
Computer Physics Communications 285 (2023) 108632
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

TBPLaS: A tight-binding package for large-scale simulation ✩,✩✩

Yunhai Li 1, Zhen Zhan 1, Xueheng Kuang, Yonggang Li, Shengjun Yuan ∗

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 September 2022
Received in revised form 25 November 2022
Accepted 5 December 2022
Available online 15 December 2022

Keywords:
Tight-binding model
Tight-binding propagation method
Electronic structure
Response properties
Mesoscopic scale
Moiré superlattice

TBPLaS is an open-source software package for the accurate simulation of physical systems with
arbitrary geometry and dimensionality utilizing the tight-binding (TB) theory. It has an intuitive
object-oriented Python application interface (API) and Cython/Fortran extensions for the performance-
critical parts, ensuring both flexibility and efficiency. Under the hood, numerical calculations are
mainly performed by both exact diagonalization and the tight-binding propagation method (TBPM)
without diagonalization. Especially, the TBPM is based on the numerical solution of the time-dependent
Schrödinger equation, achieving linear scaling with system size in both memory and CPU costs.
Consequently, TBPLaS provides a numerically cheap approach to calculate the electronic, optical,
plasmon and transport properties of large tight-binding models with billions of atomic orbitals. Current
capabilities of TBPLaS include the calculations of band structure, density of states, local density
of states, quasi-eigenstates, optical conductivity, electrical conductivity, Hall conductivity, polarization
function, dielectric function, plasmon dispersion, carrier mobility and velocity, localization length and
free path, Z2 topological invariant, wave-packet propagation, etc. All the properties can be obtained with
only a few lines of code. Other algorithms involving tight-binding Hamiltonians can be implemented
easily due to the extensible and modular nature of the code. In this paper, we discuss the theoretical
framework, implementation details and common workflow of TBPLaS, and give a few demonstrations of
its applications.

Program summary
Program Title: TBPLaS
CPC Library link to program files: https://doi .org /10 .17632 /5cjmzj9jwm .1
Code Ocean capsule: https://codeocean .com /capsule /8296734
Licensing provisions: BSD 3-clause
Programming language: Python, Cython, Fortran
Nature of problem: The TB method is a powerful tool for investigating the electronic structures and
many other properties in condensed matter physics. However, the costs of memory and CPU time using
standard diagonalization-based TB techniques scale as O (N2) and O (N3) with the model size N , severely
limiting their applications in large complex systems. The development of numerical methods to solve
TB problems without any diagonalization, as well as the implementation of these techniques in software
packages, are urgently needed to promote the capability of TB methods to large systems with billions of
atoms.
Solution method: We proposed the TBPM and implemented it in the TBPLaS package. In TBPM, the
electronic properties of a TB model are calculated numerically by solving the time-dependent Schrödinger
equation without any diagonalization, which ensures a linear scaling of both memory and CPU costs with
the system size. Models with billions of atoms (orbitals) can be easily handled, with many properties
available from the evolution of time-dependent correlation functions. The TBPLaS package features
an intuitive object-oriented Python API and Cython/Fortran extensions for performance-critical parts,

✩ The review of this paper was arranged by Prof. Blum Volker.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding author.
E-mail address: s.yuan@whu.edu.cn (S. Yuan).

1 These authors contributed equally to this work.
https://doi.org/10.1016/j.cpc.2022.108632
0010-4655/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2022.108632
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108632&domain=pdf
https://doi.org/10.17632/5cjmzj9jwm.1
https://codeocean.com/capsule/8296734
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:s.yuan@whu.edu.cn
https://doi.org/10.1016/j.cpc.2022.108632

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

ensuring both flexibility and efficiency. Moreover, TBPLaS implements hybrid MPI+OpenMP parallelism,
which can exploit the modern hardware of high-performance computers.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Computational modeling is an essential tool for both funda-
mental and applied researches in the condensed matter commu-
nity. Among the widely used modeling tools, the tight-binding
(TB) method is popular in both quantum chemistry and solid state
physics [1,2], which can provide a fast and accurate understand-
ing of the electronic structures of crystals with small unit cells, or
large complex systems with/without translational symmetry. The
TB method investigates electronic structure via both exact diago-
nalization and non-diagonalization techniques. With exact diago-
nalization, the TB method can tackle crystalline structures contain-
ing up to tens of thousands of orbitals in the unit cell. With non-
diagonalization techniques, for instance the tight-binding propaga-
tion method (TBPM) [3–7] and the recursion technique [8], large
systems with up to billions of orbitals can be easily handled.

Recently, a plethora of exotic properties, such as superconduc-
tivity [9–11], correlated insulator [12–14], charge-ordered states
[15], ferromagnetism [16], quantum anomalous Hall effect [17]
and unconventional ferroelectricity [18], are constantly observed in
moiré superlattices, which are formed by stacking single layers of
two-dimensional (2D) materials on top of each other with a small
misalignment [19]. To facilitate the exploration of the physical
phenomena in the moiré superlattices, theoretical calculations are
utilized to provide accurate and robust predictions. In the moiré
patterns, the loss of angstrom-scale periodicity poses an obviously
computing challenge. For instance, in twisted bilayer graphene
(TBG) with rotation angle of 1.05◦–the so-called magic angle, the
number of atoms in a supercell is 11908, which is too large for
state-of-the-art first-principles methods. On the contrary, the TB
method has been proved to be a simple and effective approach to
investigate the electronic structure of moiré pattern [20,21]. More
importantly, with the real-space TB method, the substrate effects,
strains, disorders, defects, electric and magnetic fields and many
other external perturbations can be naturally implemented via the
modifications of the tight-binding parameters [3,22]. Therefore, the
TB method provides a more powerful framework to tackle realistic
materials fabricated in the laboratory.

