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Origin of the magic angle in twisted bilayer graphene from hybridization
of valence and conduction bands
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The magic-angle phenomenon of twisted bilayer graphene (tBG), i.e, the nontrivial topological flat bands
with vanishing Fermi velocity at half filling, has aroused prominent attention on superconductivity, correlated
insulators, orbital magnetism, etc. Several efforts have been made to unravel the generation mechanism of the
magic-angle phenomenon in tBG. Herein, we show that the hybridizations between the conduction band (CB)
and valence band (VB) from different monolayers are critically responsible for the flat bands with band inversion
as a signature of the magic-angle phenomenon. The proposed new mechanism for the magic-angle phenomenon
is verified by the reversion of irreducible representations of energy bands at � point. We also discuss the effects
of VB-VB and CB-CB hybridizations on the band structures of tBG. The tight-binding results indicate that
the VB-VB and CB-CB hybridizations from different layers play the role of the moiré potential in real space
and reduce the bandwidth in the framework of nearly-free electron model. Our conclusions can also give the
explanation on the absence of the magic-angle phenomenon even with bandwidth reductions in twisted bilayer
MoS2 and BN.
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I. INTRODUCTION

A twisted bilayer graphene (tBG) can be formed by
overlaying one layer of graphene on top of another with a
twist. Flat bands with vanishing Fermi velocity were predicted
theoretically near neutrality in the tBG at a series of small
twist angles, namely the magic angles [1]. Among them, only
the largest magic angle (∼1.05◦) is stable and others disappear
after the structural relaxation [2], and here we refer to the
largest one once the magic angle is mentioned. The atomic
relaxation changes the interlayer coupling strength and leads
to shifts of the magic angle, but the narrow band phenomenon
remains [3]. For materials with flat bands near the Fermi
energy, the Coulomb interaction dominates over the kinetic
energy because of the small group velocity, which puts the flat
band materials into strongly correlated regime [4]. Over the
past decade, the flat bands [5–7] and the novel strongly corre-
lated physical phenomena of the magic-angle tBG, such as the
magnetism [8–15], correlated insulator [16–26], superconduc-
tivity [16,27–36], linear-in-temperature resistivity [37–39],
and intrinsic quantized anomalous Hall effect [40–42], have
been widely studied in both theories and experiments.
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Due to the importance of the flat bands, understanding the
magic-angle phenomenon becomes one of the concerned tasks
in condensed matter physics. Previous works have presented
their explanations and understanding of the magic angle in
tBG. Song et al. used winding number of Wilson loops and ir-
reducible representations of high-symmetry k points to verify
the flat band topology of tBG at magic angle [43]. Tarnopol-
sky et al. proposed a chirally symmetric continuum model for
the emergence of flat bands and built a link between the flat
bands and the lowest Landau level wave functions on torus
[44]. Gao et al. claimed that the magic-angle phenomenon
originates from the Heisenberg uncertainty principle [45].

In this paper, from the way of band hybridizations, we
propose a new mechanism: the flat bands with band inversion
as a signature of magic-angle phenomenon arise from the
hybridizations between the conduction band (CB) and valence
band (VB) from different monolayers. In the basis of CB and
VB of the bottom and top monolayers, we discuss the effects
of CB-CB, VB-VB, and VB-CB hybridizations from different
layers on the band structures of tBG. We find that (i) the
VB-VB and CB-CB hybridizations play the role of the moiré
potential in real space and reduce the bandwidth in the way
of nearly-free electron model (NFEM), and (ii) the VB-CB
hybridization enables the band inversion and magic-angle flat
bands in tBG. The symmetry analysis and the reversion of
irreducible representations at � point for the band structures
of tBG manifest the band inversion generated by the VB-CB
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hybridization from different layers near the magic angle. Our
approach with an advantage of a more traditional language
of band theory can be straightforwardly generalized to other
two-dimensional (2D) materials including twisted bilayer
MoS2 and BN, and clarify the reason why the magic-angle
phenomenon is absent even with the bandwidth reduction in
these systems.

