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Computational and descriptive
complexities

* Prototype —the Kolmogorov complexity:

the length of the shortest description (in a given
language) of the object of interest

 Examples:

- Number of gates (in a predetermined basis) needed
to create a given state from a reference one

- Length of an instruction required by file compressing
program to restore image



Descriptive complexity

* The more random —the more complex:

Paris japonica - 150 Homo sapiens - 3.1
billion base pairs in billion base pairs in
DNA DNA

It is not what we intuitively understand as a complexity



Complexity (“patterns”) in inorganic world
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Stripe domains in ferromagnetic thin
films

(Sci Rep 9,
= 7454 (2019))

Microstructures in metals
and alloys



Magnetic patterns

Example: strip domains in thin ferromagnetic films

PHYSICAL REVIEW B 69, 064411 (2004)

Magnetization and domain structure of bee FegNi;o/ Co (001) superlattices

R. Brucas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjorvarsson
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FIG. 2. The MFM images of the 420 nm thick FegNi;g/Co superlattice at different externally applied in-plane magnetic fields:
(a)—virgin (nonmagnetized) state; (b), (c). (d)—increasing field 8.3, 30, and 50 mT; (e), (f). (g) —decreasing field 50, 30, 8.3 mT: (h)—in

remanent state.



Magnetic patterns 11

Europhys. Lett., 73 (1), pp. 104-109 (2006)
DOI: 10.1209/epl/i2005-10367-8

Topological defects, pattern evolution, and hysteresis
in thin magnetic films

P. A. PRUDKOVSKII!, A. N. RuBTsov! and M. I. KATSNELSON?
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Competition of exchange interactions (want homogeneous
ferromagnetic state) and magnetic dipole-dipole interations
(want total magnetization equal to zero)



Magnetic patterns 111

Classical Monte Carlo simulations

Fig. 2 — Snapshots of the stripe-domain system with the two-component order parameter at several
points of the hysteresis loop for 3 = 1. The magnetic field is h = 0, h = 0.3, and h = 0.6, from left
to right. The inset shows the color legend for the orientation of local magnetization.

We know the Hamiltonian and it is not very complicated

How to describe patterns and how to explain patterns?



Structural complexity

Multi-scale structural complexity of natural
patterns PNAS 117, 30241 (2020)

Andrey A. Bagrov®" 2, llia A. lakovlev®!, Askar A. lliasov®, Mikhail I. Katsnelson®", and Vladimir V. Mazurenko®

The idea (from holographic complexity and common sense):
Complexity is dissimilarity at various scales

Let f(z) be a multidimensional pattern

fa(z) its coarse-grained version (Kadanoff decimation,
convolution with Gaussian window functions,...)

Complexity is related to distances between fi(z) and faiaqn(z)

(f(z)lg(z)) = [pdzf(x)g(z)
Ap = |[{fa(z)|fa+an(z))—

((fa(@)|fa(z)) + (Fatan ()| faran(z))) | = af @f
1 C = Zdﬁaﬁ /“a'a dA,
§|{fh+dh(iﬂ) — fa(z)|fatan(z) — fa(z))l,

ot | =

as dA — 0
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Solution of an ink drop in water

Entropy should grow, but complexity is not! And indeed...
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FIG. 7. The evolution of the complexity during the process
of dissolving a food dye drop of 0.3 ml in water at 31°C.



Complexity in magnets under laser pulses

H=-J) 8,8y —-D)» [S.xSy]—K)» (S3)’

as, OH

dt 1 —|—a28 <= gg, Tom®)l-
¥ ! OH
T Sn| 1+ a2 Sn X (Sn X [_88,” n(1)]),

Nonthermal effect of laser pulses: effective magnetic field (inverse Faraday effect)

B,(t) = Boexp ( U tp)z) en

2t2,




Complexity in magnets under laser pulses 11

.
[
(@)}

o
(9,1

S

—

M
S ¢
~

Complexity
=
o
o2e]

.O
o
g

Complexity
o
W2

0 50 100 150 200 250
Time (ps)

o
T

S
ko

i
Ia st O

+ A P e
A A

| PN RN SR SATETE RN RS RS S S
0O 20 40 60 80 100 120 140 160 180
& Time (ps)
b
=%
g Fig. 12. The evolution of the complexity of the paramagnetic spin configuration at
@) . T = 9 Kunder the influence of £,, = 36 ps magnetic pulse along =z axis. Red
and blue squares correspond to the complexities calculated with &k > 0 and k > 1,
respectively. The amplitude of the magnetic pulse is Bo = 10 T.
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Fig. 11. The evolution of the complexity during the (top panel) breathing and (bottom
panel) switching processes generated with £,, = 8 ps and t,, = 28 ps, respectively.
Red and blue squares correspond to the complexities calculated for 2048 x 2048
images and 128 x 128 square lattice of Heisenberg spins, respectively.



