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1. What is complexity and how to measure it
2. Magnetic patterns as examples

3. Self-induced spin-glass state: Spin-polarized
STM in Nd

Main collaborators

Nijmegen — theory (A. Bagrov, A. lliasov)

Nijmegen — experiment (A. Khajetoorians STM group)
Uppsala — computations (O. Eriksson group)
Ekaterinburg — theory (V. Mazurenko group)



The problem: Origin of complexity

Schrodinger: life substance is “aperiodic crysta

Intuitive feeling: crystals are simple, biologica
structures are complex

Crystals Biomolecules Organells
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Do we understand this? No, or, at least, not completely



e Something that we immediately recognize when
we see it, but very hard to define quantitatively

e S. Lloyd, “Measures of complexity: a non-
exhaustive list” — 40 different definitions

e Can be roughly divided into two categories:

- computational/descriptive complexities
(“ultraviolet”)

- effective/physical complexities (“infrared” or
Inter-scale)



e Prototype —the Kolmogorov complexity:

the length of the shortest description (in a
given language) of the object of interest

e Examples:

- Number of gates (in a predetermined basis)
needed to create a given state from a reference
one

- Length of an instruction required by file
compressing program to restore image



e The more random —the more
complex:

White noise S
970 x 485 pixels, gray scale, 253 Kb Vermeer “View of Delft”
750 x 624 pixels, colored, 234 Kb



e The more random —the more
complex:
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Paris japonica - Homo sapiens -
150 billion base 3.1 billion base
pairs in DNA pairs in DNA



biological life

Information Complexity

Effective Complexity
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Disorder

Can we come up with a
guantitative measure?



Per Bak: Complexity is criticality

PER'BAK

how Some complicated (marginally stable) systems
II‘{‘at__ur;e demonstrate self-similarity and “fractal” structure
Sworks
A This is intuitively more complex behavior than

just white noise but can we call it “complexity™?

| am not sure — complexity is
hierarchical



Example: strip domains in thin ferromagnetic films
PHYSICAL REVIEW B 69, 064411 (2004)

Magnetization and domain structure of bee FegNi;o/ Co (001) superlattices

R. Brucas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjorvarsson

|

FIG. 2. The MFM images of the 420 nm thick FegNi;g/Co superlattice at different externally applied in-plane magnetic fields:
(a)—virgin (nonmagnetized) state; (b), (c). (d)—increasing field 8.3, 30, and 50 mT; (e), (f). (g) —decreasing field 50, 30, 8.3 mT: (h)—in
remanent state.
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Europhys. Lett., 73 (1), pp. 104-109 (2006)
DOI: 10.1209/epl/12005-10367-8

Topological defects, pattern evolution, and hysteresis
in thin magnetic films

P. A. PRUDKOVSKII!, A. N. RuBTsov! and M. I. KATSNELSON?

Km?2 — h.-m.y) d?r +

== ) my(r') d2rd2y’.

Competition of exchange interactions (want homogeneous
ferromagnetic state) and magnetic dipole-dipole interations
(want total magnetization equal to zero)



Classical Monte Carlo simulations
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Fig. 2 — Snapshots of the stripe-domain system with the two-component order parameter at several

0, h =0.3, and h = 0.6, from left

to right. The inset shows the color legend for the orientation of local magnetization.

1. The magnetic field 1s h

loop for 3

points of the hysteresis

We know the Hamiltonian and it is not very complicated

patterns and how to patterns?

How to



Multi-scale structural complexity of natural
patterns PNAS 117, 30241 (2020)

Andrey A Bagrov“'b'l'z, llia A. lakovlev®:!, Askar A. lliasov®, Mikhail I. Katsnelson®", and Vladimir V. Mazurenko

The idea (from holographic complexity and common sense):
Complexity is  similarity at various scales

be a multidimensional pattern

fa{l‘l Its coarse-grained version (Kadanoff decimation,
convolution with Gaussian window functions,...)

Complexity is related to distances between FiXEIE G IESINES
3 B (f(@)lg(z)) = [pdzf(z)g(z)
ﬂﬁ - Hff'h {-T} |.f1'!|. +dA [-1'}::' —

)
! ‘rf”f:m as dA — 0

dA dA’

3 ((fa(z)|falz)) + (fatda(z)|fataa(z))) | = [ (
S As —
1

§|{f:‘1+dh (z) — fa(z)|fatan(z) — fa(z))l,
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FIG. 1. Schematic representation of the idea behind the pro-
posed method. A photo of L x L pixels (panel I) taken from
www.pexels.com is divided into blocks of A x A pixels (panel
IT). A renormalized photo of [ x [ pixels is plotted, where
[ = L/A (I=4 in this example). The renormalized photo is
rescaled up to initial photo size (panel III). Vectors A and
B are constructed from blocks of the initial and the renor-
malized images respectively (panel IV). The scalar product
of these vectors is used to define overlap O. For illustrative
purposes, pixelwise products of A- and B-blocks are shown
as vector O,




C = 0.4557 C = 0.4581 C=0.4975 C = 0.5552
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Entropy should grow, but complexity is not! And indeed...
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FIG. 7. The evolution of the complexity during the process
of dissolving a food dye drop of 0.3 ml in water at 31°C.