II. METHODS

Crystal structure.—Graphene has the hexagonal lattice
with its lattice constant a = 2.46 Å and carbon-carbon bond
length b = 1.42 Å. Here we choose a1 = a(

√
3

2 ,− 1
2 ) and

a2 = a(
√

3
2 , 1

2 ) as the lattice vectors of graphene, and choose
τA = b(1, 0) and τB = b(2, 0) as the coordinates of two
sublattices. Then the reciprocal lattice vectors are given by
b1 = 2π

a ( 1√
3
,−1) and b2 = 2π

a ( 1√
3
, 1). Starting from the AA-

stacked bilayer graphene with interlayer spacing fixed at
3.35 Å, we can obtain a tBG by rotating the top layer by
an angle of θ anticlockwise with respect to the bottom layer.
Then the lattice vectors and reciprocal lattice vectors of the top
layer read [Rθa1, Rθ a2] and [Rθb1, Rθ b2], respectively, where
Rθ is the rotation operation. The structure of a commensurate
tBG can also be determined by two integers m and n uniquely.
For a pair of m and n, the twist angle θ of the commensurate
tBG satisfies

cos θ = m2 + 4mn + n2

2(m2 + mn + n2)
, (1)

and then these vectors correspondingly take the forms as

am
1 = na1 + ma2,

am
2 = −ma1 + (m + n)a2, (2)

and

bm
1 = 2π

a

(m + n)i + m−n√
3

j

m2 + n2 + mn
,

bm
2 = 2π

a

−mi + 2n+m√
3

j

m2 + n2 + mn
, (3)

respectively. In this paper, only the case of m = n + 1 is
considered, because this choice always corresponds to the
smallest number of atoms inside a unit cell at a given twist
angle [46]. In addition, m > n means the anticlosewise rota-
tion of the top layer.

Tight-binding model.—The Hamiltonian of a tBG can be
described by the pz-orbital based tight-binding model as

H =
∑

i

ε0c†
i ci +

∑
i �= j

t (ri j )c
†
i c j, (4)

where c†
i and ci are the creation and annihilation operators for

pz orbital at ith site, ε0 is the onsite energy, and t (ri j ) is the
hopping energy between pz orbitals at ith and jth sites with
ri j as their relative position vector. The Slater-Koster tight-
binding hopping energy reads [47]

t (ri j ) = n2Vppσ (|ri j |) + (1 − n2)Vppπ (|ri j |), (5)

where n is the direction cosine of ri j with respect to the z axis,
and the Slater-Koster parameters Vppσ and Vppπ read

Vppπ (|r|) = −γ0eδ(a0−|r|),

Vppσ (|r|) = γ1eδ(h0−|r|). (6)

We take the tight-binding parameters as ε0 = 0.0 eV, γ0 =
2.8 eV, a0 = 1.42 Å, γ1 = 0.48 eV, h0 = 3.35 Å, and δ =
2.218 Å−1. The hoppings for carbon-carbon distance larger
than 5 Å are ignored. This tight-binding model has been used
in literatures and can reproduce the electronic structure in well
accordance with experiments [48–52].

Low-energy model.—Based on the tight-binding model in
real space given above, we introduce the low-energy model,
which reproduces the accurate electronic structures of the tBG
around the Fermi energy and needs relatively small computa-
tion resources. For a tBG, we define the Bloch functions of
the two layers by

|kb, Xb〉 = 1√
N

∑
RXb

eikb·RXb

∣∣RXb

〉
(Bottom layer),

|kt , Xt 〉 = 1√
N

∑
RXt

eikt ·RXt
∣∣RXt

〉
(Top layer), (7)

where the bottom and top layers are labeled by the subscripts
b and t , respectively, N is the normalization factor, RXl is the
position of sublattice Xl (A or B) of layer l (b or t), and |RXl 〉
denotes the pz orbital at position RXl . Based on the Bloch
functions, the Hamiltonian matrix has the form

H =
[

Hb U
U † Ht

]
, (8)

where Hb and Ht are the Hamiltonian matrices of the bottom
and top layers, respectively, and U is the interlayer coupling
matrix. The intralayer Hamiltonian matrix elements read