There are some open source software packages implementing
the TB method and covering different aspects of the modeling of
quantum transport and electronic structure. For example, Kwant
is a Python package for numerical calculations of quantum trans-
port of nanodevices from the transmission probabilities, which is
based on the Landauer-Buttiker formalism and the wave function-
matching technique [23]. PythTB is a Python package for the
construction and solution of simple TB models [24]. It includes
the tools for calculating quantities that are related to Berry phases
or curvatures. Pybinding is a package with a Python interface
and a C++ core, which is based on both the exact diagonalization
and the kernel polynomial method (KPM) [25]. Technically, KPM
utilizes convolutions with a kernel to attenuate the Gibbs oscil-
lations caused by discontinuities or singularities, and is a general
tool to study large matrix problems [26]. In Pybinding, the KPM
is adopted to model complex systems with disorder, strains or ex-
ternal fields. The software supports numerical calculations of band
structures, density of states (DOS), local density of states (LDOS)
and conductivity. TBTK is a C++ software development kit for nu-
merical calculations of quantum mechanical properties [27]. Partic-
ularly, it is also based on the KPM and designed for accurate real-
space simulations of electronic structures and quantum transport
2

properties of large-scale molecular and condensed systems with
tens of billions of atomic orbitals [28]. KITE is an open-source
software with a Python interface and a C++ core, which is based
on the spectral expansions methods with an exact Chebyshev poly-
nomial expansion of Green’s function [29]. Several functionalities
are demonstrated, ranging from calculations of DOS, LDOS, spec-
tral function, electrical (DC) conductivity, optical (AC) conductiv-
ity and wave-packet propagation. MathemaTB is a Mathematica
package for TB calculations, which provides 62 functionalities to
carry out matrix manipulation, data analysis and visualizations on
molecules, wave functions, Hamiltonians, coefficient matrices, and
energy spectra [30].

Previous implementations of the TB method have so far been
limited to simple models or have limited functionalities. Therefore,
we have developed the TBPM method, which is based on the nu-
merical solution of time-dependent Schrödinger equation (TDSE)
without any diagonalization [4]. The core concepts of TBPM are
the correlation functions, which are obtained directly from the
time-dependent wave function and contain part of the features of
the Hamiltonian. With enough small time step and long propa-
gation time, the whole characteristics of the Hamiltonian can be
accurately captured. The correlation functions are then analyzed to
yield the desired physical quantities. Compared to exact diagonal-
ization whose costs of memory and CPU time scale as O(N2) and
O(N3), TBPM has linear scaling in both resources, allowing us to
deal with models containing tens of billions of orbitals. Moreover,
the calculations of electronic, optical, plasmon and transport prop-
erties can be easily implemented in TBPM without the requirement
of any symmetries. Other calculations involving the TB Hamilto-
nian can also be implemented easily.

We implement TBPM in the open source software package
named Tight-Binding Package for Large-scale Simulation, or TB-
PLaS in short. In TBPLaS, TB models can be constructed from
scratch using the application interface (API), or imported from
Wannier90 output files directly. Physical quantities can be obtained
via four methods: (i) exact diagonalization to calculate the band
structure, DOS, eigenfunction, polarization function [31] and AC
conductivity; (ii) recursive Green’s function to get LDOS [32,33];
(iii) KPM to obtain DC and Hall conductivity [34,35]; (iv) TBPM to
calculate DOS, LDOS, carrier density, AC conductivity, absorption
spectrum, DC conductivity, time-dependent diffusion coefficient,
carrier velocity and mobility, elastic mean free path, Anderson lo-
calization length, polarization function, response function, dielec-
tric function, energy loss function, plasmon dispersion, plasmon
lifetime, damping rate, quasi-eigenstate, real-space charge density,
and wave packet propagation [3,36–40,6,35,41]. At the core of TB-
PLaS, we use TBPM to achieve nearly linear scaling performance.
Furthermore, crystalline defects, vacancies, adsorbates, charged im-
purities, strains and external electric and/or magnetic fields can be
easily set up with TBPLaS’s API. These features make it possible
for the simulation of systems with low concentrations of disorder
[3,42] or large unit cells, such as twisted bilayer and multilayer
systems [7]. What is more, the computations are performed in real
space, so it also allows us to consider systems that lack translation
symmetry, such as fractals [43,44] and quasicrystals [45,46].

The numerical calculations in TBPLaS are separated into two
stages. In the first stage, the TB model can be constructed in
Python using the API in an intuitive object-oriented manner. Many
of the concepts of the API are natural in solid state physics, such
as lattices, orbitals, hopping terms, vacancies, external electric and

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
magnetic fields, etc. Moreover, the TB model can also be im-
ported from Wannier90 output files directly. In the second stage,
the Hamiltonian matrix is set up from the TB model and passed
to backends written in Cython and Fortran, where the quanti-
ties are calculated by using either exact diagonalization, recursion
method, KPM or post-processing of the correlation functions ob-
tained from the TBPM. The advantage of the two-state paradigm
is that it provides both excellent flexibility and high efficiency.
Up to now, TBPLaS has been utilized to investigate the elec-
tronic structures of a plenty of 2D materials, such as graphene
[7,32], transition metal dichalcogenides [31,47], tin disulfide [48],
arsenene [49], antimonene [50], black phosphorus [34,42], tin dis-
elenide [51], MoSi2N4 [52]. Moreover, TBPLaS is a powerful tool
to tackle complex systems, for example, graphene with vacancies
[36,37,39], twisted multilayer graphene [32,53–55], twisted multi-
layer transition metal dichalcogenides [56,47,31], graphene-boron
nitride heterostructures [7,57], dodecagonal bilayer graphene qua-
sicrystals [45,58,59,46,60] and fractals [43,44,61–64].

The paper is organized as follows. In Sec. 2 we discuss the
concepts and theories of TBPM and other methods. Then the im-
plementation details of TBPLaS are described in Sec. 3, followed
by the usages in Sec. 4. In Sec. 5, we give some examples of cal-
culations that can be done with TBPLaS. Finally, in Sec. 6 we give
the conclusions, outlooks and possible future developments.

2. Methodology

In this section, we discuss briefly the underlying concepts and
theories of TBPLaS with which to calculate the electronic, optical,
plasmon and transport properties. Note that if not explicitly given,
we will take h̄ = 1 and omit it from the formula.

