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Commensurate and incommensurate double moiré interference in twisted trilayer graphene
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Twisted graphene multilayers have been recently demonstrated to share several correlation-driven behaviors
with twisted bilayer graphene. In general, the van Hove singularities (VHSs) can be used as a proxy of the
tendency for correlated behaviors. In this paper, we adopt an atomistic method by combining the tight-binding
method with the semiclassical molecular dynamics to investigate the electronic structures of twisted trilayer
graphene (TTG) with two independent twist angles. The two independent twist angles can lead to the interference
of the moiré patterns forming a variety of commensurate/incommensurate complex supermoiré patterns. In
particular, the lattice relaxation, twist angle and angle disorder effects on the VHS are discussed. We find that
the lattice relaxation significantly influences the position and magnitude of the VHSs. In the supermoiré TTG,
the moiré interference provides constructive or destructive effects depending on the relative twist angle. By
modulating the two independent twist angles, novel superstructures, for instance, the Kagome-like lattice, could
be constructed via the moiré pattern. Moreover, we demonstrate that a slight change in twist angles (angle
disorder) provides a significant suppression of the peak of the VHSs. Apart from the moiré length, the evolution
of the VHSs and the LDOS mapping in real space could be used to identify the twist angles in the complicated
TTG. In practice, our work could provide a guide for exploring the flat band behaviors in the supermoiré TTG
experimentally.
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I. INTRODUCTION

When stacking two or more two-dimensional van der
Waals materials with a lattice mismatch or a relative twist
angle, a moiré superlatice is formed [1]. For some moiré
superlattices, a distinguishing feature is the appearance of
flat bands at charge neutrality for which the renormalized
Fermi velocity is zero, resulting in the Coulomb interac-
tion strength to significantly exceed the kinetic energy of
electrons in the flat band, favoring electron-electron corre-
lations [2]. Flat bands appear in twisted bilayer graphene
(TBG) with the twist angle equals 1.05◦, termed the first
magic angle, which exhibits a very interesting range of exotic
phenomena including Mott insulating [3], superconductiv-
ity [4], ferromagnetism [5], Chern insulators [6], quantum
anomalous Hall effect (QAHE) [7], and ferroelectricity [8].
These exciting discoveries have inspired a vast theoretical and
experimental search to extend the family of moiré superlat-
tices that exhibit the correlation-driven behaviors, including
twisted monolayer-bilayer graphene [9,10], twisted bilayer-
bilayer graphene [11,12], trilayer graphene on hexagonal
boron nitride [13,14], twisted multilayer graphene [15,16],
and transition metal dichalcogenides [17,18]. These moiré
superlattices share both similarities and differences with the
TBG in symmetries, band topology and interaction strength,
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which could help us have a deeper understanding of the
correlated behaviors in TBG. Compared to the TBG, some
of the moiré superlattices may have practical advantages in
fabrication or tunability of the physical properties.

Recently, twisted trilayer graphene (TTG) has gained
extensive attention due to the presence of unconventional
correlated states [19,20]. In twisted trilayer graphene, new
tunable degrees of freedom are introduced by the addition of
an extra third layer on the bilayer graphene. For instance, in
the TTG with two consecutive twist angles θ12 and θ23, the
beatings of two bilayer moiré patterns may lead to a more
complex supermoiré pattern [21–24]. In fact, the experimental
technique to realize the TTG is readily available. Different
from the TBG, electronic structures of TTG are highly de-
pendent on the original stacking arrangements and on which
layer is twisted [9,25], and are more sensitive to external
perturbations [26–28]. In mirror symmetric TTG, a set of
dispersive bands coexists with flat bands at charge neutrality,
and the magic angle is

√
2 times larger than that of the TBG

[29]. Robust and highly tunable superconductivity has been
observed in magic angle mirror symmetric TTG [19,20]. It
has been reported that TTG without mirror symmetry hosts a
variety of correlated metallic and insulating states, and topo-
logical magnetic states [9,10,28]. The magic angle of such low
symmetry TTG approximates that of the TBG, and possesses
correlated states that are asymmetric with respective to the
external electric field [10,30].

