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Double resonant tunable second harmonic generation in two-dimensional
layered materials through band nesting
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We proposed a mechanism to generate giant anisotropic second harmonic nonlinear response via double
resonance effect, achieved through band nesting via electronic band-structure engineering. The ideal band
setup would be a triplet of nested bands separated by the fundamental resonance energy h̄ω. We demonstrate
theoretically that the proposed phenomenon can be realized in bilayer SnS by band tuning with perpendicular
electrical bias, which maximizes the second harmonic susceptibility by several orders of magnitude. Moreover,
the tunability of the polarization anisotropy can be useful for realizing novel polarization-sensitive devices.
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I. INTRODUCTION

When the electric field intensity is high (on the order
of 100 kV/m or more), the materials’ response to the field
would acquire a notable nonlinear contribution in the electric
field [1]. The relation between the electric polarization and the
electric-field strength is generally given as [2],

P = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + · · ·

= PL + PNL. (1)

The first term ε0χ
(1)E is the linear polarization, and the

higher-order terms generate nonlinear polarization. χ (n)

(n > 1) are the nth-order nonlinear susceptibility tensors.
For example, χ (2) is a third rank tensor and relates the
second-order nonlinear polarization to the electric-field in-
tensity which is proportional to the square of electric-field
strength. Second-order effects consist of the sum frequency
generation, where the output frequency is the sum of the
two input frequencies, second harmonic generation [(SHG),
where the output frequency is twice the input frequency],
linear electro-optic effect, optical parametric amplification,
etc. [3–5]. Common third-order effects include third harmonic
generation, four-wave mixing, optical Kerr effect, two-photon
absorption, etc. [6–9]. The study of nonlinear optics began in
the 1960s with the first experimental demonstration of SHG
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in 1961 [3]. Later, Bloembergen, Boyd, Shen, and co-workers
formulated the basic principles of the topic [2,10,11]. These
nonlinear effects are typically weak, hence, practical nonlin-
ear optics require bulk materials orders of magnitude larger
than the optical path length for the effect to be significant.
Recent advent of new nonlinear effects in two-dimensional
(2D) atomically thin crystals has shown two to three orders of
magnitude larger values of normalized χ (2), hence, drawing
interest from the community [12,13].

In particular, phase mismatch is an important issue in bulk
nonlinear optics, when the total phase of the output is not
equal to that of its inputs. For SHG, the phase mismatch is
described as �k = 2k1 − k2 = 2k(ω) − k(2ω). The nonlinear
output intensity without phase matching (i.e .,�k �= 0) is ex-
pressed as [2]

I2ω(L) = 2[χ (2)]2ω2
3I2

1 (0)

n2
ωn2ωε0c3

L2 sinc2

(
�kL

2

)
. (2)

where the intensity is proportional to the phase-mismatch
�k, input intensity I1, length of the crystal L, and the SHG
coefficient χ (2). The phase-mismatch factor is maximum
when �kL = 0. For finite �kL, the phase-mismatch factor
decreases exponentially and the output intensity is reduced
drastically. To satisfy the phase-matching condition (�k =
0), the refractive index of the material has to be equal at
both the fundamental and second harmonic frequencies i.e.,
n(2ω) = n(ω), which is usually not achievable due to ma-
terial dispersion. One way to solve this problem is to use
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birefringent crystals where ordinary and extraordinary waves
have different dispersion, and the phase-matching condi-
tion can be satisfied [14]. But in this case, the input and
output are bound to be orthogonally polarized. Another
technique for phase-mismatch correction is called quasi-
phase-matching [15,16], which requires complicated setup.

Hence, large χ (2) and small �k are necessary for effi-
cient nonlinear optics. In this regard, 2D materials can be
advantageous over traditional bulk nonlinear materials. Typ-
ically reported χ (2) in 2D materials such as MoS2, WSe2,
h-BN, and GaSe [12,17], are two to three orders of magnitude
larger than that in prototypical bulk materials (e.g., LiNbO3,
Quartz, KDP, BBP, GaAs). For example, χ (2) of MoS2 was
reported experimentally to be 5 × 103–105 pm/V in Ref. [18],
whereas χ (2) of well-known nonlinear material LiNbO3 is
∼60 pm/V. The phase mismatch becomes negligible because
of the atomic thickness of 2D layers (∼nanometers) com-
pared to bulk materials (∼millimeters) [2,19]. Since nonlinear
output intensity is also proportional to the device size (L), a
further two to three orders of magnitude increment of χ (2) in
2D materials is required to compensate for the reduction in de-
vice dimensions. In this paper, we present an approach where
such giant χ (2) can be realized through double-resonance
effect. This is achieved by electrostatic tuning of the band
structure, achieving a triplet of nested bands which allows for
resonance with both the ω and 2ω transitions.