2.1. Tight-binding models

The Hamiltonian of any non-periodic system containing n or-
bitals follows

Ĥ =
∑

i

εic
†
i ci −

∑
i �= j

ti jc
†
i c j (1)

which can be rewritten in a compact matrix form

Ĥ = c† Hc (2)

with

c† =
[

c†
1, c†

2, · · · , c†
n

]
(3)

c =
[

c1, c2, · · · , cn

]T
(4)

Hij = εiδi j − ti j(1 − δi j) (5)

Here εi denotes the on-site energy of orbital i, ti j denotes the hop-
ping integral between orbitals i and j, c† and c are the creation
and annihilation operators, respectively. The on-site energy εi is
defined as

εi =
∫

φ∗
i (r)ĥ0(r)φi (r)dr (6)

and the hopping integral ti j is defined as

ti j = −
∫

φ∗
i (r)ĥ0(r)φ j (r)dr (7)

with ĥ0 being the single-particle Hamiltonian

ĥ0(r) = − h̄2

∇2 + V (r) (8)

2m

3

and φi being the reference single particle state. In actual calcu-
lations, the reference states are typically chosen to be localized
states centered at τi , e.g., atomic wave functions or maximally
localized generalized Wannier functions (MLWF). The on-site en-
ergies and hopping integrals can be determined by either direct
evaluation following Eqs. (6)-(8), the Slater-Koster formula [1,65],
numerical fitting to experimental or ab initio data. Once the param-
eters are determined, the eigenvalues and eigenstates can be ob-
tained by diagonalizing the Hamiltonian matrix defined in Eq. (5).

For periodic systems, the reference state gets an additional cell
index R

φiR(r) = φi(r − R) (9)

We define the Bloch basis functions and creation (annihilation) op-
erators by Fourier transform

χik(r) = 1√
N

∑
R

eik·(R+τi)φiR(r) (10)

c†
i (k) = 1√

N

∑
R

eik·(R+τi)c†
i (R) (11)

ci (k) = 1√
N

∑
R

e−ik·(R+τi)ci (R) (12)

where N is the number of unit cells. Then the Hamiltonian in
Bloch basis can be written as

Ĥ = N
∑

k

[∑
i∈uc

εic
†
i (k)ci (k)

−
∑

R�=0∨i �= j

ti j(R)eik·(R+τ j−τi)c†
i (k)c j(k)

⎤
⎦

(13)

Here the third summation is performed for all cell indices R and
orbital pairs (i, j), except the diagonal terms with R = 0 and i = j.
The Hamiltonian can also be rewritten in matrix form as

Ĥ = N
∑

k

c†(k)H(k)c(k) (14)

with

c†(k) =
[

c†
1(k), c†

2(k), · · · , c†
n(k)

]
(15)

c(k) =
[

c1(k), c2(k), · · · , cn(k)
]T

(16)

Hij(k) = εiδi j −
∑

R�=0∨i �= j

ti j(R)eik·(R+τ j−τi) (17)

Here ti j(R) is the hopping integral between φi0 and φ jR .
There is another convention to construct the Bloch basis func-

tions and creation (annihilation) operators, which excludes the or-
bital position τi in the Fourier transform

χik(r) = 1√
N

∑
R

eik·RφiR(r) (18)

c†
i (k) = 1√

N

∑
R

eik·Rc†
i (R) (19)

ci (k) = 1√
N

∑
R

e−ik·Rci (R) (20)

Then Eq. (17) becomes

Hij(k) = εiδi j −
∑

ti j(R)eik·R (21)

R�=0∨i �= j

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
Both conventions have been implemented in TBPLaS, while the
first convention is enabled by default.

External electric and magnetic fields can be introduced into the
tight-binding model by modifying the on-site energies and hop-
ping integrals. For example, homogeneous electric fields towards
−z direction can be described by

εi → εi + E · (zi − z0) (22)

where E is the intensity of electric field, zi is the position of or-
bital i along z-axis, and z0 is the position of zero-potential plane.
Magnetic fields, on the other hand, can be described by the vector
potential A and Peierls substitution [66]

ti j → ti j · exp

⎛
⎜⎝i

e

h̄c

j∫
i

A · dl

⎞
⎟⎠ = ti j · exp

⎛
⎜⎝i

2π

�0

j∫
i

A · dl

⎞
⎟⎠ (23)

where
∫ j

i A · dl is the line integral of the vector potential from
orbital i to orbital j, and �0 = ch/e is the flux quantum. For homo-
geneous magnetic field towards −z, we follow the Landau gauge
A = (B y, 0, 0). Note that for numerical stability, the size of the sys-
tem should be larger than the magnetic length.

Finally, we mention that we have omitted the spin notations
in above formulation for clarity. However, spin-related terms such
as spin-orbital coupling (SOC), can be easily incorporated into the
Hamiltonian and treated in the same approach in TBPM and TB-
PLaS.

2.2. Tight-binding propagation method

Exact diagonalization of the Hamiltonian matrix in Eq. (5), (17)
and (21) yields the eigenvalues and eigenstates of the model, even-
tually all the physical quantities. However, the memory and CPU
time costs of exact diagonalization scale as O(N2) and O(N3) with
the model size N , making it infeasible for large models. The TBPM,
on the contrary, tackles the eigenvalue problem with a totally dif-
ferent philosophy. The memory and CPU time costs of TBPM scale
linearly with the model size, so models with tens of billions of or-
bitals can be easily handled.

In TBPM, a set of randomly generated states are prepared as
the initial wave functions. Then the wave functions are propagated
following

|ψ(t)〉 = e−iĤt |ψ(0)〉 (24)

and correlation functions are evaluated at each time step. The cor-
relation functions contain a fraction of the features of the Hamilto-
nian. With enough small time step and long propagation time, the
whole characteristics of the Hamiltonian will be accurately cap-
tured. Finally, the correlation functions are averaged and analyzed
to yield the physical quantities. Taking the correlation function of
DOS for example, which is defined as

CDOS(t) = 〈ψ(0)|ψ(t)〉 (25)

It can be proved that the inner product is related to the eigenval-
ues via

〈ψ(0)|ψ(t)〉 =
∑
i jk

Ukj U
∗
i jai a∗

k e−iε j t (26)

with ε j being the j-th eigenvalue, Ukj being the k-th component
of j-th eigenstate, respectively. The initial wave function ψ(0) is a
random superposition of all basis states

|ψ(0)〉 =
∑

ai |φi〉 (27)

i

4

where ai are random complex numbers with
∑

i |ai |2 = 1, and φi
are the basis states. It is clear that the correlation function can be
viewed as a linear combination of oscillations with frequencies of
ε j . With inverse Fourier transform, the eigenvalues and DOS can
be determined.