Compared to the TBG, there are many new challenges
in the theoretical calculations of the electronic structures of
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FIG. 1. Schematic of the supermoiré trilayer graphene with θ12 =
θ23 = 21.8◦. The θ12 and θ23 are twist angles between L1 and L2, L2
and L3, respectively. The atoms in L1 (bottom layer), L2 (middle
layer), and L3 (top layer) are represented by red, green, and blue
dots, respectively. The unit cell of the moiré supercell is outlined in
a red dashed line.

supermoiré TTG: The large size of the moiré pattern and
the lack of commensurate supercell for general twist angles.
Firstly, the system size becomes much larger. For example, in
the mirror symmetric TTG, the number of atoms in a partic-
ular twist angle is half more than that of TBG with the same
twist angle. When the twist angles are small, the length of
the supermoiré period can be extremely large. The case of the
mirror-asymmetric TTG with two independent twist angles
is even worse. For example, the moiré length of the TTG in
Fig. 1 is 2.6 times larger than that of TBG with the same angle.
Secondly, because the two twist angles are independent, the
supercell description is no longer valid in some cases since
the TTG samples become incommensurate.

In theoretical calculations, electronic structures of twisted
multilayer graphene are commonly described by effective
continuum models [21,29,31,32]. These continuum models
with momentum space basis are efficient for computation and
require no constraints on the twist angles to construct com-
mensurate supercells. The continuum results show that the van
Hove singularities (VHSs) of TTG are significantly dependent
on the tuning parameters, for instance, twist angles [21] and
original stacking arrangements [31]. Similar to the TBG, the
lattice relaxations significantly influence the electronic behav-
iors of TTG with tiny twist angles and is an important factor
to obtain realistic description of the system [33]. Up to now,
the lattice relaxation effect is only considered via a continuum
model to consider the in-plane distortions and a generalized
stacking fault energy to account for the interlayer coupling
[29,34]. An atomistic simulation of the lattice relaxation ef-
fects on the electronic structures of supermoiré TTG is still
missing. In practice, although the control of the global twist
angle with a precision of about 0.1 degrees has been achieved,
twist-angle variation across different parts of the device with

the order of ±0.01◦ are still exists [35,36]. How will such
angle disorder affect the electronic structures of TTG?

In this paper, we systematically investigate the moiré in-
terference in both commensurate and incommensurate TTG.
In particularly, the lattice relaxation, twist angle and angle
disorder effects on the electronic structures of TTG with
two independent twist angles are studied. To address the
challenges of the lack of periodicity and the large system
size, we adopt a round disk method to construct the TTG
samples with arbitrary twist angles and calculate the elec-
tronic properties via the tight-binding propagation method
(TBPM) implemented in our home-made package TBPLaS
[37]. The TBPM is based on the numerical solution of
time-dependent Schrödinger equation and requires no diag-
onalization processes. Importantly, both memory and CPU
costs scale linearly with the system size. So the TBPM is an
efficient method to calculate electronic properties of large-
scale and complex quantum systems [33,38,39]. The lattice
relaxation is considered via the semiclassical molecular dy-
namics simulation. We find that the electronic behaviors of
TTG are quite sensitive to both the two independent twist
angles and angle disorders, in particular for the TTG with
mirror symmetry. The systems can have either a constructive
or destructive moiré interference depending on the two twist
angles. Interestingly, by modulating the angles, novel states,
for instance the kagome-like states can be constructed in TTG.
The VHSs and local density of states (LDOS) mapping can be
utilized as quantities to identify the twist angles of TTG in
case that the unit cell size corresponds to a range of different
possible sets of twist angle pairs.

This paper is organized as follows. In Sec. II, we introduce
the notation and the geometry of the twisted trilayer graphene,
the TB model and the computational methods. In Sec. III, for
different twist angle configurations, we show the low-energy
density of states as a function of twist angle for TTG with and
without lattice relaxation. The real space distribution of the
electron states of energies at VHS near charge neutral point
for different twist angle configurations are also investigated.
In Sec. IV, we discuss the effect induced by the twist angle
disorder on the VHS. Finally, we give a summary of our work.

