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Ultraflat bands have already been detected in twisted bilayer graphene and twisted bilayer transition-metal
dichalcogenides, which provide a platform to investigate strong correlations. In this paper, the electronic proper-
ties of twisted trilayer molybdenum disulfide (TTM) are investigated via an accurate tight-binding Hamiltonian.
We find that the highest valence bands are derived from the �-point of the constituent monolayer, and they
exhibit a graphenelike dispersion or become isolated flat bands that are dependent on the starting stacking
arrangements. The lattice relaxation, local deformation, and external fields can significantly tune the electronic
structures of TTM. After introducing the spin-orbital coupling effect, we find a spin-valley-layer locking effect at
the minimum of the conduction band at the K- and K ′-point of the Brillouin zone, which may provide a platform
to study optical properties and magnetoelectric effects.
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I. INTRODUCTION

Since the discovery of single-layer graphene, research on
two-dimensional (2D) materials has drawn significant atten-
tion in the scientific community [1]. Stacking 2D materials
with the rotation angle or lattice mismatch between layers,
moiré superlattices with periodicity that ranges from nanome-
ters to micrometers can be formed [2–4]. Rotation angle
and lattice mismatch, as degrees of freedom, could tune the
electronic structures of the moiré systems. In twisted bi-
layer graphene (TBG), when the rotation angle approaches
1.05◦, the so-called magic angle, two van Hove singularities
(VHSs) in the density of states (DOS) merge in the charge-
neutrality point, resulting in a sharp peak associated with
flat bands [2,5]. In such a flat band system, exotic phenom-
ena, including unconventional superconductivity [6,7], strong
correlations [8], the quantum anomalous Hall effect [9], ferro-
magnetism [10], and electronic collective excitations [5,11],
have been observed, which are not observed in the parent
material.

Flat bands are also detected in many other moiré systems,
for example twisted hexagonal boron nitride [12], and twisted
bilayer transition-metal dichalcogenides (tb-TMDs) [13,14].
In fact, both the structural and electronic structures of tb-
TMDs are remarkably different from that of TBG: First, the
appearance of flat bands is different. Flat bands are observed
in tb-TMDs with twist angles below 7◦ [14–22], but only
special angles in TBG [2]. Second, the localization of the flat
band states in real space is different. In TBG, the flat band
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states at the K-point of the Brillouin zone (BZ) are concen-
trated in the AA region [23]. The tb-TMDs have two distinct
configurations, and the localization of the flat band states at
the �-point of the BZ is different [13,24]. Third, the lattice
relaxation changes differently the distribution of stackings and
interlayer spacings in the two different configurations. Finally,
tb-TMDs are a new model system to explore quantum phe-
nomena, for example moiré excitons [25–31], Wigner crystal
[20], pair density waves [32], and plasmons [33].

Multilayer graphene moiré systems also possess flat bands,
for example twisted trilayer systems and even twisted mul-
tilayer superlattices [34]. Different from the twisted bilayer,
twisted multilayer systems are more flexible and controllable,
which can be easily tuned by twist angles, starting stacking
arrangements, and external fields [35]. Furthermore, the moiré
of moiré twisted trilayer graphene (TTG) has an extended
magic phase [4,36], and electric field-tunable superconductiv-
ity was observed in mirror-symmetry TTG [37,38]. Recently,
several groups have started to explore the electronic structures
of twisted multilayer TMDs. For example, twisted trilayer
WSe2 with two different twist angles is successfully fabricated
in experiment, which reveals multiple moiré exciton splitting
peaks due to the presence of deeper moiré potential [39]. The
ABBA-stacked twisted double bilayer WSe2 could be served
as a realistic and tunable platform to simulate a �-valley hon-
eycomb lattice with both sublattice and SU(2) spin rotation
symmetries [40]. The ABAB-stacked double bilayer WSe2

as a platform to study electronic correlations within the �-
valley moiré bands could have control over the spin and valley
character of the correlated ground and excited states via the
electromagnetic fields [41]. However, detailed knowledge of
the electronic structures of twisted multilayer transition-metal
dichalcogenides is still missing.
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In this paper, we use a tight-binding (TB) model to
study the electronic properties of twisted trilayer molybdenum
disulfide (TTM) with different starting stacking arrangements.
Similar to TTG, the electronic structures of TTM depends
strongly on the starting stacking arrangements. By modulat-
ing the arrangement, isolated flat bands could be achieved
in the valence-band edge. Previous investigations show that
lattice relaxation has a significant impact on the electronic
properties of TBG and tb-TMDs [33,42,43]. We find that the
lattice relaxation has a distinct influence on the structural and
electronic properties of TTM with different configurations
due to the interplay between different bilayer moiré patterns.
Furthermore, these configurations respond differently to the
external electric and magnetic fields. By manipulating these
degree of freedoms, for instance the arrangements, strains,
spin-orbital coupling (SOC), the electric and magnetic fields,
we could tune the flat bands in TTM, creating a promising
platform for exploring the strongly correlated states. Different
from the tb-TMDs, due to the spin-valley-layer locking in the
TTM, the spins could be manipulated by the electric field
control of the layer polarization and magnetic field control of
the valley polarization, which may lead to new optical and
magnetoelectric effects.

The paper is organized as follows: In Sec. II, we introduce
the TTM structure and the numerical methods. In Sec. III,
we investigate the flat bands in TTM with different starting
stacking arrangements, and we tune the flat bands with the
interlayer interaction, spin-orbital coupling, and external elec-
tric fields. Finally, we give a summary in Sec. IV.

II. METHODS

In TBG, the AA and AB starting stacking arrangements
give exactly the same band structures, whereas the electronic
structures in twisted trilayer graphene are strongly dependent
on the starting stacking arrangements [35,44]. In the bilayer
TMDs, unlike graphene, the inversion symmetry is present
in AB (2H) stacking but broken in AA (3R) stacking. The
AB twisted TMDs have AB regions that form a honeycomb
network, and the AA twisted one has AA regions that form
a triangular lattice. Consequently, these two distinct moiré
systems show different electronic properties [13,14,43]. That
is, the bandwidth and localization of the flat bands are signif-
icantly different in these two distinct tb-TMDs. The starting
stacking arrangements may also play a significant role in the
twisted trilayer MoS2. Moreover, in the TTM that is composed
of two bilayer moiré patterns, there is an interplay between
these two patterns in both structural and electronic structures,
which may provide new effects in the TTM.

