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Energy-level statistics in planar fractal tight-binding models
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In this study, we examine the statistics of level spectra in a noninteracting electron gas confined to a Sierpiński
carpet lattice. These lattices are constructed using two types of the self and gene patterns, and they are
categorized by the area-perimeter scaling law. The singularly continuous spectra, along with the nearest level
spacing distribution and gap-ratio distribution, reveal a critical phase different from both extended and localized
phases. This critical phase differs from the behavior near the Anderson model’s metal-insulator transition. The
Wigner-like conjecture is confirmed for both lattice classes, indicating Gaussian orthogonal symmetry. A similar
observation was made in a quasiperiodic lattice [Phys. Rev. Lett. 80, 3996 (1998)]. The self-similar nature of
fractals also leads to level clustering behavior.
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I. INTRODUCTION

Fractals have two perspectives. The first is the irregular ge-
ometry found in natural objects such as clouds and mountains
[1–5]. These shapes are invariant, either deterministically or
statistically, on any scale size. Examples include a Cantor
set [1], a Sierpiński lattice [3,6], a Vicsek lattice [7,8], a
Koch curve [9], boundary modes of lattices [10–13], and
random regular graphs [14]. The second perspective is the
self-similarity behaviors of quantum counterparts, seen in the
Hofstadter butterfly spectra [15] and in the level distribution,
density of states (DOS), and wave function of electronic prop-
erties [16–18].

Some researchers advocate that fractals and quasicrystals
are intermediate structures between crystalline and amor-
phous systems [19–21]. Both lose translation symmetry
but maintain the long-range order. Theoretically, the one-
dimensional (1D) Fibonacci chain and the 2D Penrose tiling
[22,23] are suggested for quasicrystals lattices. The first ob-
servation of a quasicrystalline Al-Mn alloy was made through
its diffraction patterns [24], which implies multifold rotational
symmetry [25].

Recently, fractals have been attracting growing interest
due to engineered fractals in experiments [26–32] and several
crucial works [33,34]. Researchers are interested in (i) further
classifying fractals using various topology characters, such as
topological dimension [1], the order of ramification [33,35],
connectivity [1,36], lacunarity [37–41], etc.; (ii) studying
material properties, such as quantum transport [42,43], Hall
conductivity [44], optical spectra [45], and plasmon mode
[46]; (iii) exploring other systems such as spin [33,47], photon
[48], and harmonic oscillators [12,49] on these lattices. In this
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work, we focus on the Sierpiński carpet [1,5,33,47], which
belongs to a larger family of fractal constructions and has
an infinite order of ramification. It resembles a translation-
invariant square lattice in 2D and can be fabricated using
medium-scale optical waveguide arrays [50,51] or photonic
lattices [43] (g ∈ [3, 5], where g is defined in the context
below) or more extreme methods such as local-field tailoring
[52].

Sierpiński carpet. Let us denote a Sierpiński carpet lat-
tice as SC(n, m, g), which can be experimentally realized
using approaches similar to those described in previous
works [43,50,51]. The hierarchy level g is a measure of
scale invariance [1,3], which becomes apparent when scal-
ing these structures. To construct the lattice, we need two
ingredients: the generator(n, m) and the dilation pattern. The
generator(n, m) serves as a “seed” lattice, which is con-
structed as follows: a square lattice of size n by n is created,
and then a subsquare lattice of size m by m is removed from
its center [53]. It is assumed that the generator(n, m) is sym-
metrical, hence n is always larger than m, and n − m is an
even number. n (m) only starts from 3 (1), followed by 4 (2),
5 (1, 3), 6 (2, 4), and so on (refer to Table I). The dilation
pattern involves selecting two representatives, Mse and Mge,
with matrix form as the self and gene patterns, respectively.

Using the generator(n, m) and the two patterns, we can di-
late two classes of the SC(n, m, g) lattice using the following
equation [Eq. (1)]:

SC(n, m, g) = Mse,ge(g) ⊗ generator(n, m). (1)

g is reduced with Mse,ge(g) ≡ Mse,ge(g − 1) ⊗ Mse,ge(1), and
the symbol ⊗ represents the tensor product of the matrices.
There are two important points to note about Mse,ge: (i) The
matrix Mse has r2 elements, consisting of N ones and r2 − N
zeros. The perimeter length of the SC(n, m, g) lattice increases
by r times and its area increases by N times when g increases
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TABLE I. Planar SC(n, m, g∗) lattices with peculiar configurations between the generator(n, m) and the self or gene patterns are classified
into two subclasses based on the area-perimeter scaling law [5,54]. The Hausdorff dimensions (Dse and Dge) are listed in lines 2 and 5,
respectively. The maximum energy (Em) is taken from Figs. 2(a1), 2(b1), 2(c1), and 2(d1), and the mean gap-ratio (〈r̃〉) is calculated from
the r̃-value statistic in Fig. 4. The values of Em and 〈r̃〉 are listed in the parentheses (. . . , . . . , . . . ), which are sequentially increased with
increasing g∗ value [63] from 2. For example, the values (3.2369, 3.3035, 3.3065) in the illustration cell (3.2693, 3.3035, 3.3065) indicate that
Em is 3.2369, 3.3035, and 3.3065 in units of t for the SC(5, 3, 2), SC(5, 3, 3), and SC(5, 3, 4) lattices, respectively.

