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Introduction: Graphene and massless Dirac fermions

Realistic interelectron interactions in graphene: mapping
on pi-band and on effective Hubbard model

Is freely suspended graphene semimetal or excitonic
Insulator?

Screening and optical properties
Non-Fermi-liquid behavior in weak interaction regime

Many-body renormalization of ballistic conductivity at the
neutrality point
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Till 2004: a way to understand graphite, nanotubes,
fullerenes + theoretical interest
(Dirac point Wallace 1947, McClure 1956...)

Do we theoreticians need experimentalists?! — Yes!!!
(Klein tunneling, supercritical charge, ripples, new wave
equation — bilayer, new type of transport...)

1. Applications (modern electronics is 2D, bulk is
ballast)

2. Prototype membrane (new drosophila for 2D
statistical mechanics)

3. CERN on the desk (mimic high energy physics)



Two equivalent sublattices,
A and B (pseudospin)




FIG. 2: (color online) Band structure of a single graphene
layer. Solid red lines are ¢ bands and dotted blue lines are 7
bands.

sp? hybridization, m bands crossing  Neglecting intervalley scattering:
the neutrality POt e massless Dirac fermions

Massless relativistic

particles (light cones) Symmetry protected (T and I)




Spectrum near K (K’) points is linear.
Conical cross-points: provided by
symmetry and thus robust property




If Umklapp-processes K-K” are neglected:
2D Dirac massless fermions with the Hamiltonian

“Spin indices’ label sublattices A and B
rather than real spin



d-wave superconductors
Vortices in superconductors and in superfluid helium-3
Topological insulators
Graphene
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Electronic structure on
Gap in high-Tc cuprates surface of Bi,Se,



Generalized Hubbard model for mr-bands only

1 bands (blue) crossing Fermi level

o bands (green) at higher energies
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All electrons except 1T contribute to
screening of the Coulomb
Interactions (constrained RPA)
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graphene +
class. model

cRPA dielectric constant ¢

k=05 x
H 4
_ graphite k,=0.0 % i
-2
1 | | | | |
) 1 0 1 2 0 0.5 1 1.5 2 25 3

Static cRPA dielectric

k (1/A)

function of graphene in graphene || graphite
momentum space bare|cRPA ||bare|cRPA

Uiy (eV)|17.0] 9.3 [|17.5| 8.0

Usty (eV)[17.01 9.3 ||17.7| 8.1

Upr (eV)| 85| 5.5 || 86| 3.9




Long-range Coulomb interection is crucially important for graphene
but not everywhere, e.g., for magnetism effective Hubbard model
should be OK. How to build it?

We have:

Zf” s Cie + U Z”!T”?l + = ZI”IJMHM

I}ﬂ' iI_;r

We want:;

Zf” e }J—|—[ Z”IT” L

1,7,0




The idea: Feynman-Peirels-Bogoliubov variational principle

(nmnm )

<H..,_r_]' ff,_er)*

The calculations are done by lattice QMC



For translationally invariant system:

N© <-?'1.{j Mo ) * :\T:H
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A naive estimation:

turns out to be amazingly good
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() oo o) ool Calculations for benzene,
) et § B & 8 graphene and silicene
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Figure 2. (Color online’) Derivatives of the correlation func- . N ] ]
. . - Table I. First three rows: Coulomb matrix elements obtained

with cRPA {:__tgraphene = 2.80 e\"r-. Lsilicene = 1.14 e\"'r; Ibenzene =
shs .ded area. rlepic-.ts he region Of nea: hi _\ e tives.  elements with and without the approximation that electrons

The cutoff radius is r.. The thick drawn ate the are only displaced to next neighbors and the factor by which
lattice site with index i = 0. i -

B(—‘llZ(—‘ll(—‘

Decrease of effective U
roughly by a factor of 2

0.46 :I: 0.05



Lattice QMC simulations; Hubbard-Stratonovich transformation:

18 by 18 sites,
20 time slices,
T=05eV

(should be
Improved
In future!)

fres B / DIF'*E:'”- D Pr,n D Hx.n D Ve n D Nz.n

aJ . \ \
_‘5[’1"";1'--.'1"!-] Z (T:-"" Tt 111 y,n,n! Ty, n’—i_L xT,ni 1"{1‘ y,n,n’ L y,n’ }

z,y,n,n’

Tr E_Eﬁ = / Du:‘;:'I?-n_E-!_'ST[':P:r--.ﬂ-] det (JI [7-71n]) ‘3 NeUtrality pOint: M= 0

No sign problem (e-h symmetry)!