In general, nested double-resonant bands should be rare
occurrence in pristine 2D materials. Hence, we narrowed our
choices to 2D materials with quantum-well-like properties,
whose electronic band structures are easily tunable with an
out-of-plane electric field [20,21], due to the strong interlayer
coupling [22]. We study SnS, a group-IV transition-metal
monochalcogenide, which is isoelectronic with the puckered
honeycomb structure of black phosphorus (BP) [23] (see
Fig. 1). Similar to BP, SnS has anisotropic optical prop-
erties (see linear optical properties of bilayer SnS in the
Supplemental Material [24] Sec. A, also see the references
therein [20,25,26]). Unlike BP, which belongs to D2h point
group, SnS has a reduced symmetry (C2v point group) and
is noncentrosymmetric for odd-numbered layers [27]. The
even-numbered layers retain the inversion center, which can
be broken by applying an out-of-plane electric field in-
troduced by modifications of the on-site potentials of the
constituent atoms. By tuning the applied perpendicular bias,
the band.structure of bilayer SnS, and, therefore, its SHG
coefficients can be tuned.

II. THEORY AND APPROACH

In this paper, we focus on the second-order nonlinearity,
specifically the SHG. As the second-order nonlinear suscepti-
bility [χ (2)(ω3; ω1, ω2)] (where ω1, ω2 are input frequencies,
and ω3 = ω1 + ω2 is the output frequency) is a third rank
tensor, there are 27 different tensor elements for each com-
bination of the input and output frequencies. The number
of independent nonzero tensor elements is greatly reduced
when symmetry operations are taken into account. Consid-
ering permutation symmetry, we can write χ

(2)
i jk (2ω; ω,ω) =

χ
(2)
ik j (2ω; ω,ω), which means that if one permutes the last
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FIG. 1. The top and side views of bilayer SnS atomic structure
are shown in (a). Sn and S atoms are indicated by the gray and yellow
balls, respectively. Panel (b) shows the band diagram of bilayer SnS
where solid (dashed) lines denote the tight-binding (TB) density
functional theory (DFT) bands. The rectangular first Brillouin zone
is shown in the inset. There is a very good agreement between TB
and DFT bands for the low-energy range of interest.

two indices in χ
(2)
i jk , the value will be the same because the

order of the input fields is not important. This reduces the
maximum number of nonzero tensor elements from 27 to
18. Crystallographic symmetries can further reduce the num-
ber of nonzero tensor elements. For example, there are only
seven nonzero independent tensor elements for point-group
C2v (xzx, xxz, yyz, yzy, zxx, zyy, zzz) [2]. According to Neu-
mann’s principle [28], any physical property of a crystal has
to remain invariant after applying symmetry operations be-
longing to that crystal. However, in centrosymmetric systems,
the existence of an inversion center requires polarization to be
antisymmetric with an external electric field. For second-order
polarization, this is only satisfied when χ (2) is zero. As a
result, all the terms in χ (2) vanish and these crystals cannot
produce any bulk SHG response. It is possible to break the
inversion symmetry by applying external stimulus, such as
the DC electric field [29–31], DC current [32], strain [33],
or structural engineering by patterning nanostructured ar-
rays [34,35]. Thus, tunable nonzero SHG can, in principle,
be achieved in centrosymmetric materials.