SC(n, m, g∗) (5, 3) (4, 2) (3, 1) (5, 1)

1.8928 1.8928 1.8928 1.8928
self Em (3.2693, 3.3035, 3.3065) (3.2940, 3.3492, 3.4563) (2.9498, 3.3519, 3.4455, 3.4563) (3.7857, 3.8263)

〈r̃〉 (0.1437, 0.1353, 0.1433) (0.1492, 0.1585, 0.1496) (0.1951, 0.1503, 0.1556, 0.1605) (0.1830, 0.1912)
1.7227 1.7925 1.8928 1.9746

gene Em (2.9479, 3.2818) (2.9250, 3.3050, 3.3484) (2.9498, 3.3519, 3.4455, 3.4563) (3.8106, 3.8647)
〈r̃〉 (0.1158, 0.0980) (0.1419, 0.1231, 0.1150) (0.1951, 0.1503, 0.1556, 0.1605) (0.1773, 0.1984)

Note: we compute Dse = 1.8928 with N = 8 and r = 3.

by 1. The elements in Mse can be placed flexibly, which might
result in several subclusters in the spatial lattice and energy
spectra (see the vari pattern, a variation of the self pattern, in
Appendix A). The self pattern and its accessible geometry di-
mension, Dse, have been studied extensively [11,42]. (ii) Mge

is exactly determined by the graphical mapping of an individ-
ual generator(n, m). Its size is n by n, and all elements consist
of n2 − m2 ones and m2 zeros. To visualize the two pattern
classes, consider the case with the generator(4, 2) in Fig. 1.
Setting r = 3 and N = 8 yields Mse = [1, 1, 1; 1, 0, 1; 1, 1, 1]
and Mge(1) = [1, 1, 1, 1; 1, 0, 0, 1; 1, 0, 0, 1; 1, 1, 1, 1]. Equa-
tion (1) can be iterated infinitely to obtain SC(n, m,∞) or
finitely for prefractal SC(n, m, g). These lattices can be clas-
sified into two scale-invariant classes.

The area-perimeter scaling law [5,54] Ar ∝ pD discrim-
inates these two SC(n, m, g) classes by dimension index
D. Physically, this quantity defines the filling factor of the
SC(n, m, g) lattice in 2D space, sometimes called Hausdorff
dimension DH . It is known that, by enumerating the vertex
number in these two classes, the perimeter length is p = mrg

and the area is Ar = (n2 − m2)N g for the self pattern, and
p = mg+1 and Ar = (n2 − m2)g+1 for the gene pattern. We
note that the exponential factor of p and Ar is g and g + 1,
respectively. This signifies that the geometrical hierarchy is
scaled extraordinarily once in the gene pattern (see Fig. 1).

FIG. 1. Pictorial sketch of prefractals in the SC(n, m, g) family
by the paradigmatic generator(4, 2) under the self and gene patterns.
The corresponding spatial atom clusters are shown in the left and
right panels, respectively, at a hierarchical level of g = 3. The di-
lation of the self pattern is easily captured by Dse = ln(N )/ ln(r),
where we set N = 8 and r = 3 for simplification when g increases
by 1. Conversely, the generator predetermines Mge (see the main text
for its definition). More cases can be found in Table I.

Scaling two SC(4, 2, 3) lattices to the same size, the lattice in
the gene pattern has a darker black color than that in the self
pattern.

To address this incorrect definition, we introduce the con-
cept of the geometric hierarchy level g∗. Through some
algebraic calculations, in the limit of large g, we obtain two
asymptotic formulas: Dse = ln(N )/ ln(r) and Dge = ln(n2 −
m2)/ ln(n). Notably, Dge only depends on its generator(n, m),
while Dse is related to the choice of external self-similarity. D
affects the transport properties. Van Veen et al. reported the
box-counting dimension Dbox from numerical simulations of
quantum conductance fluctuations, which is consistent with
Dse [42]. In a Sierpiński lattice sample of CO molecules on a
Cu (111) surface [31], Kempkes et al. experimentally derived
the dimension Dψ from the electronic wave function ψ .

Upon these SC(n, m, g∗) lattices, a noninteracting electron
gas is considered. We model it by

H = −
∑

〈i, j〉
(c†

i c j + c†
j ci ) +

∑

i

V c†
i ci. (2)

A single Wannier orbital c†
i |0〉 is at site index i, and the

symbol 〈i, j〉 labels the nearest-neighbor site pair. We set
V = 0, hence there is only the kinetic term (in other words,
the properties of this model result purely from the fractal
geometry, which typically consists of broken translation sym-
metry and the long-range order of scaling symmetry about g∗).
We diagonalize the model and obtain its energy spectra and
eigenwave functions.

We introduce two essential tools to extract information
from the energy spectra. The first is the local band-branching
predictions, which is discussed in Sec. II B. We now discuss
the other tool, the level-spacing distribution (LSD) between
the adjacent energy levels. As a prelude to this work, Iliasov
et al. [55,56] studied the LSD in two simplified iterated
structures (each square- and triangle-block unit with fewer
connections [56], respectively). They exploited the decimat-
ing procedure, and gave the analytical asymptotic formula
P(s) ∼ sα at the decay tail, where s is the nearest-neighbor
level spacing, α is a constant, and P(s) is the distribution.