II. GEOMETRY AND NUMERICAL METHODS

A. Moiré structure

As shown in Fig. 1, we use a round disk method to
construct the TTG with arbitrary twist angles. The two inde-
pendent twist angles θ12 and θ23 are chosen to be the rotation
of the second layer L2 relative to the first layer L1 and the
rotation of the third layer L3 relative to the second layer L2,
respectively. The rotation origin is chosen at an atom site. We
use a twist angel pair (θ12, θ23) as the notation for different
twist angle configurations. Positive (negative) values of the
twist angle denotes counterclockwise (clockwise) rotations.
The sample with (−θ, θ ) has a mirror symmetry with the
middle layer as the mirror plane. Figure 1 shows the (21.8◦,
21.8◦) configuration of twisted trilayer graphene.

For twisted bilayer honeycomb structures, grahene on
hexagonal boron nitride (hBN) for instance, an expression for
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the period of moiré pattern is given by

λ = a
1 + δ√

2(1 + δ)(1 − cos θ ) + δ2
, (1)

where a is the lattice constant of graphene, δ is the lattice
mismatch between the two two-dimensional (2D) materials.
The relative rotation φ between the moiré pattern and the
reference layer is given by

tan φ = sin θ

(1 + δ) − cos θ
. (2)

For TBG, lattice mismatch δ = 0 and Eqs. (1) and (2) can be
simplified as

λ = a

2 sin (θ/2)
,

tan φ = sin θ

1 − cos θ
. (3)

In twisted trilayer graphene, supermoiré patterns arise from
the interference between the two bilayer moiré patterns. From
Eq. (3), the bilayer moire period λ12 (λ23) and their relative
rotation θm are

λi j = a

2 sin |θi j/2| ,

θm = |θ12 + θ23|/2. (4)

If −θ12 �= θ23, there is a mismatch between these two moiré
pattern. Then by substituting λ12, λ23, and θm into Eq. (1), the
trilayer supermoiré period can be obtained. When θ12 · θ23 >

0:

λMoM = a

2

[
3

2
+ cos (θ12 + θ23)

2
− cos θ12 − cos θ23

]− 1
2

(5)

and when θ12 · θ23 < 0 and −θ12 �= θ23:

λMoM = a

2

[
1

2
− cos (θ12 + θ23)

2

]− 1
2

(6)

The real space period of the supermoiré pattern of small angle
twisted trilayer graphene is very large in most cases. More-
over, for general twist angle pairs, a commensurate supercell
does not exist. To calculate the property of these large scale
systems with arbitrary twist angles, we construct the system
in a large round disk. The radius of the disk should be set
sufficiently large to rid the effects of edge states [38] and to
cover the large moiré period. In the actual calculation, the disk
with radius of 172.2 nm (700a) and contains 10 million carbon
atoms are large enough for the twist angles investigated in the
paper.

B. Lattice relaxation

In the round disk model, carbon atoms at the edge of
the disk has dangling bonds which destabilize the system in
the process of relaxation. Thus the edge carbon atoms are
passivated by hydrogen atoms to saturate the dangling σ edge
bonds. The passivation is implemented by placing in-plane
hydrogen atoms for each graphene layer near carbon atoms
possessing dangling bond. The carbon-hydrogen bond length

is assumed to be 0.1 nm [40]. For the simulation of the struc-
ture relaxation, we employ the classical molecular dynamics
simulation package LAMMPS [41] to do the full lattice relax-
ation. Intralayer C-C and C-H interactions are simulated with
REBO potential [42]. Interlayer C-C interaction are simulated
with the kolmogorov/crespi/z version of Kolmogorov-Crespi
potential [43]. This method has been used to study the atomic
relaxation effect of other twisted multilayer graphene struc-
tures [38,44].