〈kb, Xb|Hb|k′
b, X ′

b〉 = hXbX ′
b
(kb)δkb,k

′
b
,

〈kt , Xt |Ht |k′
t , X ′

t 〉 = hXt X ′
t
(kt )δkt ,k

′
t
, (9)

and

hXbX ′
b
(kb) =

∑
Lb

t (Lb + τXbX ′
b
)e

ikb·(Lb+τXbX ′
b

)
,

hXt X ′
t
(kt ) =

∑
Lt

t (Lt + τXt X ′
t
)eikt ·(Lt +τXt X ′

t
)
, (10)

where the summation runs over all position vectors of the unit
cell Ll , and τXl X ′

l
= τX ′

l
− τXl with τXl as the relative position

of sublattice Xl inside a unit cell. The interlayer Hamiltonian
matrix elements read [53–55]

〈kb, Xb|U |kt , Xt 〉
=

∑
GbGt

T (kb + Gb)eiGb·τXb e−iGt ·τXt δkb+Gb,kt +Gt , (11)

where Gb and Gt are the reciprocal points of the bottom
and top layers, respectively, and T (kb + Gb) is the in-plane
Fourier transform of the interlayer hopping function t (r) at
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FIG. 1. (a) The Brillouin zones of 13.17◦-tBG (green hexagonal networks) and two monolayers (blue and red hexagons). Kb and Kt (K ′
b

and K ′
t ) are the K (K ′) valleys of the bottom and top layers. The band structures of 3.15◦-tBG in (b) and 1.20◦-tBG in (c). The bands of Valley

1 and Valley 2 originate from the couplings between two layers’ K valleys and between two layers’ K ′ valleys, respectively. The dependence
of the bandwidth on the twist angle for V Btw denoted by the solid blue line in (d) with the inset as its zoom-in near the magic angle, and the
bandwidths of the highest H− band (dashed red line) and the folded valence band closest to the Fermi energy of the decoupled bilayer (dashed
gray line) are also plotted for comparison.

vector kb + Gb, which is defined by

T (q) = 1

S

∫
t (rxy + hêz )e−iq·rxy drxy, (12)

where S is the area of the unit cell of graphene monolayer.
For the tight-binding model we adopt that T (q) only depends
on the length of q, namely T (q) = T (|q|), and it decreases
sharply with the growth of |q|.

According to Eq. (11), the Bloch functions of the two lay-
ers can couple with each other if the reciprocal points Gb and
Gt make the condition kb + Gb = kt + Gt fulfilled. Therefore,
we can define a lattice by the lattice vectors [56]

g1 ≡ b1 − Rθ b1 = (n − m)
(
bm

1 + bm
2

)
,

g2 ≡ b2 − Rθb2 = (m − n)bm
1 , (13)

which refer to the coupling lattice because kb and kt can
couple with each other only if they are on the same coupling
lattice, namely,

kb = k0 + pbg1 + qbg2,

kt = k0 + pt g1 + qt g2, (14)

with integers pb, qb, pt , and qt . These wavevectors in Eq. (14)
construct a k0-dependent subspace, and the dimension of the
k0-dependent subspace is infinitely large because there are not
limitations of the integers pb, qb, pt , and qt . The interlayer
coupling is much weaker than the intralayer interaction such
that the electronic states of the tBG in the low-energy region
almost originate from the coupling between the states of the
two layers around the energy valleys. Therefore, we can limit
kb and kt around the valley points to grasp the low-energy
physics of the tBG.

III. RESULTS AND DISCUSSION

A. Review on the magic-angle phenomenon

We firstly present the magic-angle phenomenon in the tBG
[1]. As shown in Figs. 1(b)−1(c), there are two valence bands
(labeled by V Btw) and two conduction bands (labeled by
CBtw) for tBG around the Fermi energy, and among these
four bands one pair of valence and conduction subbands is

from one energy valley, and the other pair is from the other
energy valley. As we can see, the two V Btw from different
valleys have the same bandwidth, and so do the two CBtw. In
Fig. 1(d), the dependence of the bandwidths of the V Btw on
the twist angle θ shows clearly the magic-angle phenomenon
of the tBG reported in literature [1]. That is, the bandwidth
decreases when the twist angle decreases till the magic angle
(θM) where the flat bands form with its bandwidth close to
zero in Fig. 1(c), and then the bandwidth increases when
the twist angle decreases further. Here our calculated magic
angle is 1.20◦, which slightly deviates from the other values
of magic angle such as 0.99◦ [57], 1.05◦ [1], 1.08◦ [46], and
1.1◦ [27] in previous theories and experiments because of the
adopted slightly different tight-binding parameters, while this
has no influence on analyzing the emergence of magic-angle
phenomenon in tBG. In addition, the relaxation does not ruin
the formation of flat bands at the magic angle, even though the
relaxation effect has influence on the detailed band structures
[46], such as the band gap between the V Btw and CBtw bands
and others.