The effect of screening by
o-bonds Is essential. At our
distances a factor 1.4

Vr.u N .

Voa

Non-compact gauge field =
Screened potentials e
Coulomb -

(1) Introduce the mass term m

(2) Chiral condensate An, difference in occupation number
between A and B sublattices

(3) Introduce external dielectric constant (due to substrate) €



We are on
semimetal side
(screening by o
bonds is crucial)
but not too far from
the transition point
e=0.7

Exciton fluctuations
may be important

FIG. 2: The dependence of the chiral condensate (11) on €
and on m (in the inset) for the 18 x 18 lattice with N; = 20
and 6 = 0.1eV~!. For € = 1.0 we show the results obtained
on the 24 x 24 lattice with Ny = 40, § = 0.05eV 1.




Random missing sites equally distributed in two sublattices

AFM state with very strong exchange interactions

Lattice 18x18, T=
Lattice [Bx|8, T=00625

(a)

3
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FIG. 2 (color online). Distribution of average spin. The color

Bare mass, eV o . .
scale corresponds to (S,) at a site in the zero bare mass limit.




For vacancies: clearly
contradict experiments

S. Just, S. Zimmermann, V. Kataev, B. Biichner, M. Pratzer,

1.5% adatoms +—l— and M. Morgenstern, Phys. Rev. B 90, 125449 (2014).
5% adatoms ——8—
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(f) Temperature-dependent inverse peak area of the ESR curves calibrated by a ruby standard (see text) in comparison with fit curves a(T — 6y,)
revealing f.w = —12 K and . = —5 K. respectively.

Model of empty sites gives too srong antiferromagnetic exchange
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Spin-half paramagnetism in graphene induced by
point defects

R. R. Nair', M. Sepioni’, I-Ling Tsai', O. Lehtinen?, J. Keinonen?, A. V. Krasheninnikov?3, T. Thomson',
A. K. Geim' and I. V. Grigorieva'*

both scarce and controversial’*', Here we show that point
defects in graphene—(1) fluorine adatoms in concentrations x
gradually increasing to stoichiometric fluorographene CF,_,,
(ref. 17) and (2) irradiation defects (vacancies)—carry mag-
netic moments with spin 1/2. Both types of defect lead to

notable paramagnetism but no magnetic ordering could be
detected down to liquid helium temperatures. The induced
paramagnetism dominates graphene's low-temperature mag-
netic properties, despite the fact that the maximum response
we could achieve was limited to one moment per approxi-
mately 1,000 carbon atoms. This limitation is explained by

For vacancies: guite strong
distortion, buckling etc., other
rlectron states are involved
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For fluorinated
graphene: mostly
no local moments
(or very high AFM
coupling between

them)
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Gap opening dut to Coloumb interaction
[ J[center 1|Width 1]Center 2|[Width 2] Gap | FIG. 3 (color online). Energies of the midgap states for two sets

of interelectron potentials. Each state corresponds to one isolated
vacancy marked with the number in Fig. 2. The center and width
of the bands are calculated in the limit m — 0. The center is the
average over the energies of all states in each band and the width

is equal to the doubled dispersion. T = 0.125 eV. The real
physical situation is restored in the limit m — 0. Inset: energy
gap between normal energy bands. All values correspond to the K
point in the Brillouin zone.

Quite noticeable gap In
iImpurity band and much

P e larger in K point for freely
ordinary potentials 4 sl suspended graphene with

screened potentials ——&——

! 5% defects.

Bare mass, eV

Can be measured optically



Coulomb interaction of 2D masless fermions

Zero doping (Fermi level at the Dirac point)
Logarithmic renormalization of the Fermi velocity due to Fock
contribution

A o 1/ ais the ultraviolet cut-off due to inapplicability of Dirac model at large wave vectors




PHYSICAL REVIEW B 92, 245105 (2015)