C. Tight-binding model

In this paper, we use a parameterized full tight-binding
(TB) scheme for our calculation [45]. The form of the
Hamiltonian of twisted trilayer graphene (tTG) can be written
as

H =
∑

i

εi|i〉〈i| +
∑
〈i, j〉

ti j |i〉〈 j|, (7)

where |i〉 is the pz orbital located at ri, and 〈i, j〉 is the
sum over index i and j with i �= j. The hopping integral ti j ,
interaction between two pz orbitals located at ri and r j is [46]

ti j = n2Vppσ (ri j ) + (1 − n2)Vppπ (ri j ), (8)

where ri j = |r j − ri| is the distance between i and j sites, with
n as the direction cosine along the direction ez perpendicular
to the graphene layer. The Slater and Koster parameters Vppπ

and Vppσ :

Vppπ (ri j ) = −γ0eqπ (1−ri j/d )Fc(ri j ),

Vppσ (ri j ) = γ1eqσ (1−ri j/h)Fc(ri j ), (9)

where d = 1.42 Å and h = 3.349 Å are the nearest in-plane
and out-of-plane carbon-carbon distances, respectively, γ0 and
γ1 are commonly reparameterized to fit different experimental
results [47,48]. Here we set γ0 = 3.2 eV and γ1 = 0.48 eV.
The parameters qσ and qπ satisfy qσ

h = qπ

d = 2.218 Å−1, and
the smooth function is Fc(r) = (1 + e(r−rc )/lc )−1, where lc and
rc are chosen as 0.265 and 6.14 Å, respectively. We only
consider the interlayer hoppings between adjacent layers.

D. The density of states and quasieigenstates

Each round disk contains more than ten millions of atoms,
which is beyond the capability of commonly used density-
functional theory and TB based on diagonalization process.
We adopt the TBPM to calculate electronic properties of TTG
in a round disk [49,50]. For the density of states (DOS), the
detailed formula is

D(ε) = 1

2πS

S∑
p=1

∫ ∞

−∞
eiεt 〈ϕp(0)|e−iHt |ϕp(0)〉dt, (10)

where |ϕp(0)〉 is one initial state which is the random super-
position of all basis states, S is the number of random initial
states. The calculation error vanishes with

√
SN [49]. N is

the dimension of the Hamiltonian matrix which equals to the
number of atoms in the graphene tight-binding model. In the
round disk TTG with radius of 172 nm, the number of atoms is
around 10 million. Thus, in real calculation, a relatively small
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FIG. 2. The density of states (DOS) as a function of twist angles varying from 0.1◦ to 2.28◦ for −θ12 = θ23 in (a) rigid and (b) relaxed
twisted trilayer graphene. The DOS as a function of twist angles varying from 1.35◦ to 4.4◦ for θ12 = θ23 in (c) rigid and (d) relaxed twisted
trilayer graphene.

finite value of S is sufficient to obtain a convergent results. We
use the same simulation parameters in all the calculations.

The distribution of states in real space can be obtained
by calculating the quasieigenstates [50] (a superposition of
degenerate eigenstates with certain energy). The quasieigen-
states has the expression

|�(ε)〉 = 1√∑
n |An|2δ(ε − En)

∑
n

Anδ(ε − En)|n〉, (11)

where An are random complex numbers with
∑

n |An|2 = 1,
En is the eigenvalue, and |n〉 is the corresponding eigenstate.
The local density of states (LDOS) mapping calculated from
the quasieigenstates is highly consistent with the experimen-
tally scanning tunneling microscopy dI/dV mapping [33].

III. TUNING THE ELECTRONIC STATES
BY TWIST ANGLES

In this part, we investigate the twist angle and lattice re-
laxation effects on the electronic properties of TTG. As we
mentioned before, the structures of TTG are strongly depen-
dent on the original stacking arrangements and on which layer
is twisted. Here we mainly focus on two different cases: Case I
is the samples with −θ12 = θ23, which have mirror symmetry;
case II is a stack of graphene layers where each layer is rotated
by a constant amount with respect to the previous one. Each

sample in case II has two consecutive twist angles with θ12 =
θ23. In case I, the moiré length of the TTG is equal to that of
TBG with the same twist angle, whereas the moiré length of
TTG in case II is much larger than both of the bilayer moiré
lengths due to the interference between the two bilayer moiré
patterns. For example, according to the Eq. (5), if θ12 = θ23 =
4.4◦, the moiré length of the TTG is around 41.7 nm. For a
sample in case I with −θ12 = θ23 = 4.4◦, the moiré length is
only around 3.2 nm. The density of states as a function of
twist angle θ are calculated to explore the evolution of the
van Hove singularities and the lattice relaxation effects. Due
to the incommensurate feature in both cases, we use the round
disk model with radius of 172 nm in all calculations. Previous
results have been shown that the radius of 172 nm is large
enough to get rid of the influence of the edge states [38].
In the round disk method, commensurate or incommensurate
systems with any twist angles can be constructed. Therefore
an open boundary is adopted in the calculations.