B. Band inversion

To track the origins of the flat bands of the two V Btw and
two CBtw of tBG at the magic angle, we project the states
of the four bands on the eigenstates of the two decoupled
monolayers and further define a k-dependent function β(k),
which reflects how the conduction and valence bands of the
decoupled monolayers contribute to a given eigenstate |ϕ(k)〉
of tBG, as

β(k) =
∑

l

|〈φl,CB(k)|ϕ(k)〉|2 −
∑

l

|〈φl,V B(k)|ϕ(k)〉|2,

(15)

where |φl,CB(k)〉 and |φl,V B(k)〉 are the eigenstate states of
conduction and valence bands of the layer l . We calculate
β(k) in Eq. (15) under different twist angles, as shown in
Fig. 2. The results show that the valence (conduction) band
states of the decoupled monolayers dominate the V Btw (CBtw)
of the tBG for θ > θM . However, it is explicitly opposite for
θ < θM . Therefore, the band inversion for tBG happens after
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FIG. 2. The twist-angle-dependent evolution characteristics of
the two V Btw and two CBtw of tBG from different valleys (solid and
dashed lines) near the magic angle θM = 1.20◦. The color bar shows
the β(k) defined in Eq. (15).

the critical angle θM , i.e., the magic angle. Furthermore, the
band inversion indicates that the bands of eigenstates from dif-
ferent layers are hybridized and then form the band structures
of tBG, especially the flat bands.

C. Hybridizations between the conduction and valence bands
from different monolayers

To see how the eigenstates of different monolayers interact
leading to the band inversion phenomenon and the flat bands
near the magic angle, we adopt the basis consisting of the
valence band (VB) and conduction band (CB) eigenstates of
the bottom and top monolayers to write the Hamiltonian as

H =
(

H− Ũ

Ũ † H+

)
, (16)

where H− and H+ are the Hamiltonians for the VB and CB
eigenstates of the bottom and top layers, respectively, with
following forms

H− =
(

Hb− Hb−t−

H†
b−t− Ht−

)
, H+ =

(
Hb+ Hb+t+

H†
b+t+ Ht+

)
, (17)

and Ũ is the VB-CB hybridization

Ũ =
(

0 Ũb−t+

Ũt−b+ 0

)
. (18)

In Eq. (17), H− contains Hb− for the VB of the bottom layer,
Ht− for the VB of the top layer and the VB-VB hybridization
Hb−t− between the bottom and top layers, and similarly, H+
contains corresponding Hb+ , Ht+ , and the CB-CB hybridiza-
tion Hb+t+ . In Eq. (18), Ũb−t+ represents the hybridization
between the VB of the bottom layer and the CB of the top
layer, and similarly, Ũb+t− is the hybridization between the
CB of the bottom layer and the VB of the top layer, but the
VB-CB hybridizations for the same layer is zero because of
the orthogonality between eigenstates. After the transforma-
tion of representations, we can find out the contributions of
the valence and conduction bands of two layers on the band
structures of tBG clearly. Moreover, we can study the effects
of VB-VB, CB-CB, and VB-CB hybridizations separately.

Figure 3 shows the band structures of tBG given by
Eq. (16) and the energy spectra of H− and H+ in Eq. (17)
under several different twist angles. At the large twist angle
of 9.43◦, the energy spectrum of H− and H+ reproduce the
band structure of tBG. This means that for large twist angles
the VB-CB hybridization in Eq. (18) can be ignored. With the
decreased twist angle such as 3.48◦, the VB-CB hybridization
has a little modification on energy spectra of H− and H+.
However, when the twist angle is further reduced near the
magic angle, namely, from 2.00◦ to 0.99◦ in Fig. 3, the energy
spectra of H− and H+ are completely different from the band
structures of tBG. This indicates that the VB-CB hybridization
plays a critical role in the band structures of tBG, especially
for the flat bands and the band inversion.