To propagate the wave function, one needs to numerically de-
compose the time evolution operator. As the TB Hamiltonian ma-
trix is sparse, it is convenient to use the Chebyshev polynomial
method for the decomposition, which is proved to be uncondition-
ally stable for solving TDSE [67]. Suppose x ∈ [−1, 1], then

e−izx = J0(z) + 2
∞∑

m=1

(−i)m Jm(z)Tm(x) (28)

where Jm(z) is the Bessel function of integer order m, Tm(x) =
cos [m arccos x] is the Chebyshev polynomial of the first kind. Tm(x)
follows a recurrence relation as

Tm+1(x) + Tm−1(x) = 2xTm(x) (29)

To utilize the Chebyshev polynomial method, we need to rescale
the Hamiltonian as H̃ = Ĥ/||Ĥ|| such that H̃ has eigenvalues in
the range [−1, 1]. Then, the time evolution of the states can be
represented as

|ψ(t)〉 =
[

J0(t̃)T̂0(H̃) + 2
∞∑

m=1

Jm(t̃)T̂m(H̃)

]
|ψ(0)〉 (30)

where t̃ = t · ||Ĥ||, Jm(t̃) is the Bessel function of integer order m,
T̂ (H̃) is the modified Chebyshev polynomials, which can be calcu-
lated up to machine precision with the recurrence relation

T̂m+1(H̃)|ψ〉 = −2iH̃ T̂m(H̃)|ψ〉 + T̂m−1(H̃)|ψ〉 (31)

with

T̂0(H̃)|ψ〉 = |ψ〉, T̂1(H̃)|ψ〉 = −iH̃|ψ〉 (32)

The other operators appear in TBPM can also be decomposed
numerically using the Chebyshev polynomial method. A function
f (x) whose values are in the range [-1, 1] can be expressed as

f (x) = 1

2
c0T0(x) +

∞∑
k=1

ck Tk(x) (33)

where Tk(x) = cos (k arccos x) and the coefficients ck are

ck = 2

π

1∫
−1

dx√
1 − x2

f (x)Tk(x) (34)

Assume x = cos θ and substitute it into Eq. (34), we have

ck = 2

π

π∫
0

f (cos θ) cos kθdθ

= Re

[
2

π

N−1∑
n=0

f

(
cos

2πn

N

)
exp

(
i
2πn

N
k

)] (35)

which can be calculated by fast Fourier transform. For the Fermi-
Dirac operator as frequently used in TBPM, it is more convenient
to express it as f = ze−βH/(1 + ze−βH) [3], where z = eβμ is the
fugacity, β = 1/kB T , kB is the Boltzmann constant, T is the tem-
perature and μ is the chemical potential. We define β̃ = β · ||H ||,
then

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
f (H̃) = ze−β̃ H̃

1 + ze−β̃ H̃
=

∞∑
k=0

ck Tk(H̃) (36)

where ck are the Chebyshev expansion coefficients of the function
f (x) = ze−β̃x/(1 + ze−β̃x) . The Chebyshev polynomials Tk(H̃) have
the following recursion relation

Tk+1(H̃) − 2H̃ Tk(H̃) + Tk−1(H̃) = 0 (37)

with

T0(H̃) = 1, T1(H̃) = H̃ (38)

For more details we refer to Ref. [3].

2.3. Band structure

The band structure of a periodic system can be determined by
diagonalizing the Hamiltonian matrix in Eq. (17) or (21) for a list
of k-points. Both conventions yield the same band structure. Typ-
ically, the k-points are sampled on a k-path connecting highly
symmetric k-points in the first Brillouin zone. A recommended set
of highly symmetric k-points can be found in Ref. [68].

2.4. Density of states

In TBPLaS, we have two approaches to calculate DOS. The first
approach is based on exact diagonalization, which consists of get-
ting the eigenvalues of the Hamiltonian matrix on a dense k-grid,
and a summation over the eigenvalues to collect the contributions

D(E) =
∑

ik

δ(E − εik) (39)

where εik is the i-th eigenvalue at point k. In actual calculations
the delta function is approximated with a Gaussian function

G(E − εik) = 1√
2πσ

exp

[
− (E − εik)2

2σ 2

]
(40)

or a Lorentzian function

L(E − εik) = 1

πσ

σ 2

(E − εik)2 + σ 2
(41)

Here σ is the broadening parameter.
The other approach is the TBPM method, which evaluates the

correlation function according to Eq. (25). The DOS is then cal-
culated by inverse Fourier transform of the averaged correlation
function

D(E) = 1

S

S∑
p=1

1

2π

∞∫
−∞

eiEt CDOS(t)dt (42)

Here S is the number of random samples for the average. The
inverse Fourier transform in Eq. (42) can be performed by fast
Fourier transform, or integrated numerically if higher energy res-
olution is desired. We use a window function to alleviate the ef-
fects of the finite time used in the numerical time integration of
TDSE. Currently, three types of window functions have been im-
plemented, namely Hanning window [69], Gaussian window and
exponential window.

The statistical error in the calculation of DOS follows 1/
√

S N ,
where N is the model size. Thus the accuracy can be improved by
either using large models or averaging over many initial states. For
a large enough model (> 108 orbitals), one random initial state
is generally enough to ensure convergence. The same conclusion
5

holds for other quantities obtained from TBPM. The energy reso-
lution of DOS is determined by the number of propagation steps.
Distinct eigenvalues that differ more than the resolution appear as
separate peaks in DOS. If the eigenvalue is isolated from the rest
of the spectrum, then the number of propagation steps determines
the width of the peak. More details about the methodology of cal-
culating DOS can be found in Ref. [3,4]. We emphasize that the
1/

√
S N dependence of the statistical error is a general conclusion

which is also valid for other quantities calculated with TBPM, and
the above discussions for improving accuracy and energy resolu-
tion work for these quantities as well.