A. The atomic structures

In this paper, we focus on two different starting stacking
arrangements, AAB and AAA. Based on these two trilayer
stackings, we rotate the middle layer to construct a commen-
surate TTM. Note that only one moiré pattern is formed in
the atomic structure here. That is, the two bilayer patterns
have the same moiré periodicities, which is different from the
moiré-of-moiré structures [4]. Therefore, similar to the bilayer

FIG. 1. The atomic structure of twisted trilayer MoS2. Parts
(a) and (c) are the top views of AÃB-7.34◦ and AÃA-7.34◦. The
high-symmetry stackings are highlighted by circles. (b) The stack-
ings at O, H1, and H2 are AAB, S-Mo-Mo, and Mo-S-S, respectively
(labeled from bottom to top). (d) The stackings at A, B1, and B2 are
AAA, S-Mo-S, and Mo-S-Mo, respectively.

case, the basis vectors in the TTM can be expressed as

�t1 = −m�a1 + (m + n)�a2,

�t2 = (m + n)�a1 − n�a2, (1)

where �a1 = (a/2,
√

3a/2), �a2 = (−a/2,
√

3a/2) are the vec-
tors of monolayer MoS2, with a = 0.316 nm being the lattice
constant, and m and n are positive prime integers with n −
m = 1, which means that the moiré supercell contains only
one moiré pattern. Another two parameters to determine the
structure of MoS2 are the vertical distance between sulfur
atoms within a monolayer, dS-S = 0.317 nm, and the vertical
distance between the layers, c = 0.6145 nm. The twist angle
is cos θ = m2+4mn+n2

2(m2+mn+n2 ) , and the number of atoms in each moiré

supercell is N = 9(m2 + mn + n2). In our calculation, the in-
teger pair (m, n) = (10, 11) gives a twist angle θ = 3.15◦, and
one unit cell contains 993 Mo atoms and 1986 S atoms. We
use the notations AÃB-3.15◦ and AÃA-3.15◦ to denote these
two configurations. The number 3.15 represents the twist an-
gle, and the twisted middle layer is marked by a tilde above
the letter. Figure 1 shows the atomic structure of AÃB and
AÃA, in which the atoms inside the parallelogram form a unit
cell. There are three different types of high-symmetry points
in each unit cell, that is, the O, H1, and H2 high-symmetry
stackings in AÃB, shown in Fig. 1(b), and the A, B1, and B2

high-symmetry stackings in AÃA, shown in Fig. 1(d).

B. Tight-binding model

We employ a TB model to calculate the electronic proper-
ties of TTM [43,45]. The Hamiltonian of the TB model can be
expressed as

Ĥ = Ĥmono
1 + Ĥmono

2 + Ĥmono
3 + Ĥ int

12 + Ĥ int
23 , (2)
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where Ĥmono
1,2,3 are the Hamiltonian of monolayer MoS2, and

Ĥ int
12,23 are the interlayer interactions of bottom-middle lay-

ers and middle-top layers, respectively. The primitive cell of
monolayer MoS2 consists of one Mo atom and two S atoms,
and the relevant atomic orbital basis includes five d orbitals
of each Mo atom and three p orbitals of each S atom. In
the monolayer Hamiltonian, we only consider the interaction
terms between orbitals of the same type at first-neighbor po-
sitions, and terms between orbitals of different types at first-
and second-neighbor positions. For details of the TB model,
refer to [43,45]. The interlayer Hamiltonian includes only
the interaction between the adjacent chalcogen atoms at the
interface of each bilayer, which is

Ĥ int
12/23 =

∑
〈pi

′,�r2,p j ,�r1〉
tpi

′,p j (�r2 − �r1)φ†
2,pi

′ (�r2)φ1,p j (�r1)

+ H.c., (3)

where φi,pi is the pi orbital basis of the ith monolayer. The
Slater-Koster interlayer hopping term is [45]

tpi
′,p j (�r) = [Vpp,σ (r) − Vpp,π (r)]

rir j

r2
+ Vpp,π (r)δi, j, (4)

where r = |�r| = |�r2 − �r1|, i, j = x, y, z, ri, r j are the compo-
nents of the relative position vector �r of orbitals p′

i and p j ,
respectively, Vpp,b(r) = νb exp[−(r/Rb)ηb], in which b can be
σ and π , and νb, Rb, and ηb are fitting parameters [45]. The
cutoff distance in Eq. (4) is set to 0.75 nm. In the TB models
discussed in Refs. [18,24], interlayer coupling terms beyond
the first-neighbor, for example, the p S-p S, d Mo-p S, and d
Mo-d Mo in the Slater-Koster scheme, are considered. The
latter two hoppings only have minor changes to the band
structure [43]. Therefore, the main conclusion in this paper
will not change if we include d Mo-p S and d Mo-d Mo
interlayer hopping terms in Eq. (3) [43].

C. Lattice relaxation

Previous results show that the lattice reconstruction plays
a significant role in the electronic structures of twisted bilayer
TMDs [17,46]. To determine the equilibrium structure of a
TTM, we perform a lattice relaxation using the LAMMPS soft-
ware package [47,48]. The potentials we used in relaxation
are the interlayer Lennard-Jones (LJ) potential [49] and the
intralayer Stillinger-Weber (SW) potential [50]. During the
relaxation process, we use periodic boundary conditions in all
three dimensions, leading to both in-plane and out-of-plane
displacements. After the relaxation, the interlayer hopping
terms are modified via the Slater-Koster scheme in Eq. (4),
and intralayer hopping terms are modified with the following
formula [51]:

ti j,μν (ri j ) = ti j,μν

(
r0

i j

)(
1 − 
i j,μν

∣∣ri j − r0
i j

∣∣∣∣r0
i j

∣∣
)

, (5)

where ti j,μν (r0
i j ) is the previous intralayer hopping term be-

tween the μ orbital of the i atom and the ν orbital of the j
atom, ti j,μν (ri j ) is the corresponding new hopping term after
relaxation, r0

i j and ri j are the relative positions of atoms before
and after relaxation, respectively, and 
i j,S-S = 3, 
i j,S-Mo =

4, and 
i j,Mo-Mo = 5 stand for p S–p S, p S–d Mo, and d
Mo–d Mo hybridizations, respectively [51].