Two points are worth noting: (i) The unexpected peak at
the tail of the numerical P(s) observed in [55] is due to the
absence of an unfolding procedure. (ii) Although the model is
nonrandom on these two lattices, it belongs to the Gaussian
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FIG. 2. The allowed energy spectra and the half-branch integrated density of states (IDOS) change with the configuration of a
generator(n, m) and geometrical hierarchy level g∗. In (a1), full band structures are plotted in pairs for the self and gene patterns, which
are related to the red and blue color IDOS(E) in (a2) for the generator(5, 3), respectively. Similarly, the other three generator cases of (4,2),
(3,1), and (5,1) in Table I are shown for the band structures in (b1), (c1), and (d1); and for the IDOS(E) in (b2), (c2), and (d2). Each IDOS(E) is
calculated using the histogram ρ(E ) = 1/A

∑
m δ(E − Em ) and its integrated region ranges from −4 to 4. As g∗ increases to its maximum value

[63], the green dotted line E = 0 is added to display the level-distribution symmetry. In (d2), five insets (R1 − R5) zoom in on the IDOS(E) at
different positions.

orthogonal ensemble [57–59] and may obey the Wigner-like
surmise. By making a Taylor series expansion of the tail of
P(s), a power-law scaling is found in the large spacing region,
and the value of α depends on the size of the lattice. This result
is supported even in these SC(n, m, g∗) fractals. Zhang et al.
[60] were the first to pioneer this possibility in quasicrystals.
According to random matrix theory (RMT) [61], there are
three kinds of LSDs: the Poisson (Wigner) distributions for the
localized (extended) phases, and an intermediate distribution
for the critical phase.

In this work, we explore the energy spectra and the LSDs
about the SC(n, m, g∗) lattices. We find that a critical phase
(CP) exists in our model, with all states being critical, and
affected by disorder [62]. Additionally, we observe level
clustering, which can be considered a special case of level
attraction.

The paper is structured as follows: In Sec. II A, we review
the band structure of the SC(n, m, g∗) lattices. Section II B
analyzes the energy distribution, and Sec. II C studies the
energy correlations using the nearest level spacing distribution
and gap-ratio distribution. In Sec. II D, we fit the data to the
Wigner-like surmise. In the conclusion (Sec. III), we compare
the results with other fractals and quasicrystals and present
the final conclusions. Appendixes A and B provide additional
information on the level density and numerical unfolding pro-
cedure, respectively.

II. ENERGY LEVEL STATISTICS ANALYSIS

In Sec. II A, we first discuss the general characteristics of
the level density, and then we explain how it is influenced
by various factors, including the generator(n, m), two dilation
patterns (Mse and Mge), and the g∗ value. In Sec. II B, we use
the local energy cluster and integrated DOS to diagnose the
whole energy spectra as singularly continuous, suggesting a
critical phase. In Sec. II C, we extract the level correlation
information from the approximate levels using P(s) and P(r̃).
The differences in their numerical characteristics from the ex-
tended and localized phases manifest that the electronic states
are in a critical phase, and P(s) also indicates that they are near
the Anderson transition. Finally, in Sec. II D, fittings of Pfit(s)

at various s regions with lattice size Ar of approximately 104

or larger confirm the Wigner-like conjecture.

A. Level density and its bandwidth

For a single electron in a SC(n, m, g∗) lattice, the energy
spectra for Eq. (2) with zero on-site potentials are symmet-
ric about 0 due to the bipartite lattice. We set the hopping
strength t as the energy unit, so t = 1. The local sites have
a coordination number of 2, 3, or 4, so the energy range for all
SC(n, m, g∗) lattices is fixed from −4t to 4t .

Figures 2(a1), 2(b1), 2(c1), and 2(d1) show these two
properties, which are independent of the generator(n, m) and
the iterated patterns (Mse and Mge). At such a restricted en-
ergy range, the generator(n, m) affects the level density by
the local spatial configurations of the “seed” lattice (as seen
in four panels of Fig. 2). The pattern remodulates the level
density through the connections between local “seed” lattices
at various g∗ values. Figure 7 shows the role of three patterns
with g∗ = 2 in the level legs and DOS. The huge degenerate
or quasidegenerate subclusters in the left panels of Fig. 2
(as described in [64,65]) demonstrate the tendency towards
level-attracting behavior, which is rooted in the fractal lattice
and intensified by increasing geometrical hierarchy level g∗,
as indicated by the trend of scattered points.

Furthermore, we analyze the bandwidth behavior of these
planar SC(n, m, g∗) lattice-based TB models using four
generator(n, m) of (5,3), (4,2), (3,1), and (5,1), as shown in
Table I. In Figs. 2(a1), 2(b1), 2(c1), and 2(d1), we plot the
forbidden and allowed energy regions as a function of g∗ and
two patterns (Mse and Mge). The level legs are transformed
into scattered points for better visibility, as shown in Fig. 7.
With increasing g∗, the allowed energy regions broaden in any
pattern until they approach the upper limit of 4t .

