values of J; calculated by Anisimov et al. [167] for
the hep phase of Co and for the impurities Fe and Ni
in Co are given in Fig. 4.2.

The negative values of J; imply the instability of the
chosen magnetic configuration toward spin rotation, as
they lead in this case to a reduction in the total energy.
For example, the results given in Fig. 4.2 indicate that
when the impurity states are filled almost half full, the
impurity spin tends to be antiparallel to the magnetiza-
tion of the matrix. The results calculated for pure cobalt
demonstrate the already discussed tendency of mag-

Vol 76 No.3 1993



292 VONSOVSKIl et al.

Te, K

MA——
600/ A
400+ oA

200} -

i !

l 1 i 1 1 1
Pd 0.3 0.5 0.7 Ni
Fig. 4.3. Concentrational dependence of the Curie temper-
ature in Ni-Pd alloys: triangles, experiment; open circles,
calculation [37].

M, Py SE/S0x 100 M, iy SE/88 x 1000
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Fig. 4.4, Magnetic moment in Bohr magnetons (the full
curve) and the first derivative of energy with respect to
angle of rotation in Ry (the dashed curve) according to cal-
culations in [168]: (a) Fe, (b} Ni.

netic metals to antiferromagnetism as their states
approach the “half-full” mark.

In calculating an equilibrium magnetic structure, a
necessary (but not a sufficient) condition for the
selected structure to actually correspond to an energy
minimum is the convergence of the self-consistency
procedure to nonzero magnetic moments, which
implies stability (at least local) with respect to changes
in the magnitude of magnetic moments. As to the con-
dition J, > 0, it implies stability with respect to their
small rotations. Thus, the calculation of J; is an effi-
cient tool for a theoretical inquiry into the stability of
magnetic structures. An illustrative example is the the-
oretical proof derived by Anisimov ef al. [167] in cal-
culating the stability of experimentally observed
magnetic structures in the magic square

MnPt;(FM); MnPd;(AFM);
FePt;(AFM); FePd;(FM).

In all of these compounds, calculations yielded J; > 0
for “regular” and J; < 0 for “irregular” structures.

THE PHYSICS OF METALS AND METALLOGRAPHY

By using both the molecular field and classical spin
approximations, the Curie temperature To can be
expressed in terms of J, as

2
TC - §
Although this expression is not very exact, it yields use-
ful estimates of T, for the pure metals and alloys for
which the T'matrix can be determined in, say, the coher-
ent-potential approximation. As an illustration, Fig. 4.3
gives calculated [37] and experimental concentrational
dependences of T(x) for disordered Ni, _,Pd, alloys.

Thus, if one limits oneself to weakly excited states
of a magnet, one can calculate their properties without
resort to any model considerations, that is, with almost
a complete disregard of the degree of localization of
“magnetic” electrons. Information about the latter can
be derived by considering excitations with rotations of
magnetic moments through finite angles [168]. To
prove this, let us consider the “impurity” problem for
the case where at some selected site 0 the vector €, is
turned through an angle 8 relative to the z axis [this is
specified in terms of the spinor structure of the 7 matrix
by (4.32)]. Suppose the vector &, is turned through a
small angle 88, Then Se, = 86 X e, and, by virtue
of (4.29) and (4.30), the variation of the integrated den-
sity of states n(e) takes the form

J, (4.38)

3n(e) = }15 ImTr; , . (3InT(e))

= LTe, , o[-T08T @) (439)

- —%ImTr,-, Lo [Toa®3 ©)].

Inversion of the matrix (4.32) readily yields

o~

1, a0, -~ i, - -
fo = 5ty +00) + 5 (g — 1) (& 8); (4:40)
5iy = %(tSi ~£5) 0e,- 6= (86 %Ay -8, (441

where A= % (:g; m:gi) e,. By presenting Twl(®) in
spinor form
T() = T € +TH ©8, (4.42)

and substituting (4.41) and (4.42) in (4.39) and then
in (4.28), one finds the expression for the variation of
total energy with the angle of the moment

EF
8E 2 B,
55 = 2Im [deTr, [R@xTy' @],  (443)

By applying self-consistent solutions of the impurity
problem for different angles 8 of the vector e, with
respect to the direction of magnetization of the crystal,
it is possible to determine the angular dependence of
the magnetic moment for site 0, M«(8) and, by (4.43),
the dependence 0E/96. If the Heisenberg model is
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N, 1/Ry per atom
60 @ 30

60+ 30r
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E, Ry

Fig. 4.5, Electronic density of states for an Fe atom in a metal with the magnetic moment turned through 0 = 0 (a), 8 = 0.2x(b),

0=0.357(c), and 6 = 0.5 (d).

applicable not only at small deviations (completely
localized magnetic moments), then

My(6) = const, 3E/d0 = 2Jsin6. (4.44)

The angle 0, at which noticeable deviations from (4.44)
are observed, is exactly the one that can serve as a
quantitative measure of whether the behavior of mag-
netism in a given substance is focalized or itinerant.