D. Electronic properties

After constructing the Hamiltonian Eq. (2) of the TTM, we
diagonalize the matrix to obtain the band structure and eigen-
states, and we adopt the tight-binding propagation method to
get other electronic structures [52]. The DOS can be calcu-
lated by [52,53]

D(E ) = lim
S→∞

1

S

S∑
p=1

1

2π

∫ ∞

−∞
eiEt 〈ψp|e−iHt |ψp〉dt, (6)

where |ψp〉 is the random initial state, and S is the number of
random samples. To guarantee the convergence of the DOS,
we calculate the DOS of a large system with more than ten
millions of orbitals.

III. RESULTS AND DISCUSSION

A. The interlayer interaction effect

The electronic structures of the tb-TMDs have been sys-
tematically investigated [13,18,24,43]. In tb-TMDs with an
AA arrangement, the high-symmetry stackings include AA
regions and two types of Bernal-like regions, which are BM/X

and BX/M . In the rigid AA case, the first (VB1) and the second
(VB2) highest valence bands (VBs) are separated by a gap at
the K-point of the BZ. We refer to this gap as �2, defined
as the energy difference between the minimum of VB1 at
the K-point and the maximum of VB2 at either the K- or
M-point. The state of the VB1 at the �-point is localized in the
AA region. When the lattice relaxation is taken into account,
the VB1 and VB2 touch at the K-point and the states of the
VB1 at the �-point localize in the BM/X and BX/M regions.
The situation of the tb-TMDs with an AB arrangement is
completely different. In the tb-TMDs with an AB structure,
the high-symmetry stackings are AB, BX/X , and BM/M . In both
rigid and relaxed cases, there is a gap �2, with the states at the
�-point in the BX/X and AB regions, respectively. Moreover,
in both the AA and AB cases, the moiré systems exhibit a
semiconducting band structure with a band gap separating
the valence and conduction bands. We define this gap as �1,
which is the energy difference between the �-point of the
VB1 and the K-point of the conduction-band edge. Note that
we focus on the valence-band structure of the twisted trilayer
TMDs. For simplicity, we will not include the SOC in the
calculations unless we discuss about the SOC effect.

As for the homotrilayer systems, the AÃB is a combination
of AA and AB moiré patterns, and the AÃA is a combination
of two AA moiré patterns, which are justified by the electronic
structures in Figs. 2(a) and 2(b) and Figs. 3(a) and 3(b). In the
AÃB − 3.15◦, the VB1 and VB2 touch at the K-point, with
the states at the �-point localized in both O (corresponding to
the AA bilayer case) and H2 (corresponding to the AB bilayer
case) regions. In AÃA − 3.15◦, similar to the AA bilayer
case, the VB1 is isolated from other VBs, and the states at the
�-point of the VB1 are in the A region [illustrated in Fig. 1(d)]
with an AAA stacking. The AAB arrangement could be con-
structed by a lateral shift of the AAA arrangement along the
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FIG. 2. The band structures and DOS of AÃB − 3.15◦ and AÃA − 3.15◦. Parts (a) and (c) are band structures and DOS of rigid and
relaxed AÃB, respectively. Parts (b) and (d) are band structures and DOS of rigid and relaxed AÃA, respectively.

armchair direction. Therefore, the lateral shift is an efficient
tuning node in the TTM, for instance, opening a gap between
the VB1 and VB2, engineering the localization and the width
of the flat bands.

The interlayer interaction could be modified by a lateral
shift. Another natural way is lattice relaxation. The out-
of-plane displacements of the moiré patterns lead to local
variations in the interlayer spacing (ILS) between two layers
in different high-symmetry regions, resulting in the variation
of the interlayer interaction. In the tb-TMDs, the lattice relax-
ation has a significant effect on the flat bands [13,24,43]. Next,
we study how the lattice relaxation will modify the flat band
properties of TTM. Our findings reveal that in the relaxed
AÃB, the VB1 becomes an isolated flat band, and states are

localized in the H1 with S-Mo-Mo stacking. On the contrary,
in the relaxed AÃA structure, the VB1 and VB2 touch at the
K-point, forming a Dirac-like band. The states of the flat band
at the �-point are mainly distributed in the B1 and B2 high-
symmetry points. Therefore, in the band structures plotted in
Fig. 2, there are two different types of flat bands. One is the
isolated flat band, of which the states are mainly localized
in one symmetry-stacking point; the other flat band touches
with VB2 at the K-point, forming a Dirac-like dispersion,
and states at different K points have different localization (see
Appendix A). Moreover, we find that the presence or absence
of the gap �2 does not change if different potentials [54] are
used in the lattice relaxation process, and the results are both
consistent with the DFT results in Appendix B.

FIG. 3. The eigenstates of the flat band at the �-point in AÃB − 3.15◦ and AÃA − 3.15◦. Parts (a) and (c) are eigenstates of rigid and
relaxed AÃB, and (b) and (d) are eigenstates of rigid and relaxed AÃA, respectively. In the first image on the left side of each rectangular
black box, the unit cell and high-symmetry points are marked with black diamond frames and white dots, respectively. In each black rectangle,
the panels from left to right are states in the bottom (B), middle (M), and top (T) layers, respectively.
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FIG. 4. The interlayer separations (ILSs) of AÃB and AÃA.
Parts (a) and (b) are ILSs of relaxed AÃB, and (c) and (d) are ILSs of
relaxed AÃA. Parts (a) and (c) are the ILS between the bottom and
middle layers, and (b) and (d) are the ILS between the middle and
top layers. Here, ILS is defined as the distance in the out-of-plane
direction between adjacent S layers.