The upper bound energy Em or the bandwidth 2Em are de-
rived from Fig. 2 and are listed in Table I. The pattern impact
can be seen by fixing the value of g∗ for each generator(n, m)
and changing the pattern. The results show that the self pattern
lengthens the bandwidth more effectively when g∗ increases
from 2 to 5, except in cases in which the two patterns in-
tersect coincidentally, such as in the generator(3, 1) case, as
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shown in Fig. 2(c1). Given that all four generators in Table I
have n2 − m2 � N (where N = 8), when g∗ increases by one
unit, the vertex network under the gene pattern proliferates
more quickly than the self pattern. Thus, we conclude that the
choice of pattern affects the bandwidth, with the self pattern
being more advantageous.

Interestingly, in Fig. 2(d1) for the generator(5, 1) case, the
bandwidth approaches the upper energy limit of 4t after g∗
reaches 2 or 3. Moreover, far from the band center, there is
little change other than the intensification of the degenerate
behavior when g∗ � 3, and this can be generalized to the case
of infinite g∗.

B. The band-branching trait and its tendency

In Sec. II B, we discuss the Anderson transition in a Fi-
bonacci chain [66] to take advantage of the bandwidths and
local band properties. Machida and Fujita scaled the raw
bands into the absolute unit interval and observed a dynamic
band-branching tendency with increasing disorder strength,
which is strongly correlated with the overlap between wave
functions and the correlation between neighboring levels. This
leads us to ask whether a similar phase transition can be
controlled by adjusting some lattice topological parameters
[1,33,35–37].

Despite the restriction on the lattice size Ar that we can
simulate, our results still provide insight into the trend of
bandwidth changes and local band characteristics. At g∗ = 2,
the upper bandwidth Em is close to or exceeds 3t , as seen in
Table I. The upper limit of Em is 4t , allowing for a relative
extension of the rest of the bandwidth by about 25%. This
can be achieved by varying generator(n, m) and/or increasing
the value of g∗. Additionally, as seen in Figs. 2(a2), 2(b2),
2(c2), and 2(d2), the local band clusters show no noticeable
differences in their tendencies as g∗ increases.

Therefore, we conclude that under the Mse and Mge pat-
terns, varying generator(n, m) and g∗ cannot cause a phase
transition unless a SC(n, m, g∗) fractal under the gene pattern
approximates a square periodic lattice.

To further study the possible phase in the systems
we consider, we examine the predictions of local band-
branching theory [67–72]. A localized phase is characterized
by dense-point spectra, while an extended phase has abso-
lutely continuous spectra. A phase that lies in between is
characterized by singularly continuous spectra and critical
wave functions. We can obtain information about the en-
ergy gaps by integrating the DOS, IDOS(E ) = ∫ E

−∞ ρ(E )dE ,
whose vertical staircase behavior indicates the presence of
energy gaps. We only consider the E � 0 branch, where the
energy window is very narrow (around 0.001). By combining
the above criteria and the IDOS(E ), we see in Fig. 2 that
the energy consecutiveness property is singular and the stair-
caselike behavior is evident in IDOS(E ) for all SC(n, m, g∗)
lattices in Table I, except for the SC(5, 1, 3) lattice under the
gene pattern.

We are now striving to understand why the electron stays
in the critical state (CS) on these fractal lattices, where the
local vertex configuration appears to be more regular than in
quasicrystals. Let us first explain why the other two types
of states (extended and localized) cannot persist stably in

the SC(n, m, g∗). Although these SC(n, m, g∗) lattices have a
long-range order of scaling symmetry, the Bloch (extended)
waves cannot be scattered over long distances due to the
absence of translation symmetry. Can a localized state exist
in the fractal?

It occurs either due to Anderson localization [68] or the
local design of the vertex surrounding [73–75], or both, and
all or some states are in a localized phase. However, this as-
sumption fails in the SC(n, m, g∗) lattices with a pure hopping
model, as there is no disorder and no unique site network for
the single electron cage. Therefore, it is reasonable for a mass
state cluster to be in a critical phase, and for these states to
exhibit some features of extended states [65,76]. Two known
cases have the CS. One is near the disorder-induced mobility
edge, where the correlation length is typically comparable
to the lattice size. The other is in purely frustrated lattices,
where disrupted structural symmetry occurs. The SC(n, m, g∗)
lattices belong to the second case.

In Fig. 2(d2), the SC(5, 1, 3) lattice is an exception, where
the vertical staircase traits disappear obviously when g∗ = 3
(see the five insets R1–R5). One might assume that their
wave functions are extended. In the fractal reality, for a
generator(n, m) with large n and small m, the proliferat-
ing lattices under the gene pattern can be described as a
translation-symmetry lattice with some pointlike or clusterlike
defects. Hence, it is reasonable that there are possible densely
continuous energy spectra when g∗ is significant. However,
the self pattern precludes this possibility, as the Mse pattern al-
ways remains independent of the generator(n, m), even when
the scaling symmetry becomes apparent by increasing the
g∗ value. We next study the spectral correlation in the RMT
framework [77–79].

C. Level correlation statistics in two SC classes

For an energy-level set Ei, 1 � i � Ar, where i is an
integer and Ar is the area value of the dimension of the
Hamiltonian H , the DOS ρ(E ) is divided into the smooth part
ρgl (E ) and the local fluctuation part ρ f l (E ). The smooth part
ρgl (E ) must be extracted using analytical and numerical tech-
niques; however, this is not an easy task, especially when the
asymptotic form [78,80] is either difficult to obtain or leads
to misleading results [81]. We define a map εi = η(Ei) at the
raw energy position Ei, which is obtained by interpolating the
histogram IDOS(E ) with a cubic spline [82] (further details
are available in Appendix B).