We use a TB Hamiltonian generated by Wannier interpo-
lation [36,37] from DFT calculations. To construct a reliable
TB model for multilayer SnS, we performed first-principles
calculations to calibrate the effective Hamiltonian, using the
QUANTUM ESPRESSO package [38,39]. Our parametrization
procedure in this paper is based on the formalism of maxi-
mally localized Wannier functions [40,41] as implemented in
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the WANNIER90 code [42]. Ultrasoft Perdew-Burke-Ernzerhof
potential [43] was used to describe the exchange interac-
tions with a kinetic-energy cutoff of 60 Ry. A 12 × 12 ×
1 Monkhorst-Pack [44] grid was used for the Brillouin-
zone sampling for both the relaxation and static calculations.
A vacuum thickness of 20 Å was introduced to avoid

spurious interactions between adjacent images in the direction
perpendicular to the 2D plane. Diagonalizing the TB Hamil-
tonian, we get the eigenenergies and eigenfunctions, which
are used to calculate the SHG coefficient χ (2) using the fol-
lowing equations. The total SHG coefficient consists of three
terms [45],

χabc
inter (2ω; ω,ω) = e3

h̄2

∑
nml

∫
dk
4π3

ra
nm

{
rb

ml r
c
ln

}
ωln − ωml

{
2 fnm

ωmn − 2ω
+ fml

ωml − ω
+ fln

ωln − ω

}
, (3a)

χabc
intra (2ω,ω,ω) = e3

h̄2

∫
dk
4π3

[∑
nml

ωmnra
nm

{
rb

ml r
c
ln

}{ fnl

ω2
ln(ωln − ω)

− flm

ω2
ml (ωml − ω)

}

−8i
∑
nm

fnmra
nm

{
�b

mnrc
mn

}
ω2

mn(ωmn − 2ω)
+ 2

∑
nml

fnmra
nm

{
rb

ml r
c
ln

}
(ωml − ωln)

ω2
mn(ωmn − 2ω)

]
, (3b)

χabc
mod(2ω,ω,ω) = e3

2h̄2

∫
dk
4π3

[∑
nml

fnm

ω2
mn(ωmn − ω)

{
ωnl r

a
lm

{
rb

mnrc
nl

} − ωlmra
nl

{
rb

lmrc
mn

}} − i
∑
nm

fnmra
nm

{
rb

mn�
c
mn

}
ω2

mn(ωmn − ω)

]
. (3c)

Here, χabc
inter is the interband contribution, χabc

intra is a modifica-
tion due to intraband motion, and χabc

mod is a modulation of
intraband motion by interband polarization energy. ra

nm’s are
the matrix elements of position operator between bands n,
m along the a direction, fnm = fn − fm is the difference of
Fermi-Dirac factors between bands n, m; ωnm is the energy
difference between bands n, m. The band indices n, m, and
l runs over all bands. {rb

mlr
c
ln} = 1

2 (rb
ml r

c
ln + rc

ml r
b
ln) is used

to ensure intrinsic permutation symmetry. �b
mn = vb

mm − vb
nn,

where vb
nm is the velocity matrix element in the b direction

given by vb
nm = iωnmrb

nm.
From an inspection of the terms in the susceptibility equa-

tions, we can formulate a criterion for maximizing χ (2). For
example, in Eq. (3a), there are ω and 2ω terms in the denom-
inator. When we have three bands m, l , and n satisfying the
condition ωm − ωl = ωl − ωn, both ω and 2ω terms become
resonant. The scenario where the bands are equidistant over
some area in the 2D k space (Brillouin zone) is called “band
nesting,” and the so-called “double resonance” condition [46]
is satisfied, rendering significant enhancement of χ (2).

III. RESULTS AND DISCUSSION

Figure 1 shows the atomic [panel (a)] and electronic [panel
(b)] structure of bilayer SnS. The layers are AB stacked, and
x and y denote zigzag and armchair directions, respectively.
The unit cell consists of four pairs of Sn and S atoms stacked
in the AB configuration, which is more favorable in energy
than other configurations. The band structure of bilayer
SnS is plotted in Fig. 1(b). Our first-principles calculations
result shows that it is an indirect gap semiconductor with the
valence- band maximum located in the highly symmetric Y
point and the conduction-band minimum located between �

and X points. To construct a reliable TB model, the px, py, and
pz orbitals of Sn and S are chosen. The band structure derived
from the 24-orbital TB Hamiltonian shows that there is a very
good agreement between DFT and TB bands, especially in
the low-energy region of interest. Since the band structure of

bilayer SnS is well reproduced from the TB model, we can
further study the effect of the external electric field on the
susceptibility. The calculated χ (2) parameters in 2D (sheet)
units are shown in Fig. 2 as a function of applied perpendicular
bias � and frequency ω. Temperature T is set to be 300 K, and
the electron relaxation parameter which is used to “broaden”
the frequency (ω ≡ ω + i�) is set to be 10 meV. The out-of-
plane electrical bias is introduced by adding a diagonal matrix
to the TB Hamiltonian where each diagonal element is the
on-site potential of the corresponding atom due to the electric