To better understand the formation of the flat bands, we
analyze the ILSs of the moiré systems, which are shown in
Fig. 4. For comparison, we also plot the ILSs of the tb-TMDs
with AA and AB configurations (dashed lines). In the relaxed
AÃB, the maximum ILS between the bottom layer and middle
layer is at O with AA stacking, while the maximum ILS
between the middle layer and top layer is at H2 with S-S
stacking. Due to the presence of the third layer, the ILSs of
the H2 and O regions are different from that of the bilayer
cases. In particular, the H2 and O in Figs. 4(a) and 4(b) have
larger ILSs, respectively. On the contrary, the third layer has
no effect on the ILS in the H1 regions. Therefore, there is a
competition between the AA and AB bilayer patterns in the
lattice reconstruction. The homotrilayer AAA exhibits similar
relaxation patterns to homobilayer AA. That is, there is only
a global reduction of the ILS in the whole moiré pattern.

The change in electron distribution arises from the changes
of the interlayer interaction in different high-symmetry stack-
ing regions. It will be conformed by the strain effect in the
following section. In the rigid form of AÃB, the strongest
interlayer interaction between the bottom and middle layers
occurs in the O point with AA stacking, and the strongest
interlayer interaction between the middle and top layers

occurs in the H2 point with S-S stacking. Different from the
AAA stacking in rigid AÃA, there are two dominant stacking
forms in rigid AÃB. As a result, the electron distribution of
the bottom layer is concentrated in the O point, the electron
distribution of the top layer is concentrated in the H2 point,
and the electron distribution of the middle layer is present
at both O and H2 points, as depicted in Fig. 3(a). Hence,
the electrons do not exhibit localization in the TTM plane,
and VB1 represents a nonisolated band in the band structure
of rigid AÃB in Fig. 2(a). After relaxation, electrons are
redistributed to the H1 point, where interlayer interactions
are relatively stronger, resulting in the localization of VB1 in
relaxed AÃB in Fig. 2(c). Similarly, for the AÃA structure,
in its rigid form, the strongest interlayer interaction between
the bottom and middle layers, as well as between the middle
and top layers, occurs in the O point. Consequently, electrons
in all three MoS2 layers are localized in the O point, and VB1
of rigid AÃA represents an isolated band in Fig. 2(b). After
relaxation, the interlayer interaction in the O point weakens,
and electrons are redistributed to the H1 and H2 points, caus-
ing a transition in VB1 from an isolated to a nonisolated band
in Fig. 2(d).

B. The strain effect

We use a Gaussian bubble to modify the interlayer sepa-
ration in the high-symmetry stacking of TTM, increasing the
interlayer orbital distance of the AA stacking in the O point
or the S-S stacking in the H2 point, respectively. The Gaus-
sian function is in the form of �ILS = he−(x−x0 )2/σ 2

x −(y−y0 )2/σ 2
y ,

where h represents the amplitude of the bubble, (x0, y0) de-
notes the center of the Gauss bubble, and σx and σy are the
widths of the bubble in the x and y directions. The center of the
Gaussian function is at either O or H2 (calculated separately
for the two cases). For example, when the center is at O,
all orbitals on the bottom layer inside the bubble have their
z-coordinates subtracted by �ILS, causing a movement away
from the middle layer and top layer, while the middle and
top layers remain unchanged. For the hopping terms, we still
calculate them as we do during relaxation, with interlayer hop-
ping terms calculated according to the Slater-Koster formula
in Eq. (4) and intralayer hopping corrected using Eq. (5).

We analyze the electronic properties of rigid AÃB with the
modified interlayer separation. At the high-symmetry stacking
points O and H2 in rigid AÃB, the stacking forms are AAB
and Mo-S-S, respectively. By increasing the interlayer separa-
tion and weakening the interlayer interaction between orbitals
in AA stackings at O or S-S stacking at H2, we calculate the
energy bands and eigenstates of AÃB, shown in Fig. 5. The
corresponding band structure and eigenstates for weakened
interlayer interaction in S-S stacking are not shown here as
they exhibit similar behavior to Fig. 5. When the interlayer
interaction in AA stacking is weakened, electrons become
localized at H2. Conversely, when the interlayer interaction in
S-S stacking is weakened, electrons are localized at O. Both of
these operations cause electrons to exhibit localization in the
TTM plane, and the VB1 of AÃB becomes an isolated energy
band. This calculation supports our hypothesis that electrons
primarily distribute at high-symmetry points with strong in-
terlayer interactions. If there is only one high-symmetry point
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FIG. 5. The band structures and eigenstates of rigid AÃB with modified ILS. Parts (a) and (b) are the band structure and eigenstates of
rigid AÃB with a modified ILS of AA stacking in the O region, respectively. Here, the ILS is modified with a Gauss bubble, and the amplitude
of the Gauss bubble is h = 0.05 c, the center of the Gauss bubble is O, and the width of the Gauss bubble is (σx, σy) = (0.5, 0.5) nm. The
color map in (b) is the same as that in Fig. 3.

with dominant interlayer interaction, VB1 will be an isolated
band, while if multiple high-symmetry points contribute, VB1
will touch with VB2 at the K-point.

C. The spin-orbital coupling effect

In this section, we investigate the influence of the SOC
effect on the band structures of TTM. We introduce the
SOC in the TB Hamiltonian by doubling the orbitals and
adding an atomic on-site term λ

Mo/S
SO L · S[43,45,55]. In Fig. 6,

we show the band structures of AÃB and AÃA with SOC
(solid red line) and without SOC (dashed red line). It is
evident that regardless of whether the structure is rigid or
relaxed, the valence-band edge does not split due to SOC,
which means the band at the valence-band edge is doubly
spin degenerate in the BZ. This finding is contrary to that
of monolayer MoS2 and consistent with tb-TMDs [43,45].
In contrast, there is a large splitting of the energy band at
the K-point of the conduction-band edge, and at the �-point
and M-point with time-reversal symmetry, the energy bands
remain spin-degenerate. Moreover, the SOC decreases the �1

gap in all cases due to the splitting of the conduction band.
To understand the SOC effect on the flat bands, we analyze

their orbital weights. Figure 7 presents the orbital weights of

FIG. 6. The band structures with and without SOC of AÃB and
AÃA with and without relaxation. Parts (a) and (c) are band struc-
tures of rigid and relaxed AÃB, respectively, and (b) and (d) are band
structures of rigid and relaxed AÃA, respectively.