In contrast to the level-spacing distribution P(s) with si =
εi+1 − εi, Oganesyan and Huse defined the gap-ratio r̃ =
min(δ, 1/δ) with δ = si+1/si and si = Ei+1 − Ei [83]. The
distribution P(r̃) has two advantages [84,85]: (i) it does not re-
quire the estimation of ρgl (E ) and thus bypasses the numerical
unfolding procedures, and (ii) its average value 〈r̃〉 provides
information about the phase of the system. Here, we use the
computed 〈r̃〉 and the statistics of P(s) and P(r̃) to diagnose
the energy spectra of the SC(n, m, g∗) fractals and to quantify
their phase.

In contrast to Ref. [60], degenerate levels are not removed
in Figs. 3 and 4. This clearly shows how the choice of a
particular generator(n, m) or an increase in g∗ affects the dis-
tribution of the neighborhood bands. To determine if all states
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FIG. 3. The level-spacing probability distribution histogram,
P(s), is shown after ‘unfolding’ the raw level sequences as a function
of the geometrical hierarchy level g∗ or a generator(n, m). In panels
(a1) and (a3), we consider three distinct cases with g∗ = 2, 3, 4
and (n, m) = (4, 2) under the self and gene pattern, respectively. In
panels (a2) and (a4), we consider four different generators of (5,3),
(3,1), (4,2), and (5,1) from Table I with a fixed g∗ = 3 under the self
and gene pattern, respectively. The bin width is set to 0.1. The Pois-
son (solid blue line) and Wigner-surmise (solid green line) curves
from Eqs. 3 are included for reference. The numerical derivation,
P(s) = −dI (s)/ds, is shown as four insets.

are in a critical phase, we first examine the overall properties
of P(s). s is normalized by the mean level spacing 〈s〉 and is
set in a sufficient range from 0 to 5. The unique continuity
of the energy spectra has resulted in a noticeable peak in the
histogram of P(s) around s = 0 in our numerical simulations,
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FIG. 4. The gap-ratio probability distribution histogram P(r̃)
represents the raw levels, as shown in Fig. 3. The bin width is 0.06,
and the Poisson (solid blue line) and Wigner-surmise (solid green
line) curves of Eqs. (4) are included for comparison.

regardless of the dilation pattern or the configuration of the
generator(n, m) and g∗. Additionally, according to RMT, P(s)
is neither a Poisson function for the localized phase nor a
Wigner distribution for the extended phase [78], as described
in Eqs. (3),

PPoi(s) = exp(−s),

PGOE(s) = (π/2)s exp(−πs2/4). (3)

Conversely, P(s) has the form c1sβ for small s, and it degrades
into the stretched exponential form exp(−c2sα ) in the large s
range. This is a typical Wigner-like function and can be fitted
in Sec. II D. By normalizing P(s) and using the mean value
of s, it is possible to determine the coefficients (c1, c2). The
indexes (β, α) can be numerically fitted, as discussed in the
work of Brody, Izrailev, and Aronov et al. [86–89].

Similarly, using the gap-ratio r̃ as a metric, Eqs. (3) have
equivalent expressions [90,91],

PPoi(r̃) = 2

(1 + r̃)2
,

PGOE(r̃) = 27

4

r̃ + r̃2

(1 + r̃ + r̃2)5/2
. (4)

The mean value for the localized (extended) phase is 〈r̃〉Poi =
0.386 (〈r̃〉GOE = 0.536). As seen in Table I, these levels be-
come severely (quasi)degenerate when taking an arbitrary g∗,
which causes a drop in 〈r̃〉 below 0.386. To clarify the relation-
ship between the local band gathering and the pattern or the
generator(n, m), we employ the same approach by fixing the
g∗ value and comparing four generator(n, m) in DH ascending
order (see Table I). The same sequences of the generator(n, m)
are also applied to the self pattern.

First, focusing on the self dilation pattern, we select the
generator(4, 2) case, as shown in Fig. 3(a1). The improved
level clustering effect P(s) rises with g∗ at s close to 0,
and reaches its highest height at that point, while they are
often below PPoi(s) (blue curve in Fig. 3) until s approaches
the crossover point of 2.0019 where Eqs. (3) intersect. Two
crossing points, 1.2732 and 2.0019, were obtained by inter-
polating Eqs. (3) quantitatively. These LSDs outperform the
Wigner function of PGOE(s) (blue curve in Fig. 3) as s steadily
increases beyond it. The discrepancies between these LSDs
decrease as s moves away from 0.

When g∗ = 3, the impact of the generator(n, m) on P(s) is
investigated, with values taken from Table I. At small values
of s, the peak height of P(s) decreases for the sequences of
(5,3), (3,1), (4,2), and (5,1). It is known that regardless of the
generator(n, m), Dse is always the same when g∗ is very large.
This might be explained by prefractal SC(n, m, g∗ � ∞). The
alternate spectra P(r̃), shown in Figs. 4(b1) and 4(b2), can
verify these arguments, with the histogram trends consistent
with the curves in Figs. 3(a1) and 3(a2), respectively.