Many-body effects in graphene beyond the Dirac model with Coulomb interaction

N. Yu. Astrakhantsev,"*” V. V. Braguta,**® and M. 1. Katsnelson®’

... (| 2 hene on hBN, Coulomb
Coulomb interaction =
punsEng |screened Coulomb a - -
14r T no interaction. —- Interaction
-~ L I I
|| n
12 . "
- s I - I I -
- B
—_— .. “"‘““ I ““l-‘ -. I I
= 10 | .. & = .y L] ]
[5) m at 2 o
— ll ‘A" I "A‘ -. I I
>-\‘ 'y
=14} 8 = .. ‘A ‘A .. I I -
fun o =& 4 =
0] 'y A .
=i .y | | |
Sl S g T A=0.096, A =32eV
-l ‘A | ‘A ALA --. | & ,’ -t e
ot “alasas,, s
e | | et
B - A" I 1.80 : .
S = Coulomb interaction =
| | LIS  screened Coulomb interaction = -
| | 1.70 : :
I | 1.65
B 1.60
== 155
== 1.50

1.45
1.40
1.35
1.30

Effect of screening is [l i
guite important

FIG. 11. (Color online) The renormalization factor for the Fermi
velocity as a function of the temperature for graphene on hBN for
Coulomb and screened at small distance Coulomb interactions [23].




Seen In Schibnikov-de Haas

and quantum capacitance
exper.

1/C=1/Cs+1/Co

T T ﬂ' )
Co =S8e” dn/dp

|
4 e(vp/c)

= 't..rFl:_ﬁ-i-t))( I+ Alog |:“D:| )
|

vr(p) = v fﬁll(l +

Fitting

ve(io) = 0.85 x 10° m/s, o =3.2eV

and A = 0.081

Fig. 2. Quantum capacitance of graphene. (A) Differential capacitance in
zero B. Blue symbols are experimental data; green and red curves are the
best fits with constant and renormalized v, respectively. This particular
device hasd ~ 27 nm and S ~ 250 “mz_ (B) Same data replotted in terms of v¢
and carrier concentration n; color coding as in A.




Single-particle result for the Dirac Fermions:

absorption P = W,/W; = ne’/hc = nta

Fine Structure Constant Defines

Experiment: Visual Transparency of Graphene

Nair,* P. Blake,* A. N. Grigorenko,* K. S. Novoselov,* T. ]. Booth,* T. Stauber,?

R. R.
N. M. R. Peres,? A. K. Geim™* 6 JUNE 2008 VOL 320 SCIENCE

= . 100
@ whitg light ideal e
9_\% 100 . g y Dirac fermions Fo = o
®
o 8 98 -+ N
£ 4 =S number of layers
= & . 100 :
® c theory: I No corrections
= g |_graphene — o6l Cy
- = 96 S . : ithin accuracy
D 96 - = "
= WM{ 2 ~ 9o} 3%
88
94 I J |
0 25 50 400 500 600 700

distance (um) wavelength 4 (nm)




Do we expect renormalization? A controversial issue
For short-range interaction one expects no renormalization

Phenomelonogical theory of Fermi liquid:

M. I. Katsnelson. Europhys. Lett. 84, 37001 (2008)

Microscopic theory for Hubbard model.

A. Giuliani, V. Mastropietro, and M. Porta, Phys. Rev. B 83,
195401 (2011).

For Coulomb interaction graphene is not Fermi liquid

. . . o(w
aerr logarithmically dependent on frequency o (@)

=1+ Caerr + O (“’En)

g

Various ways of regularization gives C = 0.01, or C=0.26



L atti Ce Q IVI C PHYSICAL REVIEW B 94, 085421 (2016)

Many-body effects on graphene conductivity: Quantum Monte Carlo calculations

D. L. Boyda.">" V. V. Braguta,>>*1 M. I. Katsnelson,>®* and M. V. Ulybyshev”%:

Numerically: almost no renormalization in semimetal phase
and strong renormalization in AFM insulator phase

L7 I 6(05 ) 0—-106K —W— /’ 1.O5 e | | ‘8, on-site interaction ——
¢/ e ~ . .
1.6 L|prediction with C=0.26 - - G, long-range interaction —®—
' diction with C=0.01
” prediction wi // { - .
- . ;
-~ ) . b .
é’ 1.3 // B
o 12 L. 0.9
11 _i I T - I :+
A ! 0385
] ...... o - 1 .
0.9 - 0.8
03 04 05 06 07 08 09 1 1.1 1.2 13 0 0.2 0.4 0.6 0.8 1 1.2 1.4
/e 1/e




PHYSICAL REVIEW B 97,035102 (2018)

Quantum Monte Carlo study of electrostatic potential in graphene

N. Yu. Astrakhantsev,>" V. V. Braguta,»>*>-1 M. I. Katsnelson,*’ A. A. Nikolaev."? and M. V. Ulybyshev®

RPA (lowest order) result:

Aeif = & - c/vp ~ 300/137 ~ 2.2

No small parameters, how good is it?