relaxed AÃB and relaxed AÃA. We use the thickness of the
lines to represent the size of the weight, and draw separately
the weight diagrams for spin-up and spin-down, as well as
the orbital weights of the three layers. It is obvious that the
dz2 and pz orbitals play a major role in the formation of the
ultraflat bands at the valence-band edge, and the contribution
of dz2 and pz orbitals in the middle layer is greater than that in
the bottom and top layers. This is consistent with the results
in Fig. 3, which indicates that the electron distribution in the
middle layer is the result of the combined action of the inter-
layer interaction between the bottom and middle layers and
that between the top and middle layers. In monolayer TMD,
the valence-band edge at the K-point has mainly d2 orbital
character, whereas at the �-point it has mainly d0 and pz

orbital characters [56]. This suggests that the flat band in AÃB
originates from the �-states of the constituent monolayer. All
these behaviors of the flat band at the valence-band edge are
also detected in the AÃA case.

The bottom of the conduction band mainly consists of d0

and pxy orbitals, and from Figs. 7(a) and 7(c) it is found
that at the bottom of the conduction band of relaxed AÃB,
the spin-up state at the K-valley is degenerate with the
spin-down state at the K ′-valley, and vice versa, indicating
that the spins are locked to a certain valley, which is a
spin-valley locking effect [43,57]. Spin-valley locking also
occurs in the electronic structure of relaxed AÃA shown
in Figs. 7(b) and 7(d). The spin-valley locking effects in
relaxed AÃB and relaxed AÃA are similar to the case of
tb-MoS2 [43].

The three-layer MoS2 orbitals have a great difference in the
contribution to the conduction-band edge. The middle layer
contribute the most in relaxed AÃA, while the bottom layer or
top layer contribute the most to the bottom of the conduction
band in relaxed AÃB, which means that the electrons in the K-
or K ′-valley are localized in one layer of TTM. This is because
the interlayer hopping is suppressed due to the spin-valley
locking [31,58,59]. The influence of interlayer interaction on
the electron distribution is greatly reduced, and electrons are
localized in a certain layer, depending on the spin-valley state
and layer index.

In relaxed AÃB the spin-up states in the bottom layer and
spin-down states in the top layer are degenerate, and vice
versa, indicating that there is a spin-layer locking in relaxed
AÃB. This is because in the AÃB structure, the middle layer
is twisted, and the bottom and top layers form a bilayer
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FIG. 7. The orbital weights of relaxed AÃB and relaxed AÃA. The d character (d0 = dz2 , d1 = dxz, dyz, d2 = dx2−y2 , dxy) refers to the 5
d orbital of Mo atoms, and p (pxy = px + py, pz) refers to the p orbital of S atoms. Parts (a), (c), and (e) are the orbital weights of spin-up
and spin-down d0, pxy, and pz orbitals in relaxed AÃB. Parts (b), (d), and (f) are the orbital weights of spin-up and spin-down d0, pxy, and pz

orbitals in relaxed AÃA. The orbital weight values of d2 and d1 are not shown here since they have very few contributions to the band edges.

structure with 2H phase, which has inversion symmetry in real
space. The inversion symmetry brings the spin-layer locking,
which is similar to the results of the electronic band structure
of bilayer TMDs [57–61]. Most of electrons in relaxed AÃB
are locked in a certain layer and valley, which is the so-called
spin-valley-layer locking [61,62], and they can be described
by the coupling between electron real spin, valley pseudospin,
and layer pseudospin. The Hamiltonian near the K- and K ′-
point can be written as Ĥ = −λτzŜzσ̂z + t⊥σ̂x [58,62,63], in
which λ is the SOC splitting amplitude, τz = ±1 is the index
of the K- and K ′-valley pseudospin, Ŝz = ±1 is the index of
spin-up and -down, t⊥ is the interlayer hopping amplitude, and
σ̂ are the Pauli matrices for the layer pseudospin. We set the
σ̂z of layer A to −1, the σ̂z of layer B to 1, and the σ̂z of the
twisted middle layer A to a value α between 0 and 1 related
to the twist angle. In the band structure of relaxed AÃB, the
energy band at the bottom of the conduction band splits into
two energy bands at the K- and K ′-valley due to the SOC
effect. For the energy band with larger values, τzŜzσ̂z = −1
is satisfied, while for the energy band with smaller values,

τzŜzσ̂z = 1 is satisfied. Thus, a spin in a valley is locked to
a certain layer, indicating a spin-valley-layer locking in the
bottom layer and top layer of relaxed AÃB. Meanwhile, in the
band structure of relaxed AÃA, there are also two splitting
bands at the bottom of the conduction band. For the energy
band with larger values, τzŜz = −1 is satisfied, while for the
energy band with smaller values, τzŜz = 1 is satisfied, and
σ̂z = α, which means there is a spin-valley locking in relaxed
AÃA, and there is no spin-layer locking because of the lack
of inversion symmetry in AÃA. The spin-valley-layer locking
effect makes AÃB a promising platform for studying optical
and magnetoelectric effects involving the degrees of freedom
including the real electron spin, the layer pseudospin, and the
valley pseudospin [31,58–60,63,64].