We first discuss the common features emerging in these
two different cases. As shown in Fig. 2, the twist angles
significantly modulate the energy position of VHS. The red
regions represent VHSs. As the twist angle decreases, the
VHS gap decreases first to reach a minimum where the magic
angle appears, and then increases in some cases. Moreover,
the lattice relaxation obviously modifies the DOS of TTG
with tiny twist angles. For samples in case I without lattice
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FIG. 3. (a) The DOS as a function of θ23 and θ12 = −1.35◦ in case I of TTG. The vertical dashed line corresponds to the case of θ23 = 1.35◦.
(b) The DOS as a function of θ23 and θ12 = 1.57◦ in case II of TTG. The vertical dashed line corresponds to the case of θ23 = 1.57◦.

relaxation (rigid), shown in Fig. 2(a), two VHSs near charge
neutral point (CNP) have their gap narrowing as twist angle θ

decreases, and merge at CNP when angle approaches θ = 1.5◦
where the DOS reaches the maximum magnitude. We name
this angle the magic angle. In fact, a sharp DOS peak located
at the CNP appears when 1.2◦ � θ � 1.6◦. With the angle
continually decreasing, the VHS gap first increases and then
decreases with VHSs merge again at θ = 0.3◦. When consider
the lattice relaxation (relaxed) in case I, shown in Fig. 2(b),
the evolution of the VHS gap shows similar tendency as the
rigid case. The VHSs merge at CNP and reaches maximum
(red area) at the magic angle 1.35◦. The VHS then splits and
diminishes as θ continues to decrease. Compared to the rigid
case, the relaxed samples exhibit a narrower range of magic
angles, and have VHSs with reduced magnitudes in case of
tiny twist angles. In the case of twisted multilayer graphene
with alternating relative twist angles ±θ , the Hamiltonian
for the multilayer graphene can be exactly mapped to a set
of decoupled bilayers with different angles [51]. The magic
angles of these multilayer systems are also related to the
TBG. For example, the magic angle of the TTG with −θ12 =
θ23 = 1.5◦ is

√
2 times larger than the bilayer magic angles

[25,29].
Compared with (−θ, θ ) structures, VHSs evolve differ-

ently in (θ, θ ) structures as shown in Figs. 2(c) and 2(d).
For samples in case II, adjacent layers form two identical
bilayer moiré periods with a relative rotation of θ forming
a supermoiré. The length of the supermoiré period inversely
proportional to 1/θ2. Via the rigid sample, we could directly
study the supermoiré features in the electronic structures.
As shown in Fig. 2(c), the DOS peaks in case II are lower
than that of case I. As θ decreases, the VHS gap narrows
and reaches minimum (20 meV) at 2.1◦ but the two VHSs
never merge at CNP. This result shows agreement with pre-
vious study with a continuum model approach [21]. In the
case of systems with θ12 = θ23, if the origin of the VHSs is
the TBG plus a perturbation potential from a third layer, in
principle, the VHSs merge at 1.72◦ [21]. Such discrepancy
suggests that the VHS behaviors are similar to the case of
TBG, which changes the VHSs by tuning the hybridization
strength between the two identical TBG. Furthermore, no ob-
viously higher order supermoiré feature is observed in case II,

which is different from the graphene encapsulated by hexago-
nal boron nitride (hBN). In hBN/graphene/hBN supermoiré,
additional Dirac-like points that induced by higher order su-
permoiré periods are observed [23,24]. These features in case
II could be verfied by the LDOS mapping in Fig. 4. When
the lattice relaxation is considered, shown in Fig. 2(d), the
VHSs merge at CNP at 1.57◦. The lattice relaxation enforce
the system toward a lower energy stacking, for example, the
mirror symmetry stacking structure. The states of the VHS in
the CNP is mainly localized in the AAA stacking region, as
shown in Fig. 4.