Now we turn to the gene pattern. Intuitively, the critical
phase, as determined by histograms, is still distinct from the
two phases defined by Eqs. (3), as seen in P(s) in Figs. 3(a3)
and 3(a4), and P(r̃) in Figs. 4(b3) and 4(b4). Additionally,
two hallmarks about the peak height of P(s) in the small
s region can be observed: (i) The level clustering behav-
ior of the two patterns we studied, shown in Figs. 3(a1)
and 3(a3), increases as g∗ increases. The peak height in the
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FIG. 5. The integrated level-spacing distribution, denoted as
I (s), has a numerical advantage over the distributions P(s) and P(r̃).
The linear-log scale displays the diverse behavior of I (s) near s = 0
between the different cases considered. The bin width used is 0.001.
The Poisson distribution (solid blue line) and the Wigner-surmise
distribution (solid green line), as given by integrating Eqs. (3), are
also included for reference.

gene pattern is higher than in the self pattern. Thus, level
attraction is influenced by the different dilation patterns. (ii)
However, when g∗ remains constant, and the generator(n, m)
is arranged in ascending order of DH (by increasing the value
of n2 − m2), the peak value of P(s) gradually decreases; see
Fig. 3(a4).

So far, we can deduce that when an electron moves purely
in these SC(n, m, g∗) lattices, their LSDs tend to have a larger
fraction in the small s region by increasing iteration depth g∗
or Hausdorff dimension Dge, which suggests many fractal-
shape artifacts [13,28], such as those that absorb continuous
optical spectra. Since the histograms of P(s) and P(r̃) are de-
pendent on the different bin widths, to distinguish these P(s)
quantitatively, we use a stabilized integrated level-spacing
distribution, I (s) = ∫ ∞

s P(t )dt , which counts the fraction of
the level spacing that is not less than s. Hence, I (0) = 1. This
makes it simpler to grasp the level correlation behavior in the
small or large s range. We integrate Eqs. (3) as a reference,
and have IPoi(s) = exp(−s) and IGOE(s) = exp(−πs2/4) for
the Poisson (solid blue line) and Wigner-surmise (solid green
line), respectively.

In Fig. 5, the numerical P(s) for all SC(n, m, g∗) lattices is
shown in the form of I (s). Especially, when s is larger than 3,
I (s) is beyond IGOE(s). As s decreases, I (s) transitions through
a region separated by IGOE(s) and IPoi(s). I (s) increases faster
at smaller s positions due to the degenerate and quasidegen-
erate levels in the studied model. When s is close to 0, I (s)
is below these two distributions. Additionally, the remarkable
peak in P(s) = −dI (s)/ds is lower than that of the histograms
(four insets in Fig. 3), as a result of stripping the degenerate
level behavior.

As mentioned, two distinct examples of CSs are consid-
ered. One occurs near the mobility edge where Anderson

FIG. 6. The finite-size scaling of I (s) and P(s) is shown for two
subclasses of Sierpiński carpet constructed using Eq. (1) with four
generators listed in Table I. Under the self (gene) pattern, the lattice
size Ar is 12 288 (13 824), 32 768 (32 768), 49 152 (20 736), and
65 536 (4096) from top to bottom, where the hierarchy level g is used.
The linear-log scale of I (s) is shown in (a) and (b), and the numerical
derivative P(s) = −dI (s)/ds is shown in (c) and (d). The two insets
show the fitting performance of the asymptotic tail (dashed line).

transition takes place. Still using P(s) terminology to extract
the energy correlation in this case, its trait is between the
localized and extended phases and intersects with the Poisson
function PPoi(s) (see Fig. 1 in Ref. [82]). The value of the cross
point decreases with increasing disorder strength and is less
than 1.2732 (we discussed it earlier; s = 1.2732 is the cross
point for Eqs. (3) between the two phases). The other CS is
possible in intermediate structures. The SC(n, m, g∗) lattices
belong to this case, and their energy spectra are analyzed.

However, our histogram P(s) differs from the crucial be-
havior near the mobility edge. It intersects with PPoi(s), which
is due to the effect of degenerate levels. This can be eliminated
by taking the negative derivative of I (s). As seen in four insets
of Fig. 3, P(s) does not intersect with PPoi(s). The existence
of P(s) in a new critical phase can be attributed to the fractal
lattice structure. To support this claim, a finite-size scaling
analysis is performed in Fig. 6. For each generator(n, m)
with the maximum computed g∗ under two patterns [most
SC(n, m, g) lattices have a lattice size of Ar ∼ 104], P(s) still
displays the same characteristics.

D. The Wigner-like distribution

One can observe that P(s) and I (s) behave on a scale as
demonstrated in Figs. 3 and 5. However, the irregular fluctua-
tions in the tail of P(s) can pose some challenges when fitting
it. Furthermore, the height and location of the peak of P(s)
can be affected by the histogram bin width when unfolding
the raw levels. In Fig. 6, we use eight SC(n, m, g∗) lattices to
illustrate the Wigner-like behavior of P(s).

The matrices in Eq. (2) are real and symmetric, and
yield identical orthogonal ensembles (β = 1). This is the
first indication of the linear characteristic as s approaches 0,
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TABLE II. Figures 6(c) and 6(d) present the fitting parameters
(c1, c2, α)T , where g holds the same value as in Figs. 6(a) and 6(b).
The transcendental nature of the potential Pfit(s) = c1s exp(−c2sα )
makes it difficult to obtain (c1, c2) through normalization of P(s)
and unitization of 〈s〉 as discussed earlier. In general, the value of
α cannot be determined analytically. As an alternative, we fit P(s) =
−dI (s)/ds in the small s region [0,5] using a piecewise approach:
the linear formula c1s for the increasing part and the asymptotic tail
exp(−c2sα ) for the decaying part [as shown in the insets of Figs. 6(c)
and 6(d)] with a 95% confidence level.