Can be used as a numerical tool to find T from finite-size
simulations
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FIG. 2. Temperature dependence of the complexity obtained
from the two-dimensional Ising model simulations. Red and
blue squares correspond to the complexities calculated with
k > 0 and k > 1, respectively. The size of error bars is
smaller than the symbol size. Inset shows the first derivative
of the complexity used for accurate detection of the critical
temperature. Here we used N = 8, A = 2.




3D Ising model,
cubic lattice
(insert shows
temperature
derivative of
Complexity)

.

Complexity

=
-2

Temperature

FIG. 3. Temperature dependence of the complexity ob-
tained from the three-dimensional Ising model simulations
with A = 2. Red and blue squares correspond to the complex-
ities calculated with k& > 0 and k& > 1, respectively. The size
of error bars is smaller than the symbol size. Inset shows the
first derivative of the complexity used for accurate detection
of the critical temperature. Here we used L x L x L cubic lat-
tice with L = 256, N = 6. The small but visible cusp on the
blue curve around T' ~ 3.2 reflects the emergence of magnetic
domains within the ferromagnetic phase, which takes place
sometimes during MC simulations on large lattices.




Spin textures due to competition of exchange and
Dzialoshinskii-Moriya interactions

H=-J) S.Su

7

r

) « 5 | ' N />\\’\’
A

/\\ \///‘,(43 ; 7 PN X . \*q>(<.{/,\

FIG. 5. Configurations of the DM magnetic on 1024 x 1024
square lattice obtained from independent Monte Carlo runs
with parameters B = 0.05J, |D| = J, T = 0.02J. While
they are visually distinct, corresponding complexities (left to
right) are equal to C = 0.4992115, C = 0.4991825 and C =
0.4991805.
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FIG. 4. (a) Magnetic field dependence of the complexity ob-
tained from the simulations with spin Hamiltonian containing
DM interaction with J =1, |D| =1, T = 0.02. The error bars
are smaller than the symbol size. (b) Complexity derivative
we used for accurate detection of the phases boundaries.







Complexity

Fig. 11. The evolution of the complexity during the (top panel) breathing and (bottom
panel) switching processes generated with £,, = 8 ps and t,, = 28 ps, respectively.
Red and blue squares correspond to the complexities calculated for 2048 x 2048
images and 128 x 128 square lattice of Heisenberg spins, respectively.
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Fig. 12. The evolution of the complexity of the paramagnetic spin configuration at
T = 9 Kunder the influence of t,, = 36 ps magnetic pulse along =z axis. Red
and blue squares correspond to the complexities calculated with &k > 0 and k > 1,
respectively. The amplitude of the magnetic pulse is Bo = 10 T.




Special class of patterns: “chaotic” patterns

Hypothesis: a system wants to be
modulated but cannot decide in which
direction

PHYSICAL REVIEW B 69. 064411 (2004)
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1
J(r—r')*+D-

E,= ] ] drdr'm(r)m(r')

—" . (12
=29 >, mn_ ) (13)
< Mdl-a ;

'here mgy is a two-dimensional Fourier component of the

nagnetization density. At the same time. the exchange en-
rgy can be written as

Et‘.l:(‘h — : {1‘2 qz-‘?! q}'}.!' —q- 1 ]__H

- q
o there is a finite value of the wave vector g=¢* found
from the condition

d(, 1-e% A
R '- + e oy i =]
l'jg Il. Tr g : E}{I ]




week ending

PHYSICAL REVIEW B 93, 054410 (2016) PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

Stripe glasses in ferromagnetic thin films Self-Induced Glassiness and Pattern Formation in Spin Systems Subject
to Long-Range Interactions

Alessandro Principi” and Mikhail 1. Katsnelson Alessandro Principi” and Mikhail I. Katsnelson
Development of idea of stripe glass,

Glass a system with an energy landscape characterizing by
infinitely many local minima, with a broad distribution of barriers,
relaxation at “any” time scale and aging (at thermal cycling you

never go back to exactly the same state)

Picture from P. Charbonneau et al,
‘Dﬂl: 'In.'lm.fmmﬂ!sl

Intermediate state between
equilibrium and non-equilibrium,
opportunity for history and
memory




One of the ways to describe:

Hylm,A]="Hlm,A] + g ’ drm(r) — ¥ (r)I’

The second term describes attraction of our physical field
to some external field EFZE)

If the system an be glued, with infinitely small interaction g, to macroscopically
large number of configurations it should be considered as a glass

_ [ DYZIYIFIY]

Then we calculate e = T T Dy ZIy] and see whether the limits

are different

Fog = limy_, o limg_,o F, CIRl6 F=lmg, olimy_  F,

No disorder is needed (contrary to

If yes, this Is self-induced glass . : :
traditional view on spin glasses)



Hlm,\] = [ dr{J[d;m _,'I:P}]E — K mg'[:r} — 2h(r) - m(r)}

PHYSICAL REVIEW B 93, 054410 (2016) + = l drdr'm_(r)
N

Stripe glasses in ferromagnetic thin films 1 |
b [ ]m:[_r’_]

Alessandro Principi” and Mikhail I. Katsnelson IJ"' — .I'"'| V#"dl' + |!" _ r-’lg

i / dr{x(r)[m*(r) — 1]}.