Next, we investigate the case of |θ12| away from |θ23|.
For general twist angles, Fig. 3 shows the DOS of relaxed
samples as a function of θ23 and fixed θ12. In case I with
θ12 = −1.35◦, when θ23 = 1.8◦, the VHS gap has a value of
30 meV. With θ23 decreasing to the magic angle 1.35◦, the
first and second VHSs approach the CNP and the first VHS
merge at the CNP when θ23 = 1.35◦. When the θ23 continually
decreases, a sharp DOS peak still appears at the CNP but
with a lower magnitude due to the destructive interference
effects from the superlattice between 2–3 layer pair. For the
sample with θ23 = −θ12 where the top and bottom layers are
perfectly aligned, there is a strong increases in the DOS due
to the constructive interference effects. For the |θ23| not equal
to |θ12|, the TTG can be mapped to a TBG plus a perturbation
potential induced from a third layer. For the sample with θ23

around 2◦, the two VHSs near the CNP come from the TBG
with θ = 1.35◦. If we use the presence of VHS as a proxy
for electronic correlations, such correlation-driven behavior is
extremely sensitive to a slight change in twist angles, which
is similar to previous results [22]. Figure 3(b) shows DOS
of relaxed structures in case II with different θ23 and fixed
θ12 = 1.57◦. As θ increases from magic angle 1.57◦, VHSs
split with the gap becomes wider, and the magnitude of the
VHS becomes smaller. As θ decreases from 1.57◦, the VHS
has a decrease of its magnitude and vanishes as θ approaches
0◦. Similar to case I, for θ23 equals to the magic angle, the
VHS suffers a constructive interference effect from these two
bilayer moiré patterns. For θ23 away from the magic angle,
the electronic structures can be understood as a magic angle
TBG with a destructive interference from the second bilayer
moiré structure. However, the TTG in case II is less sensitive
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FIG. 4. The calculated LDOS mapping of relaxed structures in case II with different θ23 and fixed θ12 = 1.57◦. Energies are selected at
VHS in the vicinity of CNP. Brighter area indicates larger density.

to the angle disorder than case I. For TBG and TTG with
mirror symmetry, the twist angle can be identify from the
moiré length since the unit cell size corresponds to a unique
set of twist angles. On the contrary, for TTG without mirror
symmetry, a given unit cell size corresponds to a range of
different possible sets of twist angle pairs. In this case, the
twist angle can be identified by the above VHS evolution with
twist angles in experiment.

The LDOS mapping is another quantity that can be used
to identify the twist angles in experiment. The calculated
LDOS mapping of relaxed structures in case II with (1.57◦, θ ),
as shown in Fig. 4, demonstrate the effect of the periodic
potential of the moiré pattern on the localization of states
in real space. We focus on the energies at the van Hove
peaks near the charge neutral point in the DOS and show
the mapping of the three graphene layers separately. In TTG,
the length of the bilayer moiré period formed by adjacent
graphene layers is a/2 sin (θi j/2). Smaller relative twist angle
gives larger moiré period. In the configuration of (1.57◦, θ ),
the bottom and middle layers with twist angle of 1.57◦ forms
a moiré period of length λ1 = 8.98 nm, the middle and top
layers with twist angle of θ23 forms a moiré period of length
λ2 = a/2 sin (θ23/2). Since the ratio of the two moiré lengths
determines the features of the LDOS mapping, we categorize
the mapping results into four types.

For type A illustrated in Fig. 4 with θ23 = 0.5◦, λ2 is
much larger than λ1, the VHS states are mainly localized on
the middle and bottom layers. It is obvious that in the limit
θ12 � θ23, TTG decomposes into a decoupled TBG moiré
supercell and a graphene monolayer. The top layer does not
contribute significantly to the electronic structures in the low-
energy range. That is, the TTG can be considered as a magic
angle TBG modified by an effective potential from the third
layer. In the middle layers, features of both moiré patterns
are shown, and the localization is enhanced where the AA