2.5. Local density of states

TBPLaS provides three approaches to calculate the LDOS. The
first approach is based on exact diagonalization, which is similar
to the evaluation of DOS

di(E) =
∑

jk

δ(E − ε jk)|Uijk|2 (43)

where Uijk is the i-th component of j-th eigenstate at point k.
The second approach is the TBPM method, which also has much
in common with DOS. The only difference is that the initial wave
function |ψ(0)〉 in Eq. (25) is redefined. For instance, to calculate
the LDOS on a particular orbital i, we set only the component ai in
Eq. (27) as nonzero. Then the correlation function can be evaluated
and analyzed in the same approach as DOS, following Eq. (25) and
(42). It can be proved that in this case the correlation function
becomes

〈ψ(0)|ψ(t)〉 =
∑

j

|Uijai|2e−iε jt (44)

which contains the contributions from the i-th components of all
the eigenstates.

The third approach evaluates LDOS utilizing the recursion
method in real space based on Lanczos algorithm [8,70]. The LDOS
on a particular orbital i is

di(E) = − lim
ε→0+

1

π
Im〈φi|G(E + iε)|φi〉 (45)

Then, we use the recursion method to obtain the diagonal matrix
elements of the Green’s function G(E)

G0(E) = 〈l0|G(E)|l0〉
= 1/(E − a0 − b2

1/(E − a1 − b2
2/(E − a2 − b2

3/ . . .))) (46)

where l0 is a unit vector with non-zero component at orbital i
only. The elements an and bn are determined with the following
recursion relation

ai = 〈li |H| li〉 (47)

|mi+1〉 = (H − ai)|li〉 − bi |li−1〉 (48)

bi+1 = √〈mi+1|mi+1〉 (49)

|li+1〉 = 1

bi+1
|mi+1〉 (50)

with |l−1〉 = |0〉.

2.6. Quasieigenstates

For a general Hamiltonian in Eq. (1) and for samples con-
taining millions of orbitals, it is computationally expensive to get

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
the eigenstates by exact diagonalization. An approximation of the
eigenstates at a certain energy E can be calculated without di-
agonalization following the method in Ref. [3], which has been
introduced for the calculation of electric transport properties of
large complex models. With an inverse Fourier transform of the
time-dependent wave function |ψ(t)〉, one gets the following ex-
pression

|
(E)〉 = 1

2π

∞∫
−∞

eiEt |ψ(t)〉dt

= 1

2π

∑
i

ai

∞∫
−∞

ei(E−Ei)t |φi〉dt

=
∑

i

aiδ(E − Ei)|φi〉 (51)

which can be normalized as

|
̃(E)〉 = 1√∑
i |ai|2δ(E − Ei)

∑
i

aiδ(E − Ei)|φi〉 (52)

Here, Ei is the i-th eigenvalue of the scaled Hamiltonian H̃ . Note
that |
̃(E)〉 is an eigenstate if it is a single (non-degenerate)
state [71], or a superposition of the degenerate eigenstates with
the energy E . That is why it is called the quasieigenstate. Al-
though |
̃(E)〉 is written in the energy basis, the time-dependent
wave function |ψ(t)〉 can be expanded in any orthogonal and com-
plete basis sets. Two methods can be adopted to improve the
accuracy of quasieigenstates. The first one is to perform inverse
Fourier transform on the states from both positive and negative
time, which keeps the original form of the integral in Eq. (51).
The other method is to multiply the wave function |ψ(t)〉 by a
window function, which improves the approximation to the inte-
grals. Theoretically, the spatial distribution of the quasieigenstates
reveals directly the electronic structure of the eigenstates with cer-
tain eigenvalue. It has been proved that the LDOS mapping from
the quasieigenstates is highly consistent with the experimentally
scanning tunneling microscopy (STM) dI/dV mapping [32].

2.7. Optical conductivity

In TBPLaS, we use both TBPM and exact diagonalization-based
methods to compute the optical conductivity [72]. In the TBPM
method, we combine the Kubo formula with the random state
technology. For a non-interacting electronic system, the real part
of the optical conductivity in direction α due to a field in direction
β is (omitting the Drude contribution at ω = 0) [3]

Re σαβ(h̄ω) = lim
E→0+

e−βh̄ω − 1

h̄ωA

∞∫
0

e−Et sin(ωt)

× 2Im〈ψ | f (H) Jα(t)[1 − f (H)] Jβ |ψ〉dt

(53)

Here, A is the area or volume of the model in two or three dimen-
sional cases, respectively. For a generic tight-binding Hamiltonian,
the current density operator is defined as

J = − ie

h̄

∑
i, j

ti j(r̂ j − r̂i)c†
i c j (54)

where r̂ is the position operator. The Fermi-Dirac distribution de-
fined as

f (H) = 1
β(H−μ)

(55)

e + 1

6

In actual calculations, the accuracy of the optical conductivity is
ensured by performing the Eq. (53) over a random superposition
of all the basis states in the real space, similar to the calculation
of the DOS. Moreover, the Fermi distribution operator f (H̃) and
1 − f (H̃) can be obtained by the standard Chebyshev polynomial
decomposition in section 2.4. We introduce two wave functions

|ψ1(t)〉α = e−iH̃t[1 − f (H̃)] Jα |ψ(0)〉 (56)

|ψ2(t)〉 = e−iH̃t f (H̃)|ψ(0)〉 (57)

Then the real part of σαβ(ω) is

Re σαβ(h̄ω) = lim
E→0+

e−βh̄ω − 1

h̄ωA

∞∫
0

e−Et sin(ωt)

× 2Im〈ψ2(t)| Jα |ψ1(t)〉βdt

(58)

while the imaginary part can be extracted with the Kramers-
Kronig relation

Im σαβ(h̄ω) = − 1

π
P

∞∫
−∞

Re σαβ(h̄ω′)
ω′ − ω

dω′ (59)

In the diagonalization-based method, the optical conductivity is
evaluated as

σαβ(h̄ω)

= ie2h̄

Nk�c

∑
k

∑
m,n

fmk − fnk

εmk − εnk

〈ψnk|vα|ψmk〉〈ψmk|vβ |ψnk〉
εmk − εnk − (h̄ω + iη+)

(60)

where Nk is the number of k-points in the first Brillouin zone,
and �c is the volume of unit cell, respectively. ψmk and ψnk are
the eigenstates of Hamiltonian defined in Eq. (17), with εmk and
εnk being the corresponding eigenvalues, and fmk and fnk being
the occupation numbers. vα and vβ are components of velocity
operator defined as v = − J/e, and η+ is the positive infestimal.