D. The electric field effect

In this section, we study the response of the electronic
properties of TTM to the electric field. We define the electric
field as positive when its direction is from the bottom to the
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FIG. 8. The electric field response. The band structure, eigenstates, and flat band response (black squares) for (a)–(d) the rigid AÃB case,
and (e)–(h) the rigid AÃA case. The cases for relaxed AÃB and AÃA (red dots) are also plotted in (d) and (h), respectively. The figures in (i)
are the eigenstates at the �-point of rigid AÃB with the electric field −0.2, −0.1, −0.06, 0, 0.06, 0.1, and 0.2 V/nm; from the left to the right
are the eigenstates in the bottom, middle, and top layers. The electric field applied in (a), (c), (e), and (g) is 0.5 V/nm, while the electric field
used in (b) and (f) is −0.5 V/nm. In (b), (c), (f), and (g), the figures from the bottom to the top are eigenstates at the �-point in the bottom,
middle, and top layers, respectively. The band structure under an electric field of magnitude −0.5 V/nm is similar to that under an electric
field of magnitude 0.5 V/nm, so it is not included in this article. The color maps in (b), (c), (f), (g), and (i) use the same color bar as Fig. 3.

top of TTM, and negative when it is from the top to the
bottom. The effect of the electric field is considered by adding
an electric potential on the on-site term in Eq. (2). As shown
in Figs. 8(a) and 8(e), the VB1 of rigid AÃB and rigid AÃA
become an isolated band when the electric field is 0.5 or −0.5
V/nm (the band structure for an electric field of −0.5 V/nm
is not shown here). For rigid AÃB, when the electric field is
−0.5 V/nm, the electrons are localized at H2, and when the
electric field is 0.5 V/nm, the electrons are localized at O, as
shown in Figs. 8(b) and 8(c). In contrast, Figs. 8(e) and 8(f)
show that regardless of whether the electric field is −0.5 or
0.5 V/nm, the electrons are localized at A.

We investigate how the gaps �1, �2 (defined in Sec. III A),
and the bandwidth of VB1 (BW) change with the electric
field, as depicted in Figs. 8(d) and 8(h). The �1 of both rigid
AÃB and rigid AÃA decrease linearly as the electric field

increases, and this tendency occurs regardless of whether the
electric field is positive or negative. With the electric field
large enough, there will be a transition between the semi-
conductor and metal. Such a giant Stark effect is similar to
the case of tb-TMDs [65,66]. We can find that the �2 of
rigid AÃB increases first and then decreases as the electric
field increases, and it reaches its maximum value around
0.5 V/nm, while BW has the opposite trend to �2, reaching
its minimum value around 0.5 V/nm. In addition, the �2 of
rigid AÃA gradually decreases as the electric field increases,
while the BW of rigid AÃA changes very little. Furthermore,
we observe that �1, �2, and BW are all symmetrical about
E = 0. In the rigid AÃA, the electric field attempts to close
the gap between the VB1 and VB2. To understand the non-
linear changes of the �2 with the electric field in the AÃB
case, we calculate the flat band states in real space, shown

FIG. 9. The magnetic field effect on the rigid AÃA. Parts (a) and (b) are the DOS vs energy and magnetic fields without and with SOC,
respectively. In (b), we also consider the spin Zeeman effect. (c) The schematic diagram of the energy level splitting of rigid AÃA (solid
curves) with SOC under a magnetic field. The dashed curves represent the Zeeman-shifted bands. We ignore the Landau levels in (b).
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FIG. 10. The eigenstates of the flat band at the M- and K-point in AÃB − 3.15◦ and AÃA − 3.15◦. Parts (a) and (c) are eigenstates of rigid
and relaxed AÃB, and (b) and (d) are eigenstates of rigid and relaxed AÃA, respectively. In each black rectangle, the panels from left to right
are states in the bottom (B), middle (M), and top (T) layers, respectively. The unit cell and high-symmetry stackings are outlined in the bottom
layer.

in Fig. 8(i). There is a charge transfer between the three
layers. A positive electric field depletes the top layer, and the
system behaves like a tb-TMD with an AA arrangement. That
is why the flat band states localize in the O region. Under
a negative electric field, the system behaves like a tb-TMD
with an AB arrangement, where the flat band states localize in
the H2 region. The critical electric field is around 0.5 V/nm.
In Figs. 8(d) and 8(h), we investigated the response of the
electronic properties of relaxed AÃB and AÃA to electric
fields. We observed a turning point in the behavior of relaxed
AÃB and AÃA near E = ±0.5 V/nm. The lattice relaxation
leads to increased interlayer separation in regions of originally
strong interlayer interaction, resulting in greater on-site en-
ergy when an electric field is applied. As the electric field
increases, electrons transfer from areas of strong interlayer
interaction to those with larger interlayer spacing due to the
electric field effect. Moreover, there is a competition between
the interlayer interaction and the electric field, resulting in a
W-shape and “screening effect” of the �2 in relaxed AÃB
and AÃA, respectively. In the relaxed AÃB, the interlayer
distance in the O is larger than that of the H1. So the O
region has a larger response to the electric field. Consequently,
around E = ±0.5 V/nm, the states are localized at both O
and H1 regions (not shown here). The relaxed AÃA structure
has similar behavior. After the turning point E = ±0.5 V/nm,
there is a charge transfer from points B1 and B2 to the A region
where the electric field effect is stronger.

E. The magnetic field effect

We apply a magnetic field perpendicular to the plane of
the TTM via Peierls substitution [67,68]. Figure 9(a) reveals
energy level splitting in both the conduction and valence
bands of rigid AÃA in the absence of SOC. The valence-
band edge has dz2 and pz orbital characters, which have zero
magnetic quantum number. The equal-energy splittings in
the valence-band edge are Landau levels. On the contrary,
there is a valley splitting in the conduction-band edge (il-
lustrated by dashed lines). The valley splitting magnitude
is μe ≈ 0.105 meV/T, and the g-factor is gc ≈ μe/μB =
1.814, where μB = 0.057 88 meV/T represents the Bohr
magneton. Therefore, the conduction-band edge that consists
of dz2 and pxy orbitals has both Landau levels and valley
splitting.

When consider the SOC, we also include a spin Zeeman
term [69] in the Hamiltonian of Eq. (2). As discussed in
Sec. III C, the SOC effect results in a spin splitting of the
conduction-band edge. In the presence of the magnetic field,
as shown in Fig. 9(b), we observe that the SOC-induced
energy levels at the bottom of the conduction band not only
manifest as valley splitting, but they also experience a shift
attributable to the spin Zeeman effect. The valley splitting
slopes are different for the c1 and c2 bands due to the Zeeman
effect, shown in Fig. 9(c). Moreover, in the valence-band
edge, both Landau levels and Zeeman splittings occur in the
valence-band edge.
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FIG. 11. Comparison of rigid and relaxed DFT (solid red) vs TB
(dashed blue) band structures at the twist angle θ = 6.01◦.