areas of both moiré patterns coincide. For type B with the
ratio of the moiré length λ2/λ1 around 1.6, for instance θ23 =
0.98◦, the bottom and top layers show features of bilayer (2L)
moiré pattern slightly affected by the other outer layer, the
middle layer gives a new complex supermoiré pattern with
period λ3 larger than both 2L moiré periods. For type C with
θ23 = 1.89◦, the mapping features are similar to that of type
B. The middle layers also clearly show supermoiré patterns
much larger than both 2L moiré patterns. For type D with
θ23 = θ12, the moiré length ratio value λ1/λ2 is 1. The states of
the VHS are mainly localized in the AAA stacking region. The
LDOS mappings only show bilayer magic angle features, and
the VHS states are mainly localized in the middle layer. No
additional moiré period is observed, which further justify that
the electronic structures of TTG in case II can be described
by the hybridization between the two bilayer moiré patterns.
Obviously, the LDOS mapping is highly dependent on twist
angles. By tuning the twist angles, new novel superstructures
could constructed. For instance, in case II with θ12 = 1.57◦
and θ23 = 0.98◦, a Kagome-like lattice based on moiré pat-
tern are constructed on the top layer. All in all, for the case
θ12 ≈ θ23, the systems suffer a strong moiré interference, and
the VHS states are mainly localized in the middle layer. For
θ12 � θ23, the systems have a weak moiré interference, and
can be decomposed into a TBG with θ12 and a graphene
monolayer.

IV. TWIST ANGLE DISORDER

Stacking two 2D materials to an arbitrary angle with a
precision of 0.1◦ is still challenging in experiment. Even
using the ’tear and stack’ technique to fabricate the moiré
superlattices, twist-angle disorders are still unavoidable from
the nonuniformity of the twist angle across the large-scale
sample in experiments. In fact, in a high-quality graphene
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FIG. 5. Comparison of the DOS of TTG with (-θ12, θ23) (black line) and with θ12 increased (red line) or decreased (blue line) by 0.02◦

angle disorder. The angle disorder effects in (a) rigid TTG with −θ12 = θ23 = 1.57◦, (b) relaxed TTG with −θ12 = θ23 = 1.57◦, (c) rigid TTG
with −θ12 = θ23 = 0.98◦, and (d) rigid TTG with −θ12 = θ23 = 0.1◦.

moiré pattern, the main source of disorder is the variations
of twist angles across the sample. Previous results have been
demonstrated that the correlated phases are extremely sen-
sitive to a slight change in twist angles [22,35]. The angle
disorder may explain why two different samples with identical
twist angles manifest quite different electronic properties in
experiments. Compared with TBG, the more tunable TTG has
more chance suffering the angle disorder since one has to
precisely control more than one angle in a sample during the
fabrication process. In TTG, the moiré length is determined
by the two independent twist angles. A small variation of
one twist angle could results in a huge increase of the moiré
length. Then, how will the angle disorder affects the electronic
structures of TTG? As we mentioned before, we can construct
TTG with arbitrary twist angles by utilizing the round disk
method. That is, the twist angles can be continuously tuned
no matter whether the system is commensurate or incommen-
surate. By combining the round disk method with the TBPM,
it is convenient to investigate the angle disorder effects. In
this part, we discuss the electronic structures of TTG in the
presence of angle disorder. In particular, we focus on the angle
disorder effects on the VHSs.

In TTG structures of case I with (−θ, θ ) where the two
moiré pattern align, we introduce misalignment by an ex-
tra twist angle deviation θ = 0.02◦ for θ12, i.e., (−θ ±
0.02◦, θ ). Figure 5 shows the effect of twist angle disor-
ders on the DOS of TTG with three different angles θ =
1.57◦, 0.98◦, 0.1◦ where θ = 1.57◦ is the magic angle. Let

us first focus on the magic angle case. In rigid magic angle
TTG, with a variation of θ in only θ12, the positions as
well as the width of the VHS are unaffected, whereas the
peaks of the VHSs are remarkably suppressed. If we quan-
tify the angle disorder effects by a “BCS superconducting
transition temperature,” which is approximately described as
Tc ∝ exp(− 1