2.8. DC conductivity

The DC conductivity can be calculated by taking the limit ω →
0 in the Kubo formula [72]. Based on the DOS and quasieigenstates
obtained in Eqs. (42) and (51), we can calculate the diagonal term
of DC conductivity σαα in direction α at temperature T = 0 with

σαα(E) = lim
τ→∞σαα(E, τ)

= lim
τ→∞

D(E)

A

τ∫
0

Re
[

e−iEt CDC(t)
]

dt (61)

where the DC correlation function is defined as

CDC(t) = 〈ψ(0)| JαeiH̃t Jα |
̃(E)〉
|〈ψ(0)|
̃(E)〉| (62)

and A is the area of volume of the unit cell depending on sys-
tem dimension. It is important to note that |ψ(0)〉 must be the
same random initial state used in the calculation of |
̃(E)〉. The
semiclassic DC conductivity σ sc(E) without considering the effect
of Anderson localization is defined as

σ sc(E) = σmax
αα (E, τ) (63)

The measured field-effect carrier mobility is related to the semi-
classic DC conductivity as

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
u(E) = σ sc(E)

ene(E)
(64)

where the carrier density ne(E) is obtained from the integral of
density of states via ne(E) = ∫ E

0 D(ε)dε.
In TBPLaS, there is another efficient approach to evaluate DC

conductivity, which is based on a real-space implementation of the
Kubo formalism, where both the diagonal and off-diagonal terms of
conductivity are treated on the same footing [22]. The DC conduc-
tivity tensor for non-interacting electronic system is given by the
Kubo-Bastin formula [22,73]

σαβ(μ, T) = ih̄e2

A

∞∫
−∞

dE f (E)Tr
〈
vαδ(E − H)vβ

dG+(E)

dE

− vα
G−(E)

dE
vβδ(E − H)

〉
(65)

where vα is the α component of the velocity operator, G±(E) =
1/(E − H ± iη) are the Green’s functions. Firstly, we rescale the
Hamiltonian and energy, and denote them as H̃ and Ẽ , respec-
tively. Then the delta δ and the Green’s function G±(E) can be
expanded in terms of Chebyshev polynomials using the kernel
polynomial method (KPM)

δ(Ẽ − H̃) = 2

π
√

1 − Ẽ2

M∑
m=0

gm
Tm(Ẽ)

δm,0 + 1
Tm(H̃) (66)

G±(Ẽ, H̃) = ∓ 2i√
1 − Ẽ2

M∑
m=0

gm
e±im arccos (Ẽ)

δm,0 + 1
Tm(H̃) (67)

Truncation of the above expansions gives rise to Gibbs oscillations,
which can be smoothed with a Jackson kernel gm [26]. Then the
conductivity tensor can be written as [22]

σαβ(μ, T) = 4e2h̄

π A

4

�E2

1∫
−1

dẼ
f (Ẽ)

(1 − Ẽ2)2

∑
m,n

�nm(Ẽ)μ
αβ
nm(H̃) (68)

where �E = E+
max − E−

min is the energy range of the spectrum, Ẽ

is the rescaled energy within [-1,1], �nm(Ẽ) and μαβ
nm(H̃) are func-

tions of the energy and the Hamiltonian, respectively

�nm(Ẽ) = Tm(Ẽ)(Ẽ − in
√

1 − Ẽ2)ein arccos (Ẽ)

+ Tn(Ẽ)(Ẽ + im
√

1 − Ẽ2)e−im arccos (Ẽ) (69)

μ
αβ
nm(H̃) = gm gn

(1 + δn0)(1 + δm0)
Tr[vαTm(H̃)vβ Tn(H̃)] (70)

2.9. Diffusion coefficient

In the Kubo formalism, the DC conductivity in Eq. (61) can also
be written as a function of diffusion coefficient

σαα(E) = e2

A
D(E) lim

τ→∞Ddi f f (E, τ) (71)

Therefore, the time-dependent diffusion coefficient is obtained as

Ddi f f (E, τ) = 1

e2

τ∫
0

Re
[

e−iEt CDC(t)
]

dt (72)

Once we know the Ddi f f (E, τ), we can extract the carrier velocity
from a short time behavior of the diffusivity as
7

v(E) =
√
Ddi f f (E, τ)/τ (73)

and the elastic mean free path �(E) from the maximum of the
diffusion coefficient as

�(E) = Dmax
di f f (E)

2v(E)
(74)

This also allows us to estimate the Anderson localization lengths
[40,74] by

ξ(E) = �(E)exp

[
πh

2e2
σ sc(E)

]
(75)

2.10. Dielectric function

In TBPM, the dynamic polarization can be obtained by combin-
ing Kubo formula [72] and random state technology as

�K (q, h̄ω) = − 2

A

∞∫
0

eiωt CDP(t)dt (76)

where the correlation function is defined as

CDP(t) = Im〈ψ2(t)|ρ(q)|ψ̃1(q, t)〉 (77)

Here, the density operator is

ρ(q) =
∑

i

eiq·ri c†
i ci (78)

and the introduced two functions are

|ψ̃1(q, t)〉β =e−iH̃t[1 − f (H̃)]ρ(−q)|ψ(0)〉 (79)

|ψ2(t)〉 =e−iH̃t f (H̃)|ψ(0)〉 (80)

The dynamical polarization function can also be obtained via
diagonalization from the Lindhard function as [75]

�L(q, h̄ω) = − gs

(2π)p

∫
BZ

dpk
∑
m,n

fmk − fnk+q

εmk − εnk+q + h̄ω + iη+

× |〈ψnk+q|eiq·r|ψmk〉|2 (81)

where ψmk and εmk are the eigenstates and eigenvalues of the TB
Hamiltonian defined in Eq. (21), respectively. gs is the spin de-
generacy, and p is the system dimension. With the polarization
function obtained from the Kubo formula in Eq. (76) or the Lind-
hard function in Eq. (81), the dielectric function can be written
within the random phase approximation (RPA) as