Self-consistent screening approximation for spin propagators




Maximum at

q0 = [Q/(21)] "~

0.1 0.2
kT J

g-dependence of normal
and anomalous (“glassy”, non-
ergodic spin-spin correlators

Phase diagram



week endin

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

Maximal simplification
(Brazovskii model)

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject
to Long-Range Interactions

Alessandro Principi* and Mikhail 1. Katsnelson

1.8
1.6
%3 o | : |
i pin-glass state exists!
0.6
0.4
gg | | 1
' 2 3 4 5
e FIG. 2. Panel (a) the configurational entropy of the mean-field
0.7 | | | | problem for the two-dimensional Ising model (D=2 and
06 - oM A 1 N,=1). Note that this curve has been multiplied by a factor
. oo < o12p 1 1 0.1. Inset: the transition temperature T, as a function of the
o3l o ==L ——L— 4 anisotropy parameter &,. Panel (b) same as panel (a) but for the
ol o 1 two-dimensional Heisenberg model (D =2, N, =3). Inset:
0.0 L) ' ' ' ' the temperature T4 as a function of &.
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Self-induced spin glass state in elemental
and crystalline neodymium

Umut Kamber, Anders Bergman, Andreas Eich, Diana lusan, Manuel Steinbrecher,
Nadine Hauptmann, Lars Nordstrom, Mikhail . Katsnelson, Daniel Wegner*,
Olle Eriksson, Alexander A. Khajetoorians®

Spin-polarized STM experiment, Radboud University
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The most important observation: aging. At thermocycling (or

cyling magnetic field) the magnetic state is not exactly reproduced




Method: magnetic force theorem

Calculations: Uppsala team

¢ hcp
o dhcp cubic
% dhcp hexagonal

e Dhcp structure drives competing AFM interactions
e Frustrated magnetism



e E(Q) landscape features flat valleys along high
symmetry directions



Atomistic spin dynamics
simulations

Typically spin-glass
behavior

To compare: the same for prototype
disordered spin-glass Cu-Mn
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Observation time (fs)



Thermally-induced magnetic order from glassiness in elemental

neodymium

.
Benjamin Verlhac', Lorena Niggli', Anders Bergm: nut Kamber!, Andrey Bagrov'<, Diana lugan?, a r IV ° ° I

Lars Nordstrom?, Mikhail I. Katsnelson', Daniel Wegner', Olle Eriksson??, Alexander A

Glassy state at low T
and long-range order
at T increase

Figure 2: Emergence of long-range multi-Q order from the spin-Q glass state at elevated
temperature. a,b. Magnetization images of the same region at T=5.1 K and 11 K, respectively (k=
100 pA, a-b, scale bar: 50 nm). c,d. Corresponding Q-space images (scale bars: 3 nm™"), illustrating

the changes from strong local (i.e. lack of long-range) Q order toward multiple large-scale domains T: 5 K (a, C) . S p I n g | aSS

with well-defined long-range multi-Q order. e f. Zoom-in images of the diamond-like (e) and stripe-like

(f) patterns (scale bar: 5 nm). The locations of these images is shown by the white squares in b. g,h. T: ll K(b 3 d) : (n O n CO | | I n e ar) A F I\/I

Display of multi-Q state maps of the two apparent domains in the multi-Q ordered phase, where (g)


https://arxiv.org/abs/2109.04815

Multi-Q Multi-Q
order ; order

Phase transition at approx. 8K (seen via “complexity”
measures)



S(q)cub-cub S( q)hex-hex

' Spin-Q Multi-Q order
glass

10 12 14

Theory: Atomistic simulations
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Conversations on Mathematics, Science,
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People were very enthusiastic on applications of theory of dynamical
systems: attractors, bifurcations, catastrophes — useful for sure

J

The distance from Benard convection cells to
origin of life seems to be too far




Now we try statistical physics approached, our new key words are:
emergence, renormalization group flow, universality classes,
spin glasses, broken replica symmetry, frustrations...

[

Giorgio Parisi, Nobel Prize in physics 2021 e

"for the discovery of the interplay of disorder o

and fluctuations in physical systems from atomic
to planetary scales."

Actually, disorder is not needed, frustrations are enough
(self-induced spin glass state in Nd)

Whether you can observe a thing or not
depends on the theory which you use.
It is theory which decides what can be observed
(A. Einstein)