T N 79,2
Second-order result: | iking o ett + 0.778a

[. Sodemann and M. M. Fogler, Phys. Rev. B 86, 115408

(2012).

Corrections are significant!



Monte Carlo simulations: put two point charges, calculate
effective interaction energy,

T=017¢V ¥
¥ T=033V %

%  this paper
m— one-loop result

=——= WO sult

$  oneloop tight binding model

Zero-temperature results



Perturbative (RPA) result fits very well the QMC despite
of the absence of any explicit small parameter

r/a

0.00
1.00
1.73
2.00
2.65
3.00
3.46
3.61
4.00

e(r)

2.24 4+ 0.02
2.83 £0.08
3.45+0.21
3.33 £0.23
3.86 =0.49
3.89 £ 0.66
3.97 = 0.88
3.84 = 0.80
401 £ 1.15

€11loop (r)

2.19
2.92
3.49
3.63




ho femperature
dependence
in the peak
between 3 and 80K

Zzero-gap
semiconductor




Conductance = e%/h Tr T per valley per spin

171 the transmission probability matrix
The wave functions of massless

Dirac fermions at zero energy:

Boundary conditions determine the functions



f(y+L,) = f(y) Edge states near the top and bottom of the sample

New type of electron transport: via evanescent
waves — different from both ballistic and diffusive



|_eads from: doped graphnene

COS™ @

sing = ky,/kp

cosh”(kyL,) —sin® ¢

W
s

The problem of “missing pi(e)” — may be, no problem



tunneling with dissipation

Overlap of the wave functions are suppresed by overlap
of the wave functions of environment (then, averaging over
the environment)

WIX(T),X(T)]

Transport via evanescent

waves is tunneling Nonlocal self-interaction

e-h pairs as thermal bath



Correction to the effective tunneling action

Screened Coulomb interaction Bare Coulomb interaction

SERGISIGIERENCI c (¢, w) = 1 + v, x,p(q, W)

q

X1p(q, @) ~ Ly X2p(q @) ~ Ly ——=
1D YAZD yqﬂ. v%qz—wz



Suppression of tunneling Y@~ ~T () 6—65
probability ( y) 0( y)

5S,. ~ Ly a7 10g(ﬁ for isolated graphene
G ™ 8mLy 42+« a

In the presence of metallic layer:

g = kgt

L3

4rtglL,



At finite temperatures the cut-off wave vector

PV EV(EE AR  \iagnetic field effects on diffusion!

FIG. 2. Temperature dependence of the inverse conductance, normalized to the non
interaction value, g, = e*/(wh), for L, = 4y, L, = 1. Red: Contribution from the

graphene excitations, §S;, eq. 6. Blue: Contribution from a metallic layer, 65, eq.
8. The two terms which describe the contribution from the metal, 6S,; and 65, are
shown in the inset. Green: diffusive part, 65, in eq. 8. Magenta: ballistic part, §5, in
eq. 8. The carrier density in the metal is n = 10'*cm™!, and the elastic mean free
path is £ = 100nm.




week ending

PRL 110, 216601 (2013) PHYSICAL REVIEW LETTERS 24 MAY 2013

Insulating Behavior at the Neutrality Point in Single-Layer Graphene

F. Amet.' J.R. Williams.> K. Watanabe,” T. Tanieuchi.” and D. Goldhaber-Gordon”

0 L
T:_; 5 B O %‘***quxu XXX XK KX
' = 0 100 200 300 ,
e L

Also, graphene on hBN

S 5 10 50100
T (K

Power-law behavior with temperature

gonp o 1% with o =0.484



Nonlocal interaction, no small parameters,
still a lot of open questions

A.Geim, K.Novoselov (Manchester)
F.Guinea (Madrid & Manchester)
A.Lichtenstein (Hamburg)

T.Wehling (Bremen)

M.Ulybyshev (Regensburg)

V.Braguta, N. Astrakhantsev (Moscow)

MANY THANKS!
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