ε(q,ω) = 1 − V (q)�(q,ω) (82)

in which V (q) is the Fourier transform of Coulomb interaction.
For two-dimensional systems V (q) = 2πe2/κ |q|, while for three-
dimensional systems V (q) = 4πe2/κ |q|2, with κ being the back-
ground dielectric constant. The energy loss function can be ob-
tained as

S(q,ω) = −Im
1

ε(q,ω)
(83)

The energy loss function can be measured by means of electron
energy loss spectroscopy (EELS). A plasmon mode with frequency
ωp and wave vector q is well defined when a peak exists in the
S(q, ω) or ε(q, ω) = 0 at ωp . The damping rate γ of the mode is

γ = Im �(q,ωp)

∂ Re �(q,ω)| (84)

∂ω ω=ωp

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
and the dimensionless damping rate is

γ̃ = 1

ωp

Im �(q,ωp)

∂
∂ω Re �(q,ω)|ω=ωp

(85)

The life time is defined as

τ = 1

γ̃ ωp
(86)

All the plasmon related quantities can be calculated numerically
from the functions obtained with TBPM.

2.11. Z2 topological invariant

The Z2 invariant characterizes whether a system is topologi-
cally trivial or nontrivial. All the two-dimensional band insulators
with time-reversal invariance can be divided into two classes, i.e.,
the normal insulators with even Z2 numbers and topological in-
sulators with odd Z2 numbers. In TBPLaS, we adopt the method
proposed by Yu et al. to calculate the Z2 numbers of a band insu-
lator [76]. The main idea of the method is to calculate the evolu-
tion of the Wannier function center directly during a time-reversal
pumping process, which is a Z2 analog to the charge polarization.
The Z2 topological numbers can be determined as the remainder
of the number of phase switching during a complete period of the
time-reversal pumping process divided by 2, which is equivalent
to the Z2 number proposed by Fu and Kane [77]. This method
requires no gauge-fixing condition, thereby greatly simplifying the
calculation. It can be easily applied to general systems that lack
spacial inversion symmetry.

The eigenstate of a TB Hamiltonian defined by Eq. (17) can be
expressed as

|ψnk〉 =
∑
α

gnα(k)|χαk〉 (87)

where the Bloch basis functions |χαk〉 are defined in Eq. (10). Let
us take the 2D system as an example. In this case, each wave vec-
tor kb defines a one-dimensional subsystem. The Z2 topological
invariant can be determined by looking at the evolution of Wan-
nier function centers for such effective 1D system as the function
of kb in the subspace of occupied states. The eigenvalue of the po-
sition operator X̂ can be viewed as the center of the maximally
localized Wannier functions, which is defined as

X̂ P (kb) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 F0,1 0 0 0 0

0 0 F1,2 0 0 0

0 0 0 F2,3 0 0

0 0 0 0 . . . 0

0 0 0 0 0 F Na−2,Na−1

F Na−1,0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(88)

where

F nm
i,i+1(kb) =

∑
α

g∗
nα(ka,i,kb)gmα(ka,i+1,kb) (89)

are the 2N × 2N matrices spanned in 2N-occupied states and ka,i

are the discrete k points sampled on the range of
[− 1

2 Ga,
1
2 Ga

]
,

with Ga being the reciprocal lattice vector along the a axis. We
define a product of Fi,i+1 as

D(kb) = F0,1 F1,2 F2,3 . . . F Na−2,Na−1 F Na−1,0 (90)

D(kb) is a 2N × 2N matrix that has 2N eigenvalues

λD
m(kb) = |λD

m|eiθ D
m (kb), m = 1,2, . . . ,2N (91)
8

where θ D
m (kb) is the phase of the eigenvalues

θ D
m (kb) = Im

[
logλD

m(kb)
]

(92)

The evolution of the Wannier function center for the effective 1D
system with kb can be obtained by looking at the phase factor
θ D

m . Equation (90) can be viewed as the discrete expression of
the Wilson loop for the U(2N) non-Abelian Berry connection. It is
invariant under the U (2N) gauge transformation, and can be calcu-
lated directly from the wave functions obtained by first-principles
method without choosing any gauge-fixing condition. In the Z2 in-
variant number calculations, for a particular system, we calculate
the evolution of the θ D

m defined in Eq. (92) as the function of kb
from 0 to 1

2 Gb , with Gb being the reciprocal lattice vector along
the b axis. Then, we draw an arbitrary reference line parallel to
the kb axis, and compute the Z2 number by counting how many
times the evolution lines of the Wannier centers cross the refer-
ence line. Note that the choice of reference line is arbitrary, but
the crossing numbers between the reference and evolution lines
and the even/odd properties will not change. The topological prop-
erties of three dimensional bulk materials can be determined by
checking two planes in k space, with kc = 0 and kc = 1

2 Gc , where
Gc is the reciprocal lattice vector along the c axis. For more details
we refer to Ref. [76]

3. Implementation

In this section, we introduce the implementation of TBPLaS,
including the layout, main components, and parallelism. TB-
PLaS has been designed with emphasis on efficiency and user-
friendliness. The performance-critical parts are written in Fortran
and Cython. Sparse matrices are utilized to reduce the memory
cost, which can be linked to vendor-provided math libraries like
Intel� MKL. A hybrid MPI+OpenMP parallelism has been imple-
mented to exploit the modern architecture of high-performance
computers. On top of the Fortran/Cython core, there is the API
written in Python following an intuitive object-oriented manner,
ensuring excellent user-friendliness and flexibility. Tight-binding
models with arbitrary shape and boundary conditions can be eas-
ily created with the API. Advanced modeling tools for constructing
hetero-structures, quasi crystals and fractals are also provided. The
API also features a dedicated error handling system, which checks
for illegal input and yields precise error message on the first occa-
sion. Owing to all these features, TBPLaS can serve as not only an
out-of-the-box tight-binding package, but also a common platform
for the development of advanced models and algorithms.