Figure 4.4 gives the results that Turzhevskii et al.
[168] calculated by the LMTO method (a linearized
version of the KKR method) for Fe and Ni. In each
instance, there is a critical angle 0., at which M, van-
ishes. At 0 < 0, the dependence dE/a0 begins to devi-
ate strongly from a sinusoid. In quantitative terms,
however, the situation for Fe and Ni is entirely differ-
ent. Whereas for Fe, 0, = 0.7x, in the case of Ni, the
relations (4.44) are severely violated even at 6 ~ 0.2 or
0.37% (and 8, = n/2).

Deviations from the Heisenberg behavior at large 8
are traceable to the fact that at such angles significant
changes occur in the atom’s electronic structure itself
(see the corresponding local density-of-states graphs
shown in Fig. 4.5 after Turzhevskii ef al. [168]).

Thus, in Ni, the magnetisim is far more “band-type”
than in Fe. One will draw the same conclusion when
one considers localized magnetic moments in the para-
magnetic phase of these metals, which we proceed to
do in the next section.

4.4. Spin Splitting and Localized Magnetic Moments
in the Paramagnetic Region )

The problem of localized magnetic moments in the
paramagnetic phase of the iron-group metals was
clearly stated and partly solved within the spin-fluctua-
tion theories proposed by Hubbard, Hasegawa, Moriya,
and other physicists in the late 1970s. These theories
are reviewed in detail by Hohenberg [29]. Before we
proceed to consider the problem within the framework
of the LSDF method, it is worthwhile discussing their
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approaches at least in brief. As a rule, the spin-fluctua-
tion theories are formulated within the framework of
Hubbard’s model {4], which takes into account solely
the Coulomb electron repulsion. U at one site
H=Y tcca+UY nyny, (4.45)

ijriovjo
ijo

where ?:;, and ;4 are the electron creation and annihi-
lation operators at the ith site with the spin projection
O; Aig = €480 the primed sum is taken over i #j. By
the functional integration method, one can reduce
the many-particle problem described by the Hamilto-
nian (4.45) to the problem of motion of a system of
noninteracting electrons in random fields that fluctuate
in space and time.

To demonstrate, suppose the Hamiltonian of a large
canonical ensemble H = H — uN can be written as

S A2 ‘
= HomzauQa. (4.46)

Here, IEIO is the Hamiltonian of noninteracting elec-
trons, Q are the operators bilinear in cj, and ¢, and
a, are numerical factors. Then, using the Hubbard-
Stratonovich identity

cxp/iz = j %exp (~E +2E4), @447
e i

valid for any operator A, one can write the statistical sum
Z=Trexp(~BH) (B = ") as a functional integral [28]

B
Z= jl’IDE,a(r)exp {—J‘d'cz
0 a

B
X Tr {exp (mﬁﬁo) T.exp ‘:—ZZJ.dTS“(T) Qm('c) } s
@

£(1)
G @8)
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where T, is the chronological ordering symbol, and

G (D = ¢ 0™, The expression under the trace

sign (Tr) in (4.48) is nothing more than the statistical
sum of the system of noninteracting electrons in exter-

nal alternating fields, £,(7), adjoint to the operators Qs

As a rule, one uses what is known as a statistical
§

approximation where £,(T) = £, = jd'ce(’r)/ B. This is

[¢]
formally equivalent to neglecting the noncommutative

property of the operators (,(t) at different instants of

time or, if O are spin operators, to replacing them by

classical vectors. Then the results come to depend on
the choice of a particular representation of (4.46).

In the Hubbard model, it is most convenient to use
the representation

UN haia = 3 0 -UY Gm)"s  (449)
i i i

where m; is an arbitrary unit vector, #; and §; are the
operators of the total number of particles and of spin at
the ith site. Ordinarily, charge density fluctuations are
neglected. This is equivalent to using the saddle-point
method in (4.48) over the field adjoint to the operator 7i;.
Following that, the procedure reduces to the renormal-
ization of the chemical potential. As a result, from (4.48)
we obtain [28]

ZB NS2 |3 57 -
- () e
Z[&] = Trexp {~-BHIZ]},

Hig) = Y (t;—18,) Eialis+ O &858 uplsp.
ija ; (4.51)
We thus reduced the problem of calculating Z for a sys-

tem of interacting particles in the crystal to finding Z
for a certain disordered alloy with random magnetic

fields £, (the alloy analogy). The latter can be further

reduced to calculating the average electronic Green’s
function, and this can 1n turn be calculated in, for exam-
ple, the coherent potential approximation [165].