In Fig. 1(d), we have plotted the corresponding bandwidth
for the folded band structure of graphene monolayer into the
supercell of the tBG and the energy spectrum of H− with the
VB-VB and CB-CB hybridizations but without the VB-CB
hybridization. The results indicate that the VB-VB and CB-
CB hybridizations lead to the reduction of bandwidth through
the whole range of twist angle. However, near the magic
angle the appearance of the flat bands arise from the VB-CB
hybridization, as shown in the inset of Fig. 1(d) and here in
Fig. 3. Therefore, we can draw the conclusion that the VB-VB
and CB-CB hybridizations only compress the bandwidth, but
the VB-CB hybridization is actually responsible for the for-
mation of flat bands with band inversion, i.e., the magic-angle
phenomenon in Sec. III A. This conclusion also indicates that
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FIG. 3. The band structures of tBG (black lines), H− (dashed blue lines), and H+ (dashed red lines) under different twist angles varying
from 9.43◦ to 0.99◦, where the magic angle θM is at 1.2◦.
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FIG. 4. The process of bandwidth reduction for free electrons
modulated by the one-dimensional periodic potential V (r) in NFEM.
Here, the first Brillouin zone is denoted by [−π/a, π/a] inside the
two vertical green dashed lines with a as the periodicity of V (r);
the parabolic band of free electrons without potential is denoted by
the black line with its folded bands into the Brillouin zone denoted
by the blue lines; the isolated subbands with a finite bandwidth are
denoted by the red lines due to the band gap opened by V (r) at these
crossing points k = ±π/a and k = 0.

the VB-CB hybridization is a new generated mechanism of
band inversion beyond the spin-orbital coupling.

D. Nearly-free electron model for bandwidth reduction

We first review the nearly-free electron model (NFEM) and
then explain that how the VB-VB and CB-CB hybridizations
enable the bandwidth reduction rather than the formation of
flat bands near the magic angle in the framework of NFEM.

Review on NFEM.—For a free electron with mass m, it
has the parabolic dispersion E (k) = h̄2k2

2m and the plane-wave
eigenfunctions ϕk(r) = 〈r|k〉 = 1√

V
eik·r with the wavevector k

and the sample volume V . There is only one band for the free
electron with infinitely large bandwidth. We consider how the
infinite bandwidth is compressed if a weak periodic potential
V (r) is applied with its periodicity T = ∑

i niai, where ai is
the lattice vector, ni is any one integer, and the corresponding
reciprocal lattice vectors b j are given by ai · b j = 2πδi j with
the first Brillouin zone of [−π/a, π/a] as shown in Fig. 4. Af-
ter the Fourier transformation, the potential V (r) is rewritten
as V (r) = ∑

G VGe−iG·r, where G = ∑
i nibi runs over all the

reciprocal points. In the plane-wave bases, the Hamiltonian
matrix element takes the form as

〈k1|H |k2〉 = h̄2k2
1

2m
δk1k2 +

∑
G

VGδk2,k1+G, (19)

where H = H0 + V (r) with the Hamiltonian H0 of the free
electron, k1 = k + G1, and k2 = k + G2 with k inside the first
Brillouin zone. If V (r) is zero, the original parabolic band of
the free electron is folded into the small Brillouin zone of the
periodic potential V (r) and becomes a new set of subbands
connected at the high-symmetry k points, as denoted by the
blue lines in Fig. 4. However, the nonzero potential interaction
in Eq. (19) gives the energy spectrum E (k) with a gap opened
at the crossing points of the subbands including k = ±π/a
and k = 0, as denoted by red lines in Fig. 4. Consequently, the

K Γ M K

−1.0

−0.5

0.0

0.5

1.0

E
n
e
rg

y
−

E
f
(e

V
)

FIG. 5. The band structures of 6.01◦-tBG (black lines) and its
bottom layer (dashed blue lines) and top layer (dashed red lines).

original energy band with an infinite bandwidth is compressed
into several new bands with finite bandwidths [58].