IV. CONCLUSION

In this study, we evaluated the electronic properties of
AÃB and AÃA both with and without relaxation. Our results
indicate that the electronic properties of rigid AÃB are distinct
from those of AÃA. Before relaxation, the VB1 of rigid AÃB
intersects with VB2 at the K-point, and it becomes isolated
after relaxation, while AÃA has isolated and nonisolated VB1
before and after relaxation, respectively. The VB1 originates
from the �-states of the monolayer. We analyzed the elec-
tron distributions of the two structures and found that an
isolated VB1 is usually associated with the localization of
electrons at high-symmetry points, which have the strongest
interlayer interactions. Rigid AÃA have only one dominant
high-symmetry stacking form in their interlayer interactions,
leading to the localization of electrons and an isolated VB1.
However, in rigid AÃB, there are two high-symmetry stack-
ings, AA and S-S, with strong interlayer interactions, and
electrons are primarily distributed at these two regions, lead-
ing to a nonisolated VB1. We used this relationship between
the interlayer interactions at high-symmetry points and elec-
tronic properties to open the gap between VB1 and VB2 in
rigid AÃB by weakening the interlayer interaction of either
the AA or S-S stacking. Due to the different symmetry, after

TABLE II. The interlayer distances (in nm) at high-symmetry
points.

Relaxed AÃB Relaxed AÃA

O H1 H2 A B1 B2

BM 0.679 0.656 0.665 0.680 0.651 0.651
MT 0.665 0.656 0.680 0.680 0.651 0.651

introducing the SOC, we find a spin-valley-layer locking in
the AÃB, whereas a spin-valley locking in the AÃA. We
apply an electric field to open the gap in rigid AÃB. The gap
between VB1 and VB2 is opened through the synergistic ef-
fect of interlayer interactions and the electric field. Moreover,
we found that the trend of the gap of AÃB changes differently
from that of AÃA with the variation of the electric field E . In
the AÃB, due to the electric field, it decouples to an AA or AB
tb-TMD, opening a gap between VB1 and VB2 and changing
the localization of the flat band states. Moreover, we examined
how the energy levels of rigid AÃA respond to the magnetic
field, both with and without SOC. We discovered that, in
both scenarios, applying a magnetic field induces energy level
splitting. This splitting is attributed to valley splitting, Zeeman
shift, and Landau levels with quantized energies. Finally, com-
pared with the tb-TMDs, we emphasize the peculiar properties
observed in TTM. The TTM is more flexible and controllable,
which is very sensitive to the starting stacking arrangements,
lateral shift, and external fields. Two bilayer moiré patterns in
the TTM have an interplay in both structural and electronic
structures. The spin-valley layer ensures that the spin in the
TTM could be effectively manipulated by the electric field
control of the layer polarization and magnetic field control of
the valley polarization.
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TABLE I. The fitting parameters for interlayer hopping from Ref. [45].

a (nm) c (nm) dS-S νσ (eV) Rσ (nm) ησ νπ (eV) Rπ (nm) ηπ λMo
SO (eV/h̄2) λS

SO (eV/h̄2)

0.316 0.6145 0.317 2.627 0.3128 3.859 −0.708 0.2923 5.724 0.0836 0.0556
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TABLE III. The tight-binding hopping parameters for intralayer hopping.

(0,0,0) E0 = −0.1380, E1 = E2 = 0.0874, E3 = E4 = 1.0688,
E5 = E6 = −1.5984, E7 = E10 = −1.8352, E8 = E9 = −1.5984,

t0,6 = t0,9 = −0.6648, t0,7 = −0.6248, t0,10 = 0.6248, t1,5 = t1,8 = 0.9980,
t2,6 = t2,9 = 0.4608, t2,7 = −0.6742, t2,10 = 0.6742, t3,5 = −0.5574, t3,8 = 0.5574,

t4,6 = 1.5262, t4,7 = t4,10 = −0.9751, t4,9 = −1.5262, t5,8 = t6,9 = −0.3082, t7,10 = 1.0597
(1,0,0) t0,0 = −0.2979, t0,1 = 0.4120, t0,2 = −0.1056, t0,5 = t0,8 = 0.5758, t0,6 = t0,9 = 0.3324,

t0,7 = −0.6248, t0,10 = 0.6248, t1,1 = −0.3499, t1,2 = 0.1119, t1,5 = t1,8 = 0.5951,
t1,6 = t1,9 = t2,5 = t2,8 = −0.2326, t1,7 = 0.5839, t1,10 = −0.5839, t2,2 = 0.0665,

t2,6 = t2,9 = 0.8637, t2,7 = 0.3371, t2,10 = −0.3371, t3,3 = −0.0275, t3,4 = −0.3598,
t3,5 = 1.0053, t3,6 = t4,5 = 0.9022, t3,7 = t3,10 = 0.8444, t3,8 = −1.0053,

t3,9 = t4,8 = −0.9022, t4,4 = −0.1471, t4,6 = −0.0365, t4,7 = t4,10 = 0.4876,
t4,9 = 0.0365, t5,5 = t8,8 = 0.1542, t5,6 = t8,9 = 0.3695, t5,7 = −0.0244,

t5,8 = 0.0783, t5,9 = −0.0156, t5,10 = −0.0841, t6,6 = t9,9 = 0.6438, t6,7 = 0.0180,
t6,8 = −0.0476, t6,9 = 0.0418, t6,10 = −0.0703, t7,7 = t10,10 = −0.1828,

t7,8 = −0.0188, t7,9 = −0.1080, t7,10 = 0.0088, t8,10 = 0.0244, t9,10 = −0.0180

(0,1,0) t0,0 = −0.2979, t0,1 = −0.4120, t0,2 = −0.1056, t0,5 = t0,8 = −0.5758, t0,6 = t0,9 = 0.3324,
t0,7 = −0.6248, t0,10 = 0.6248, t1,1 = −0.3499, t1,2 = −0.1119, t1,5 = t1,8 = 0.5951,