SC(n, m, g) (5, 3) (4, 2) (3, 1) (5, 1)

self (3.261, (3.462 (3.414 (2.458,
2.103, 1.751 1.600 1.434,
0.818) 0.797) 0.768) 0.584)

gene (2.378, (2.634, (3.414, (2.248,
2.471, 2.146, 1.600, 1.426,
0.641) 0.668) 0.768) 0.539)

as PGOE(s → 0) ∝ s. The level clustering property becomes
more pronounced as Ar increases, which results in a larger
slope. Secondly, the asymptotic tail of P(s) at s exceeding the
value pinned by the peak of P(s) but less than 1, as shown
in Figs. 6(c) and 6(d), decays with an intermediate power
law, as proven analytically in Ref. [55]. A shape-preserving
formula Pfit(s) = c1s exp(−c2sα ) can be used to fit these P(s),
but this is challenging because of the shaky tails when the data
P(s � 5) are included. Instead, we use two piecewise func-
tions to fit three parameters (α, c1, c2), as listed in Table II.
The performance of the fitting is demonstrated in the insets of
Figs. 6(c) and 6(d).

III. DISCUSSION AND CONCLUSION

This paper investigates a noninteracting electronic gas on
two SC(n, m, g∗) class lattices in 2D. We model it with a tight-
binding Hamiltonian, and we obtain the energy spectra by
diagonalizing the model. The study analyzes the impact of the
generator(n, m), the dilation pattern, and the geometric hier-
archy level g∗ on the level density. The generator determines
the local configuration of the Hamiltonian, the dilation pattern
modulates the energy spectra, and g∗ intensifies both mechan-
ics and leads to level attraction with increasing its value.

Additionally, the trend of energy bandwidth changes with
the three parameters is discussed. The singularly continuous
energy spectra suggest a critical phase, and the energy corre-
lation is investigated using P(s) and P(r̃). These distributions
exhibit unique behavior that corresponds to either the Poisson
distribution of the localized phase or the Wigner distribution
of the extended phase. The fitting function Pfit(s) with the
values of β and α is expanded using a Taylor series at the
peak position, resulting in a power-law behavior.

One important point to emphasize is that despite the enu-
meration of several SC(n, m, g∗) lattices in Table I, the above
argument still holds for more cases with larger g∗. The critical
phase cannot be transitioned to other phases, such as the ex-
tended or localized phase, even by tuning the generator(n, m)
in the SC(n, m, g∗) lattices. It should be noted that Mge is
always determined by the generator(n, m). In some extreme
cases where n is significantly larger than m in the gene pattern,

the dilated lattice roughly approximates a 2D periodic lattice
with some point or small-cluster defects, leading to some
extended traits in its energy spectra, as seen in the SC(5, 1, 3)
lattices.

The ramification order of Sierpiński gasket and the
SC(n, m, g∗) lattices are finite and infinite, respectively, which
causes localized patterns in the former as demonstrated in
Ref. [46]. Since the Sierpiński carpet resembles a square
periodic lattice, it is the focus of this paper. It is also recom-
mended to investigate the SC(n, m, g∗) lattices by introducing
extra topological characters such as connectivity [1,36] and
lacunarity [37–41].

We would like to compare our results with several qua-
sicrystalline examples. The critical phase is demonstrated by
the multifractal spectra in a 1D Fibonacci chain, as reviewed
in [92]. However, the situation is more complex for various
Penrose tilings in 2D. These lattices are obtained by projecting
high-dimensional cubic lattices into a lower dimension. The
presence of many confined states has been revealed in some
studies [93] due to the local connectivity, and the small-scale
string states can be affected by the overall configuration. Macé
et al. showed the critical state in two tilings with the SKK form
[94]. The diversity of these results is largely determined by
the strategies used, such as selecting the local vertex configu-
ration, applying orientational multifold symmetry, and setting
various hopping strengths between vertices [95]. In contrast,
we regularly wipe out many sites (as seen in the empty site
cluster in Fig. 1) in 2D rigid lattices, resulting in a normative
local site configuration with a few shapes, and an open bound-
ary in the SC(n, m, g∗) lattices. The critical states in our case
can be explained by the two mechanics of aperiodicity and
scaling symmetry based on g∗.

In conclusion, we modeled the system using a tight-binding
model for a noninteracting electron gas confined in two
SC(n, m, g∗) lattice classes percolated separately by the self
and gene patterns. We analyzed the singularly continuous
trait in the electronic energy spectra. Using numerical P(s)
and P(r̃) histograms, we confirmed that electronic states are
embedded in a critical phase. We also fitted the Wigner-like
distribution of P(s) and found that it has a linear law in the
small s limit and a power law in the large s limit or at the right
side of the peak. These fractals have a broken translation sym-
metry and the long-range order of scaling symmetry, which
leads to the critical phase. This differs from the well-known
extended and localized phases, as well as the near mobility
edge when Anderson transition occurs. A rise in the g∗ value
shows that the scaling symmetry is the cause of the level
clustering in these lattices.