NFEM for tBG.—We now turn to the bandwidth reduction
enabled by the VB-VB and CB-CB hybridizations in tBG. As
an example, we consider the tBG with a twist angle of 6.01◦
and plot both the folded bands (dashed blue or red lines) of
graphene monolayers and the energy bands (solid black lines)
of the tBG in Fig. 5. For a relatively large twist angle, the
VB-CB hybridization is quite weak (see Sec. III C), and thus
the interlayer hybridization is mainly from the VB-VB and
CB-CB hybridizations between different monolayers. As seen
from Fig. 5, the bandwidth for the energy bands of tBG is ob-
viously narrower than those of graphene monolayers through
the whole path from K → � → M → K .

Furthermore, the bandwidth compression along the k path
is nonuniform: (i) near K point, the large energy difference
between the VB(CB) from top layer and the VB(CB) from the
bottom layer induces relatively small VB-VB and CB-CB hy-
bridizations, and thus the bandwidth compression is small; (ii)
near � point, the small VB-VB and CB-CB energy differences
between top and bottom layers lead to strong VB-VB and
CB-CB hybridizations, and thus the bandwidth compression
is remarkable.

In fact, for relatively large twist angles, the VB-VB and
CB-CB hybridizations as the moiré potential in real space
play the same role of potential hybridization in Eq. (19) for
NEFM. Consequently, the VB-VB and CB-CB hybridizations
enable the bandwidth reduction in the framework of NEFM.
In addition, with the decreased twist angle, the first Brillouin
zone of tBG decreases, and new subbands become the energy
bands of tBG with more reduced bandwidth enabled by the
VB-VB and CB-CB hybridizations, as shown in Fig. 1. How-
ever, near the magic angle, H− and H+ including the VB-VB
and CB-CB hybridizations in spite of reducing the bandwidth
can not produce the flat bands, where Ũb+t− representing the
VB-CB hybridizations is responsible for the flat bands with
band inversion, as discussed in Sec. III C.

IV. DISCUSSIONS

A. Twisted bilayer MoS2 and BN

The bandwidth reduction has also been reported for twisted
bilayer MoS2 [59] and BN [60]. However, unlike tBG, there
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(b)(a)

FIG. 6. The band structures (solid black lines) of (a) twisted
bilayer BN with 3.15◦ and (b) twisted bilayer MoS2 with 4.41◦.
The dashed red lines denote the band structures without the VB-
CB hybridization. The adopted tight-binding parameters are taken
from Ref. [61] and Ref. [62] for twisted bilayer BN and MoS2,
respectively.

is not the magic-angle phenomenon for their twisted bilayers.
We have figured out that (i) the VB-VB and CB-CB hybridiza-
tions between different layers reduce the bandwidth, and (ii)
the VB-CB hybridization is responsible for the magic-angle
phenomenon. Actually our conclusions are also suitable for
explaining the bandwidth reduction and the absence of magic-
angle phenomenon in twisted bilayer MoS2 and BN.

Different from graphene, both two-dimensional MoS2 and
BN are semiconductors with large band gaps. When stacking
one layer of MoS2 or BN on top of another, the VB-VB
and CB-CB hybridizations always exist because of the same
eigenenergy spectra of the two layers. Therefore, the band-
width compression should be a common phenomenon in these
twisted bilayers. However, for twisted bilayer MoS2 and BN,
the VB-CB hybridization between different layers is always
quite weak even for a small twist angle because of the big
energy difference from the wide band gap. In this way, the
magic-angle phenomenon (i.e., the flat bands with band inver-
sion) is absent for twisted bilayer MoS2 and BN. In Fig. 6, we
plot the band structure of twisted bilayer MoS2 and BN with
small twist angles and compare them with the energy spectra
without the VB-CB hybridization. The numerical calculated
results in Fig. 6 manifest our analysis.

B. Symmetry analysis on the band inversion

As presented in Sec. III B, the flat bands with the remark-
able band inversion especially at � point is the signature of
the magic-angle phenomenon. Here we use the irreducible
representations (irreps) of the little group at � to examine the
band inversion generated by the VB-CB hybridization near
the magic angle θM . We adopt the following one-valley Moiré
Hamiltonian [43,63] to describe the electronic energy states
with corresponding symmetries:

HQ,Q′ (k) = δQ,Q′vF (k − Q) · σ

+ ω

3∑
j=1

(
δQ−Q′,q j

+ δQ′−Q,q j

)
T j, (20)

where vF = 106 m/s is the Fermi velocity, w is the interlayer
coupling strength, which is set to 0.135 eV agreeing with