As is noted in Sec. 4.1, the existence of localized
magnetic moments in a paramagnetic phase is most
unambiguously confirmed by the Curie-Weiss law for
magnetic susceptibility %, on the one hand, and by spin
splitting in the energy spectrum, on the other. Let us
explain the relationship between the two phenomena in
terms of the alloy analogy.

In the functional integration method, ¥ can be esti-
mated [28] as

x~ L (4.52)
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Then, if the probability distribution for the length of the

N . N 52
vector £, has a maximum at € =0, then (€ ) ~ T{(Gaus-
sian fluctuations) and ¥ = const. If, on the other hand,

& 22
it has a maximum at |§ = €,#0, then ) ~ £,/T
(Curie’s law). In the latter case, the mean Green’s func-
tion will have two poles spaced 2g, apart (at least
within narrow bands), in agreement with (4.51).

Note that the Curie-Weiss law for %(7) admits, in
theory, alternative interpretations arising from specific
features of the band structure [24], interaction with
phonons [156], etc. By contrast, spin splitting observed
in the energy spectrum at T' > T¢ [25, 27, 153, 154]
{where T, is the Curie temperature) appears to bear out
the existence of local magnetic moments unambigu-
ously. From the standpoint of the general many-particle
quantum theory, this is a very crucial fact — it implies
the violation of the fundamental postulate in Landau’s
theory of Fermi liquid [18] about a reciprocal one-to-
one correspondence between particles and quasiparti-
cles. Indeed, whereas the state of particles (electrons) is
characterized by a quasimomenturm k and a spin projec-
tion @, in the case of quasiparticles, ¢ must be replaced
by some other quantum number; otherwise no splitting
of the spectrum would occur in the paramagnetic phase.
In this sense, the very term “‘spin splitting” appears
somewhat arbitrary. Moreover, the strong spatial inho-
mogeneity of spin density in the presence of localized
magnetic moments implies the inapplicability of the
condition ¢ <€ k,, where g is the characteristic electron
scattering momentum.

The alloy analogy can be readily extended from the
Hubbard model to real calculations in the LSDF
method [30]. (The idea of the alloy analogy seems to
have been advanced for the first time by Slater {38].)
With it, one models a paramagnet by an “alloy” in
which half of the atoms has upward-directed magnetic
moments and the other half, downward-directed mag-
netic moments. Then one carries out a self-consistent
calculation by the coherent-potential method. While,
according to [36], this leaves the magnetic moment in
o-Fe almost unchanged in comparison with the ground
state (1.9 ug and 2.2 L, respectively), in the paramag-
netic phase of nickel, M, is negligibly small. This fully
checks with the conclusion drawn in the previous sec-
tion about the comparative localization of magnetic
moments in Fe and Ni. Note that the calculation by
Gyorffy et al. for a-Fe (but not for Ni} gives in the para-
magnetic phase not only a nonzero M, but also a non-
zero spin splitting, Experimentally, this was also
observed in Ni [153, 154]. In this respect, the theory set
forth by Gyorffy et al. [36] is not satisfactory enough.

Thus, the degree of magnetic-moment localization
is a problem that can be solved in quantitative terms for
each specific metal. At the same time, the influence of
local magnetic moments on the energy spectrum, ther-
modynamic, and kinetic properties of an electron liguid
remains a fairly complex question. It is part of the more
general problem that has as its objective to describe
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strongly correlated systems. That is what will be taken
up in the next chapter.

CONCLUSION

The magnetism of the iron group metals is a phe-
nomenon in which the dual (localized versus itinerant)
nature of electrons in a metal stands out with especial
clarity from an experimental point of view. As to the
purely band-theoretic approach, it covers important
traits of the d metals, such as the participation of d elec-
trons in the formation of the Fermi surface and the
“Fermi-liquid” character of their contribution to the
low-temperature properties, such as the electronic heat
capacity of a metal. At the same time, it is at variance
with other, likewise reliably established experimental
facts, above all the conservation of the spin splitting of
the spectrum in the paramagnetic phase, and agrees
with difficulty with the Curie-Weiss law. All of these
properties are, however, evidence in support of the
localized character of magnetic moments. In this chap-
ter (see Sec. 4.3), we showed that the interaction char-
acteristics (exchange parameters) of these moments can
be calculated within the present-day band theory based
on the spin-density-functional method in good agree-
ment with experiment. However, in contrast to Heisen-
berg magnets, both the exchange parameters and the
magnitudes of the magnetic moments are generally
strong functions of their angle of rotation.

A qualitative description of the properties of ferro-
magnets at finite temperatures (including those in the
paramagnetic region) within the spin density functional
method remains a problem not yet fully resolved. On
the whole, although it is good in describing many, but
not all, properties of the iron group metals, one does not
see at present how this approach can be improved in
cases where it falls short of the goal.
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