(a)

(c)

(b)
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(V
)

(V
)

(V
)

(V
)

(d)

(V
)

(V
)

FIG. 2. Three different components of sheet susceptibility χ (2)

are shown. Panels (a)–(c) show χyxx , χxyx , and χyyy, respectively, for
bilayer SnS as a function of applied bias � and frequency ω. The
maximum value of χ (2) is achieved for χyyy, ∼7 × 107 pm2/V. The
zoomed plot of χyyy is shown in (d) where a prominent peak occurs
for � ∼ 2.16 V.
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FIG. 3. Schematic of double resonance in bilayer SnS. (a) Band structure of bilayer SnS with/without perpendicular bias of � = 2.16 V.
The solid (dashed) lines show the biased (unbiased) band structure. Near point Y (circled), top two valence bands (l , n) and bottom conduction
band (m) appear to be nested. χyyy for � = 2.16 V is shown in (b). The prominent peak is located at ω � 0.37 eV. In panels (c) and (d),
Brillouin-zone contour plots are shown around point Y . The blue contours in (c) show the inverse of energy difference (ωml − ωln) on a
logarithmic scale, whereas the orange color in (d) shows the magnitude of matrix element products between the bands. The regions where
maximum of these two features overlap are where χ (2) would be maximum, and the frequency contour that coincides with this region is
ωml = 0.37 eV, which gives a peak SHG frequency of 0.74 eV.

field. There are three independent χ (2) components for C2v

point-group symmetry in 2D: χyyy, χyxx, and χxyx = χxxy [27].
Due to anisotropy, each component has a different maximum
amplitude for different bias and frequency. At higher biases,
the susceptibility becomes highly nonlinear as function of the
bias. The overall maximum amplitude of χ (2), χ (2)

max, is about
∼7 × 107 pm2/V for the χyyy component, which corresponds
to ∼8 × 104 pm/V in equivalent bulk units. This value of
χ (2) is ∼3 orders of magnitude larger than typically reported
theoretical values of nonlinear 2D materials. The experimental
values of χ (2) in 2D materials vary a lot across experiments.
For example, the value for MoS2 ranges from 1.2 to 105

pm/V, which is a large variation. Factors, such as substrate
and sample preparation process, defects, and excitonic effects
can influence the measurement [18,47]. The theoretical values
calculated within the DFT lie in the middle of this range [17],
(∼103 pm/V). Thus, it is more meaningful to compare our
calculations with the theoretical values. To draw further com-
parison, this value of ∼8 × 104 pm/V is higher than reported
values in 2D monochalcogenides (GeS, GeSe, SnS, and SnSe)
monolayers which goes up to 104 pm/V [48]. The required
perpendicular bias for χ (2)

max is � ∼2.16 V, which corresponds
to an electric field of 2.5 V/nm, which is smaller than the
breakdown electric field of SiO2 thin films (3 to 4 V/nm)
[49]. Accordingly, the corresponding SHG frequency is
0.74 eV.

The SHG enhancement by double resonance is explained
in Fig. 3. Figure 3(a) shows the modified band structure of
bilayer SnS at bias that yields χ (2)

max, in conjunction with the
unbiased band structure. A cutline of χyyy along � = 2.16 V
shows the prominent peak at ω � 0.37 eV [Fig. 3(b)]. To
explain the double resonance criterion, we identify a set of
three bands in the vicinity of the Y point in the Brillouin
zone, which is highlighted by the black circle. The relevant
band parameters around the Y point are plotted in Figs. 3(c)
and 3(d). The quantity (ωml − ωln)−1, which quantifies the
double-resonance condition, is showed in a logarithmic scale
by the blue contours in Fig. 3(c). The orange color in Fig. 3(d)
shows the magnitude of the matrix element product between
bands m, l , and n in logarithmic scale. In most cases, χ (2)