M
）

(a) (b)

FIG. 7. (a) The Brillouin zones of two twisted graphene mono-
layers with three corners of the two layers connected by vectors qi

[43]. (b) The Brillouin zone of the tBG, where Q and Q′ denoted by
black and red dots are the wavevectors belonging to the bottom and
top layers, respectively.

the energy values at θM = 1.2◦, and T j = σ0 + cos( 2π
3 j)σx +

sin( 2π
3 j)σy describes the way of the interlayer coupling

among sublattices with the Pauli matrices (σx and σy) and the
identity matrix σ0. In Eq. (20), qi with i = 1, 2, 3 connect
the Brillouin zone corners of the two layers, and Q and Q′

represent the wavevectors of the plane waves belonging to the
bottom and top layers, respectively, as shown in Fig. 7. The
Hamiltonian in Eq. (20) has the symmetry of magnetic space
group P6′2′2 [43], and its generators are C3z and C2x with the
representation matrix elements DQ′,Q(C3z ) = ei 2π

3 σzδQ′,C3zQ and
DQ′,Q(C2x ) = σxδQ′,C2xQ. The character table of the little group
at � point is given in Table I.

The irrep of a state at � point can be determined by the
character projection operator Pir by means of its property
Pirϕir′ = δir,ir′ϕir′ , where ϕir′ is a state having the irrep ir′.
The character projection operator for the irrep ir is defined by
Pir = lir

g

∑
R χ∗

ir (R)DR [55], where lir is the dimension of the
irrep ir, g = 6 is the order of the group, χir (R) is the character,
and DR is the representation matrix of the operation R for
irrep ir. Actually, here we can also directly use the properties
of the irreps and symmetry operators in Table I to judge the
irrep of a state at � point for tBG. For instance, the two-fold
degenerate energy levels must have the irrep �3, and the states
with eigenvalues of 1 and −1 for the operation C2x have the
irreps �1 and �2, respectively.

The calculated irreps at � point are labeled in Fig. 8. The
irreps of V Btw and CBtw are correspondingly �1 and �2 at
� point for θ > θM , and the irreps of V Btw and CBtw obvi-
ously take opposite irreps for θ < θM compared with those for
θ > θM . Therefore, the reversion of irreps at � point provides
a direct proof for the band inversion. In addition, comparing
the irreps of V Btw and CBtw with the irreps of the states for

TABLE I. The character table of irreps for the little group at �.
E , C3, and C′

2 represent the conjugation classes generated from the
identity, C3z, and C2x , respectively. The number before each conjugate
class represents the number of operations in this class.

�1 �2 �3

E 1 1 2
2C3 1 1 −1
3C′

2 1 −1 0
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(a) (b)

FIG. 8. The irreps of the V Btw and CBtw (solid black lines) at �

for (a) 1.7◦-tBG and (b) 1.0◦-tBG using the Hamiltonian in Eq. (20).
The blue and red dashed lines represent the energy bands of H− and
H+, respectively. The irreps of the V Btw (CBtw) change from �1

(�2) to �2 (�1) with θ changing from 1.7◦ to 1.0◦, and all twofold
degenerate energy levels have the irrep �3.

H+ and H−, we can also see how the CB-VB hybridization
changes the bands of H+ and H− into the flat bands of tBG
near the magnetic angle.

V. CONCLUSION

In summary, we proposed a new mechanism for
magic-angle phenomenon in tBG, i.e., the flat bands with

band inversion as a signature of magic-angle phenomenon
is a result of the VB-CB hybridizations from different layers
of tBG. Our tight-binding results show that the VB-VB
and CB-CB hybridizations from different layers serve as
the moiré potential in real space and enable the bandwidth
reductions for any twist angle in the framework of NFEM.
However, the VB-CB hybridization plays the critical role
in the flat bands and the band inversion near the magic
angle. The reversion of irreducible representations at �

point provides a direct proof the band inversion induced
by the VB-CB hybridization near the magic angle. Our
conclusions on the VB-VB and CB-CB hybridizations
reducing the bandwidth and the VB-CB hybridization
enabling the flat bands and the band inversion are also suitable
for explaining the absence of magic-angle phenomenon
even with bandwidth reductions in twisted bilayer MoS2

and BN.
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