t1,6 = t1,9 = t2,5 = t2,8 = 0.2326, t1,7 = −0.5839, t1,10 = 0.5839, t2,2 = 0.0665,
t2,6 = t2,9 = 0.8637, t2,7 = 0.3371, t2,10 = −0.3371, t3,3 = −0.0275, t3,4 = 0.3598,

t3,5 = 1.0053, t3,6 = t4,5 = −0.9022, t3,7 = t3,10 = −0.8445, t3,8 = −1.0053,
t3,9 = t4,8 = 0.9022, t4,4 = −0.1471, t4,6 = −0.0365, t4,7 = t4,10 = 0.4876,

t4,9 = 0.0365, t5,5 = t8,8 = 0.1542, t5,6 = t8,9 = −0.3695, t5,7 = 0.0244,
t5,8 = 0.0783, t5,9 = 0.0156, t5,10 = 0.0840, t6,6 = t9,9 = 0.6438, t6,7 = 0.0180,

t6,8 = 0.0476, t6,9 = 0.0418, t6,10 = −0.070, t7,7 = t10,10 = −0.1828, t7,8 = 0.0188,
t7,9 = −0.1080, t7,10 = 0.0088, t8,10 = −0.0244, t9,10 = −0.0180

(1,1,0) t0,6 = t0,9 = −0.1059, t0,7 = −0.0485, t0,10 = 0.0485,
t2,6 = t2,9 = −0.1733, t2,7 = −0.1559, t2,10 = 0.1559

(1,-1,0) t0,0 = −0.2979, t0,1 = 0.1145, t0,2 = 0.4096, t0,5 = t0,8 = −0.0917, t0,6 = t0,9 = 0.0529,
t0,7 = −0.0485, t0,10 = 0.0485, t1,1 = 0.2747, t1,2 = 0.2487, t1,5 = t1,8 = −0.1300,
t1,6 = t1,9 = t2,5 = t2,8 = 0.0750, t1,7 = −0.1350, t1,10 = 0.1350, t2,2 = −0.5581,

t2,6 = t2,9 = −0.0433, t2,7 = 0.0780, t2,10 = −0.0780, t3,3 = −0.2069, t3,4 = 0.2562,
t4,4 = 0.0323, t5,5 = t8,8 = 0.8886, t5,6 = t8,9 = 0.0545, t5,7 = 0.0034, t5,8 = 0.0236,

t5,9 = −0.0160, t5,10 = t7,8 = −0.1029, t6,6 = t9,9 = −0.0906, t6,7 = −0.0302,
t6,8 = 0.0160, t6,9 = 0.0966, t6,10 = −0.0377, t7,7 = t10,10 = −0.1828,

t7,9 = 0.0377, t7,10 = 0.0088, t8,10 = −0.0034, t9,10 = 0.0302

APPENDIX A: THE EIGENSTATES OF THE FLAT BANDS
IN AÃB AND AÃA WITH AND WITHOUT RELAXATION

Figure 10 shows the eigenstates of AÃB and AÃA at the
M- and K-point with and without relaxation. By comparing
Figs. 3 and 10, it is clear that the localization of the states of
different k points is the same in the isolated flat band case, but
different in the nonisolated flat band case.

APPENDIX B: DFT VS TB BAND STRUCTURES

In Fig. 11, we compare the DFT and TB band structures
for rigid and relaxed AÃB at the twist angle θ = 6.01◦. DFT
band structures have been computed with ABACUS [70,71].
We use the Perdew-Burke-Ernzerhof exchange-correlation
functional [72], SG15 optimized norm-conserving Vanderbilt
(ONCV) multiprojector pseudopotentials [73], and standard
atomic orbitals hierarchically optimized for the SG15-V1.0
pseudopotential [74]. In the relaxation process, the largest
force among all of the atoms is 3.793 × 10−3 eV/Å, and
the convergence criterion for self-consistent-field (SCF)

calculations during band-structure calculation is that the den-
sity difference between two SCF steps (DRHO) is less than
5 × 10−8. We found that the TB and DFT results have the
same conclusion that VB1 touches VB2 at the K-point for
rigid AÃB and becomes an isolated band after relaxation,
which indicates that our TB model can reach the same con-
clusion as DFT when studying the effect of relaxation on the
band structures of TTM.

APPENDIX C: THE TIGHT-BINDING
MODEL PARAMETERS

In Table I, a is the lattice constant, c is the interlayer
distance, dS-S is the nearest distance between S atoms in
the out-of-plane direction,λMo/S

SO is the atomic spin-orbit cou-
pling strength, and the remaining parameters are the interlayer
hopping calculation formula parameters used in Eq. (4). For
monolayer MoS2, the tight-binding hopping parameters are
present in Table III, Combining the TTM structural param-
eters and interlayer hopping parameters in Table I, we can
use Eq. (4) to calculate the interlayer hopping terms of TTM.
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Then, by combining the intralayer hopping parameters in
Table III, we can use TBPLaS to calculate the electronic
properties of TTM [52]. In Table II, we list the interlayer
distances at high-symmetry points of relaxed AÃB and re-
laxed AÃA. The interlayer distances are all between 0.65
and 0.68 nm, with the largest interlayer distances found in
AA stacking and S-S stacking, reaching up to 0.68 nm. Ab
initio calculations (vdW-DF) yield interlayer distances of
0.677 nm for AA stacking and 0.623 nm for AB stacking
[75]. Compared to the rigid structures of AÃB and AÃA, the

relaxed structures exhibit interlayer distances that are closer
to the realistic case. What is more, the study revealed that
when changes in intralayer hopping, caused by atomic dis-
placements within layers, are disregarded, the differences in
electronic properties between rigid and relaxed twisted bilayer
MoS2 are similar to our conclusions [24]. Therefore, we can
infer that the primary source of difference in electronic prop-
erties between rigid and relaxed structures in TTM [Figs. 8(d)
and 8(h)] mainly arises from variations in the interlayer
spacing.
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