We also note that the renormalization-group approach
has been used in 1D Fibonacci chains, 2D lattices such as
Vicsek [8] and other fractals [56,96], and Penrose tiling [97].
However, the decimating procedures in the SC(n, m, g∗) lat-
tices become very tedious due to their huge lattice size. For
these critical states, multifractal analysis [65] is preferred.
The SC(n, m, g∗) fractal topology was investigated using a
straightforward hopping model, but it can be easily general-
ized to the Anderson model [68] and its variations [98–100],
or to include two-body interactions [91]. Alternatively, other
particles such as phonons are found in quasicrystals [101] and
fractals.
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FIG. 7. Level legs and DOS for the tight-binding model are shown for the corresponding fractal SC(4, 2, 2) lattices produced under three
patterns, from left to right: the self, the gene, and the variant of the self pattern (also known as the vari pattern).
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We provide additional analysis in two Appendixes:
(i) the discrete level distributions and their regular-
ized density of state are presented, and (ii) the nu-
merical unfolding technique for the raw level sequences
E1 � E2 < · · · < Ek . . . , k = 3, 4, . . . , Dim(H ) is described.
These new levels are then used for the P(s) statistics.

APPENDIX A: THE LEVEL-DISTRIBUTION DENSITY

We present a study of single electron hopping in three
SC(n, m, g∗) lattices using the tight-binding model. The lat-
tices are constructed under three patterns: the self, gene, and
vari patterns, with the latter being a variation of the self
pattern. The levels are obtained from direct diagonalization
of the Hamiltonian and are shown in terms of the level leg
and density of state (DOS). To avoid needlelike peaks in the
DOS, the Dirac function is blurred by using either a Gaussian
or Lorentz function [65,102] with a small energy window of
0.005.

We compare the three pattern-based lattices by setting the
same geometrical hierarchy g∗, where a smaller g∗ results in
more obvious nearby local clusters. In this study, we put g∗ =
2. In Fig. 7, we highlight the prominent symmetry about E =
0. In the vari pattern, some separate vertex subclusters in the
SC(n, m, g∗) lattice result in subblocks in the Hilbert space,

manifesting as typical but small clusters in the energy spectra.
Increasing g∗ can increase the peak value but does not alter
the locations where the peaks are pinned (as seen in the right
panel of Fig. 7).

In contrast, the DOSs in the self and gene patterns are
coherent and dense, as shown in the left and middle panels
of Fig. 7. This is due to the lack of discrete vortex subclusters
in their lattices. Both patterns display a uniform trend, which
can be adjusted through the choice of pattern and the increase
of g∗. In the main text, we have discussed the impact of the
generator(n, m) and g∗ on the lattices. There are some dif-
ferences between the two patterns. The gene pattern exhibits
stronger level attraction near the band center, while the self
pattern has blocky spectra. It is worth noting that the self
pattern with g∗ = 2 has more vertexes, thus it appears to have
more level legs.

APPENDIX B: THE UNFOLDING PROCEDURES FOR THE
LEVEL-SPACING STATISTICS

The unfolding procedure aims to eliminate the discontinu-
ity of the integrated density of states (IDOS) by using a cubic
spline and to obtain a monotonous function η(E ); see the
two curves of Fig. 8(b). The IDOS is defined as IDOS(E ) =
1/Ar

∑
m 
(E − Em), where 
(t ) is a cumulative count func-

tion for t � 0. Less than 5% of numerical points violate the
monotonicity of IDOS(E ), and these points are skipped to
ensure the monotonicity of η(E ).

The derivative of η(E ), ρ(E ) = dη(E )/dE , is confirmed
to be correct using two different methods. One method is
by comparing ρ(E ) to a histogram-like DOS in Fig. 8(c1).
The results show that both are primarily the same, with the
horizontal offset caused by the forward Euler method. The
other method is by comparing ρ(E ) to a smoothlike DOS
in Fig. 8(c2), which is obtained using a Gaussian or Lorentz
blurring function. The regularized DOS ρσ (E ) with these two
functions serves as an envelope of the numerical derivative
ρ(E ).
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FIG. 8. P(s) after and before the unfolding procedure, the level spacing, and the DOS for the tight-binding model on the fractal SC(4, 2, 2)
lattice produced under three patterns are shown in (a). For comparison, the histograms of PGOE(s) and PPoi(s) are added. P(s) is derived
indirectly from the cubic interpolation function η(E ), which is obtained from the integral DOS (IDOS) in (b). In some regions, the monotonicity
of η(E ) is violated (an inset shows the zoomed-out red rectangle R1). In (c1), the derivative of η(E ) (solid green) is compared with the original
histogram (stair blue) as the DOS. In (c2), the Gaussian (solid red) or Lorentz (solid blue) function ρσ (E ) regularizes the needlelike energy
spectra ρ(E ) = ∑

n δ(E − En), where σ = 0.05 is a small energy window. Both are compared with ρ(E ) = dη(E )/dE (solid green).

To obtain the new level spacings εi for P(s), the raw levels
Ei are interpolated using εi = η(Ei ). Figure 8(a) shows P(s)

using an illustrated SC(4, 2, 2) lattice, with both the basic and
new level sequences shown.
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