Competing interactions and self-induced spin
olasses

Special class of patterns: “chaotic” patterns

Hypothesis: a system wants to be
modulated but cannot decide in which

PHYSICAL REVIEW B 69, 0064411 (2004) . .
direction
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E,= J J drdr'm(r)m(r')

] —e 90

=21‘r2 mgin _ g (13)
q

where mg is a two-dimensional Fourier component of the
magnetization density. At the same time, the exchange en-
ergy can be written as

1
Eexcn=7 afE gzmqm_q._ (14)
= q

so there is a finite value of the wave vector g=¢* found
from the condition

d{ 1-e 1 |
2 +5aq”|=0 (15)

dg\”~ q



Self-induced spin glasses 11

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

PHYSICAL REVIEW B 93, 054410 (2016)

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject

Stripe glasses in ferromagnetic thin films to Long-Range Interactions

Alessandro Principi* and Mikhail I. Katsnelson Alessandro Principi and Mikhail 1. Katsnelson

Development of idea of stripe glass, J. Schmalian and P. G. Wolynes, PRL 2000

Glass: a system with an energy landscape characterizing by
infinitely many local minima, with a broad distribution of barriets,
relaxation at “any” time scale and aging (at thermal cycling you
never go back to exactly the same state)
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Picture from P. Charbonneau et al,

DOI: 10.1038/ncomms4725

Intermediate state between

equilibrium and non-equilibrium,

o= ( opportunity for history and
% % memory (“stamp collection”)




Selt-induced spin glasses 111

PHYSICAL REVIEW B 93, 054410 (2016) Hlm,\] = fdr{l[ﬁ,-mj(r}]z . Kmf(r} —2h(r) - m(r))
Stripe glasses in ferromagnetic thin films

Alessandro Principi” and Mikhail I. Katsnelson
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+fdr{l(r}[m1(r) —1]}. (1)

Self-consistent screening approximation for spin propagators
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ergodic spin-spin correlators



Experimental observation of self-induced spin
olass state: elemental Nd

Self-induced spin glass state in elemental
and crystalline neodymium

Umut Kamber, Anders Bergman, Andreas Eich, Diana lusan, Manuel Steinbrecher,
Nadine Hauptmann, Lars Nordstrom, Mikhail I. Katsnelson, Daniel Wegner*,
Olle Eriksson, Alexander A. Khajetoorians®

Science 368, 966 (2020)

Spin-polarized STM experiment, Radboud University
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U. Kamber, et al, Science (2020)



Ab initio: magnetic interactions in bulk Nd

Method: magnetic force theorem (Lichtenstein, Katsnelson, Antropov, Gubanov
JMMM 1987)
Calculations: Uppsala team (Olle Eriksson group)
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* Dhcp structure drives competing AFM interactions
* Frustrated magnetism 19

1/14/2021



ADb initio bulk Nd: energy landscape

* £(Q) landscape features flat valleys along high
symmetry directions

See A. Principi, M.I. Katsnelson, PRB/PRL 20
(2016)/(2017) 1/14/2021
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Spin-glass state in Nd: spin dynamics

Atomistic spin dynamics
simulations
w— 1,=0.01 ps
m— [,=0.20 ps
m— £,=0.82 ps
| — 1,=3.28 pS 1 Tl
I Typically spin glass
—t=524ps . . behavior
0?3 102 10" 100 10' 10
t(ps)

Autocorrelation function C(t,,, t) = (m;(t +t,,) -m;(¢t,,)) fordhcpNdat T=1K

Autocorrelation, C(t +t,t )
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To compare: the same for prototype
disordered spin-glass Cu-Mn

B. Skubic et al, PRB 79, 024411 (2009)



Frustrations and complexity: Quantum case

Generalization properties of neural network | (2020)11:1593
approximations to frustrated magnet ground states

Tom Westerhouﬂm, Nikita Astrakhantsev2'3'4m, Konstantin S. Tikhonov 5'6'7M, Mikhail I. Katsnelson'® &

Andrey A. Bagroy'%°®

How to find true ground state of the quantum system?

In general, a very complicated problem (difficult to solve even for
quantum computer!)

Idea: use of variational approach and train neural network to find
“the best” trial function (G. Carleo and M. Troyer, Science 355, 602 (2017))

K K
Was) = D _wilS) =D _silwillS))
i=1 i=1
Generalization problem: to train NN for relatively small basis (K

much smaller than total dim. of quantum space) and find good
approximation to the true ground state



Frustrations and complexity: Quantum case 11

Quantum $=1/2 Hamiltonian H=],) 6,06,+], Y 6,06,
NN and NNN interactions (ab) ({aib))

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J,—J/> model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; ¢ spatially anisotropic Kagome lattice. In all cases J; = O corresponds to the absence of
frustration.

. . . . . 24 6
24 spins, dimensionality of Hilbert space d = C{; >~ 2.7 - 10

Still possible to calculate ground state exactly
Training for K =0.01 d (small trial set)



Frustrations and complexity: Quantum case 111

Kagome lattice

Square lattice Triangular lattice
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a-c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J;/J; for square a,
triangular b, and Kagome c lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Mote 1. Subfigures d-f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.
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