would be optimal when both these quantities are maximized.
To determine the frequency (ωml = ω) of this χ (2)

max, we plot
contour lines of ωml in the region of interest. Our result shows
that χ (2) is maximum at ω = 0.37 eV where the solid contour
line coincides with the hot spots of these quantities in the
momentum space, hence, χ (2) is maximum at this frequency.
Although some of the dashed contours at ω � 0.57–0.68 eV
coincide with the double-resonance regions, the matrix ele-
ments product along those contours is, at least, two orders
of magnitude smaller, which negates the enhancement gained
from double resonance. Indeed, we can observe small features
in χ (2) spectra around these frequencies [Fig. 3(b)]. The rest
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FIG. 4. (a)–(c) show angle-resolved polarization components of χ (2) (|χ⊥|2, |χ‖|2) as a function of polarization angle θ with respect to
the x axis, when one component is much larger than the other two. The effect of having one dominant χ (2) component is shown in (d)–(f),
respectively. For example, in (a) where χ (2)

yxx is dominant, if input is x polarized (θ = 0) the perpendicular SHG component (i.e., y polarized) is
maximum, so in (d) the SHG output will be y polarized. Similarly when χ (2)

yyy is dominant (b) and (e), the SHG output will be y polarized with
y-polarized input and when χ (2)

xyx is dominant (c) and (f), the SHG output will be maximized with a polarization angle of ∼36◦ and for both
purely x- and y-polarized light (θ = 0, 90◦) the output is much smaller. Panels (g)–(i) show possible regions in the (ω,�) space where these
conditions can be satisfied. The two different colors show where one χ (2) component is significantly larger (five times in (g) and (h); 2.5 times
in (i); χ (2) > 0.5χ (2)

max) than the other components. The overlap regions (marked by black arrows) are where the conditions in panels (a)–(c) are
satisfied.

of the smaller features seen in χ (2) are most likely originating
from other possible nested trios of bands, albeit with a lesser
degree of nesting or smaller matrix element product. SHG
response depends on � in a highly nonlinear fashion. How-
ever, for � � 0, SHG scales linearly [31]except near resonant
peaks (see the Supplemental Material [24] Sec. B).

Next we turn to the tunability of polarization anisotropy
of bilayer SnS. For each crystallographic point group, the
effective χ (2) at an angle of φ can be derived from the input
field polarization θ and the susceptibility tensor [11],

χ
(2)
φ = eφ · χ (2):eθ ⊗ eθ .

Here, χ
(2)
φ is the effective SHG coefficient along the φ direc-

tion, θ is the input field polarization angle, and eφ , eθ are
the corresponding unit vectors. The SHG output intensity,
I2ω
φ ∝ |χ (2)

φ |2. For the C2v point group, the angle-resolved

SHG susceptibilities are given by [27],

χ
(2)
| (θ ) = (

χ (2)
xyx + χ (2)

yxx

)
sin θ cos2 θ + χ (2)

yyy sin3 θ,

χ
(2)
⊥ (θ ) = χ (2)

yxx cos3 θ + (
χ (2)

yyy − χ (2)
xyx

)
cos θ sin2 θ. (4)

Here, χ
(2)
‖(⊥) are the parallel (perpendicular) polarization com-

ponent of the SHG coefficient with respect to the input
electric-field (Eω).

The tunability of SHG components suggests the interesting
scenarios where one of the components is dominant over the
other two. The angle-resolved polarization components of
χ (2) for these three cases are shown in Figs. 4(a)–4(c), and
the corresponding input vs output polarization are illustrated
in panels (d)–(f). For example, when χ (2)

yxx is dominant, the
perpendicular SHG component, hence, the intensity of the
SHG output, is maximum when θ = 0. This means an x-
polarized input will result in a y-polarized output, whereas

115409-5



SUDIPTA ROMEN BISWAS et al. PHYSICAL REVIEW B 107, 115409 (2023)

the output intensity for the other polarization directions will
be significantly weaker. Similarly, for dominant χ (2)

yyy, when
the input is y polarized, the output will be maximized and y
polarized. For dominant χ (2)

xyx, neither of the x- and y-polarized
inputs are converted to strong SHG output. However, the
output is maximized with a polarization angle of ∼36◦. In
Figs. 4(g)–4(i), we analyze the tuning parameter space (ω, �)
for each of the cases (a)–(c). The two colors show regions
where the SHG component is larger by a factor of K [K = 5
in panels 4(g) and 4(h); 2.5 in panel 4(i)]. Herein, only the
regions where χ (2) > 0.5χ (2)

max are considered as we are in-
terested in the strong SHG response. The overlap of the two
regions indicated by black arrows shows where the component
is dominant, and the input-output polarization selectivity is
effective. Thus, the tunability of individual SHG parameters
allows enhancement of the polarization anisotropy.