gρ(EvH ) ), our results suggest that the angle disor-
der strongly suppresses Tc. In the Tc expression, EvH is the
energy of the VHS peak, g is the electron-phonon coupling.
In the TTG of case I, there are three different high-symmetry
stackings AAA, ABA, and BAB. The VHSs away from the
CNP originate from the interlayer intercation between layers,
and the states are localized in the ABA and BAB regions [25].
The angle disorder destroys these high-symmetry stackings.
As a consequence, with an angle disorder introduced, the high
energy VHSs are smeared out. On the contrary, in relaxed
magic angle TTG, the positions, width and amplitude of the
VHSs are unaffected by the angle disorder. The results in
Fig. 5(b) shows that the TTG systems with mirror symmetry
are protected against twist angle disorders, which is consis-
tent with previous results [29]. That is, the lattice relaxation
enforces the system to restore the mirror symmetry stacking
structure. In TTG with twist angles smaller than magic angles,
similar to the magic angle case, the VHS is quite sensitive to
the twist angle disorder. For TTG with θ = 0.98◦, the angle
disorders smear some peaks located round 0.3 eV in the DOS.
Similar to the TBG case, multiple flat bands are observed
near the second magic angle [52]. In TTG with θ = 0.1◦, both
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the width and the amplitude of the first and second VHS are
modulated by the angle disorder.

V. CONCLUSION

In summary, we adopt a real-space and atomistic approach
for the simulation of the electronic behavior and the relaxation
effect of twisted trilayer graphene for general twist angle
pairs. We demonstrate how the position and strength of the
VHSs evolve with the twist angle in different situations. We
mainly focus on two different structures: one has a mirror
symmetry with angle pair (−θ, θ ) and the other has two con-
secutive angles with (θ, θ ). Due to the moiré interference, the
moiré length of the systems in case II are far more larger than
that of case I with the same angle θ . Our results show that
the atomic relaxations have significant effects on the VHS
properties and the emergence of magic angle. The position
of the VHSs are highly dependent on the twist angle. We
find that for mirror symmetric (−θ, θ ) structures, the magic
angles are 1.57◦ in rigid case and 1.35◦ in relaxed case. For
(θ, θ ) structures, the magic angles are 2.1◦ and 1.57◦ in the
absence and presence of lattice relaxations, respectively. In
TTG with two independent twist angles, when one of the
twist angles deviates from the magic angle within a range,
the VHS evolution shows a destructive moiré interference
effect from the angle changes, and the VHSs follow only
with the magic angle. We then show that the LDOS mappings
provide an intuitive real-space representation of the double
moiré interference and the resulting large complex supermoiré
pattern. We find that the mapping features are closely related
to the ratio of the two moiré length. For the case that the
two angles are identical, the system suffers a strong moiré
interference effect and the VHSs states are mainly localized
in the middle layer. For one angle far away from the other,
the system has a weak interference and can be decoupled into
a TBG and a monolayer graphene. By modulating the twist
angles, Kagome-like states are constructed due to the interplay
between different layers. More importantly, we could use the
LDOS and LDOS mapping to identify the twist angles of the
TTG in case that the unit cell size corresponds to a range of
different possible sets of twist angle pairs.

For mirror symmetric (−θ, θ ) TTG that detected supercon-
ductivity, we find that the twist angle disorder which breaks
the mirror symmetry strongly affects the VHS property. This
may explain why two different samples with identical twist
angles manifest different electronic properties in experiments.
We also find that relaxation weakens the disorder effect. In
fact, for such small disorders, relaxation can restore the sys-
tem to the favorable AA stacking for outer layers. Our results
could provide a guide for the experiment to explore the flat
band behaviors in supermoiré TTG.
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APPENDIX: EXTERNAL ELECTRIC FIELD EFFECT

The electric field can be introduced in the TB calculation
by adding an onsite energy term in the Hamiltonian in Eq. (7).
The onsite term is defined as

HV = ±εh

2
|i〉〈i|, (A1)

where +(−) corresponds to the top (bottom) layer, ε is the
vertical electric field. For example, the electric field effect on
the electronic structures of TTG in case I has been studied via
the TB model [27,29]. For the TTG with mirror symmetry,
a weak vertical electric field reduces the dispersion of the
flat bands near the CNP. When the field becones stronger
enough, the flat bands becone more dispersive, and start to
hybridize with higher-energy bands [27,29]. The TTG in case
II has the same tendency. As shown in Fig. 6, the electric field
broadens the flat bands. With the strength of the field large
enough, the flat bands hybridize the higher-energy bands.
Moreover, the flat band states become less localized in the
AAA region.
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