In this paper the independent particle approximation (IPA)
has been used, and many-body effects, such as quasiparticle
self-energy corrections and excitonic effects are not consid-
ered. However, in 2D systems, the effects of many-body
interactions are expected to be pronounced due to reduced
screening effect and quantum confinement [17]. Simple DFT
calculations with IPA typically underestimate the band gap
measured in optical experiments [50,51]. The quasiparticle
band structure using the GW0 approximation can be cal-
culated by many-body perturbation theory to determine the
GW band-gap correction [52,53]. We initially constructed
a bilayer-SnS TB model via GW0 calculations (see Sup-
plemental Material [24] Sec. C, see also the references
therein [41,54,55]), to get a more accurate description of
quasiparticle energy. But the agreement between TB bands
and GW0 bands was poor with this model. Thus, we decided
to use a more complex 24-band TB model that can fit the DFT
bands more accurately [see Fig. 1(b)].

For this class of 2D materials, the DFT and GW band
structures are similar [27]. To include excitonic effects,
first-principles calculations in the Bethe-Salpeter exciton ap-
proach [56,57] is extremely computationally challenging as it
requires a dense k-point grid with thousands of points, and a
high number of bands, to achieve a reliable agreement with
experiment [17,58]. For nonlinear susceptibility calculations,
the complex expressions involving dipole matrix elements
of position operators that require nonlocal and frequency-
dependent Hamiltonians, make the calculations even more
difficult [17,27].

Furthermore, we investigate the effect of perpendicular
bias on the band structure, which requires repeating each of
these computation-intensive first-principles calculations hun-
dreds of times. The double-resonance effect we discussed here
requires very fine tuning of the applied bias, rendering the
calculations extremely prohibitive. Also, the SHG response
typically increases in the vicinity of exciton peaks when ex-
citon effects are included, and away from the exciton peaks
the effects are negligible [59]. Thus, including the excitonic
effects would not alter the main conclusion of our paper,
which is a giant enhancement of SHG due to double resonance
achieved via band tuning. In that regard, our DFT-derived TB
approach provides a computationally feasible way to study the
proposed effects, which captures the essential physics.

IV. CONCLUSION

The weak nonlinearity in bulk materials is a bottleneck
towards realization of efficient nonlinear metasurfaces in low-
dimensional systems as the required intensity of input light
is too high. There is also the problem of phase mismatch as
discussed earlier. Achieving giant nonlinear response in 2D
materials can solve both of these problems and facilitate the
design of novel nonlinear devices, such as frequency con-
verters, optical modulators, sensors, etc. in small volumes
with high conversion efficiency. We proposed a fundamen-
tally new approach to generating giant SHG responses in
2D materials. A tight-binding model for bilayer SnS was
formulated to calculate SHG coefficients with a perpendic-
ularly applied electric field. The results demonstrate a giant
SHG susceptibility of bilayer SnS up to ∼8 × 104 pm/V
which is ∼3 orders of magnitude larger than typically reported
values. We attribute the large SHG enhancement to double
resonance, achieved by band nesting. Moreover, the band
tunability also allows modification of the existing polarization
anisotropy of SHG components. Recent studies [60,61] have
reported synthesis and measurement of strong anisotropic-
and polarization-dependent SHG in few-layer SnS films.
By patterning 2D layers to create plasmonic structures for
strong light-matter interaction, further enhancement of non-
linear intensity can be achieved. Furthermore, the polarization
anisotropy of SHG can be used to design electrically tun-
able novel nonlinear polarization-sensitive devices, such as
photodetectors, synaptic devices, polarization converters, and
switches [48,62,63].
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