3.1. Layout

The layout of TBPLaS is shown in Fig. 1. At the root of hierar-
chy there are the Cython and Fortran extensions, which contain the
core subroutines for building the model, constructing the Hamilto-
nian and performing actual calculations. The Python API consists
of a comprehensive set of classes directly related to the concepts
of tight-binding theory. For example, orbitals and hopping terms in
a tight-binding model are represented by the Orbital and In-
traHopping classes, respectively. There are also auxiliary classes
for setting up the orbitals and hopping terms, namely SK, SOC
and ParamFit. From the orbitals and hopping terms, as well as
lattice vectors, a primitive cell can be created as an instance of
the PrimitiveCell class. The goal of PrimitiveCell is to
represent and solve tight-binding models of small and moderate
size. Modeling tools for constructing complex primitive cells, e.g.,
with arbitrary shape and boundary conditions, vacancies, impuri-
ties, hetero-structures, are also available. Many properties, includ-
ing band structure, DOS, dynamic polarization, dielectric function,

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
Fig. 1. Program layout of TBPLaS. Components of the same level in the hierarchy
share the same color.

optical conductivity and Z2 topological invariant number can be
obtained at primitive cell level, either by calling proper functions
of PrimitiveCell class, or with the help of Lindhard and Z2
classes.

SuperCell, SCInterHopping and Sample are a set of
classes specially designed for constructing large models from the
primitive cell, especially for TBPM calculations. The computational
expensive parts of these classes are written in Cython, making
them extremely fast. For example, it takes less than 1 second to
construct a graphene model with 1,000,000 orbitals from the Sam-
ple class on a single core of Intel� Xeon� E5-2690 v3 CPU. At
SuperCell level the user can specify the number of replicated
primitive cells, boundary conditions, vacancies, and modifier to or-
bital positions. Heterogeneous systems, e.g., slabs with adatoms or
hetero-structures with multiple layers, are modeled as separate su-
percells and containers (instances of the SCInterHopping class)
for inter-supercell hopping terms. The Sample class is a unified
interface to both homogeneous and heterogeneous systems, from
which the band structure and DOS can be obtained via exact-
diagonalization. Different kinds of perturbations, e.g., electric and
magnetic fields, strain, can be specified at Sample level. Also, it is
the starting point for TBPM calculations.

The parameters of TBPM calculation are stored in the Config
class. Based on the sample and configuration, a solver and an ana-
lyzer can be created from Solver and Analyzer classes, respec-
tively. The main purpose of solver is to obtain the time-dependent
correlation functions, which are then analyzed by the analyzer to
yield DOS, LDOS, optical conductivity, electric conductivity, Hall
conductance, polarization function and quasi-eigenstates, etc. The
results from TBPM calculation and exact-diagonalization at ei-
ther PrimitiveCell or Sample level, can be visualized using
matplotlib directly, or alternatively with the Visualizer class,
which is a wrapper over matplotlib functions.

3.2. PrimitiveCell

As aforementioned in section 3.1, the main purpose of Prim-
itiveCell class is to represent and solve tight-binding mod-
els of small and moderate size. It is also the building block for
large and complex models. All calculations utilizing TBPLaS begin
with creating the primitive cell. The user APIs of Primitive-
Cell as well as many miscellaneous tools are summarized in Ta-
ble 1. To create the primitive cell, one needs to provide the lattice
9

vectors, which can be generated with the gen_lattice_vec-
tors function or manually specifying their Cartesian coordinates.
Then the orbitals and hopping terms are added to the primitive
cell with the add_orbital and add_hopping functions, re-
spectively. TBPLaS utilizes the conjugate relation to reduce the
hopping terms, so only half of them are needed. There are also
functions to extract, modify and remove existing orbitals and hop-
ping terms in the cell, e.g., set_orbital/get_orbital/re-
move_orbitals and get_hopping/remove_hopping. Re-
moving orbitals and hopping terms may leave dangling items in
the cell. In that case, the trim function becomes useful. By de-
fault, the primitive cell is assumed to be periodic along all 3
directions. However, it can be made non-periodic along specific
directions by removing hopping terms along that direction, as im-
plemented in the apply_pbc function. As TBPLaS utilizes the
lazy evaluation technique, the sync_array function is provided
for synchronizing the array attributes after modifying the model.
Once the primitive cell has been created, it can be visualized by
the plot function and dumped by the print function. Geomet-
ric properties such as lattice area, volume and reciprocal lattice
vectors, and electronic properties like band structure and DOS can
be obtained with proper functions as listed in Table 1. The k-
points required for the evaluation of band structure and DOS can
be generated with the gen_kpath and gen_kmesh functions, re-
spectively.

TBPLaS ships with a collection of auxiliary tools for setting up
the on-site energies and hopping terms. The SK class evaluates the
hopping terms between atomic states up to d orbitals according
to the Slater-Koster formula. The SOC class evaluates the matrix
element of intra-atom spin-orbital coupling term L · S in the di-
rect product basis of |l〉 ⊗ |s〉. The ParamFit class is intended for
fitting the on-site energies and hopping terms to reference data,
which is typically from experiments or ab initio calculations.

For the user’s convenience, TBPLaS provides a model repos-
itory which offers the utilities to obtain the primitive cells
of popular two-dimensional materials, as summarized in Ta-
ble 1. The function make_antimonene returns the 3-orbital
or 6-orbital primitive cell of antimonene [78] depending on the
inclusion of spin-orbital coupling. Diamond-shaped and rectangu-
lar primitive cells of graphene based on pz orbitals can be built
with make_graphene_diamond and make_graphene_rect
functions, respectively. A more complicated 8-band primitive
cell based on s, px , p y and pz orbitals can be obtained with
make_graphene_sp. The 4-orbital primitive cell of black phos-
phorus [79] can be obtained with make_black_phospho-
rus, while the 11-orbital models of transition metal dichalco-
genides [80] are available with the make_tmdc function. The
primitive cell can also be created from the output of Wan-
nier90 [81] package, namely seedname.win, seedname_cen-
tres.xyz and seedname_hr.dat, with the wan2pc function.

Starting from the simple primitive cell, more complex cells can
be constructed through some common operations. A set of func-
tions are provided for this purpose. extend_prim_cell repli-
cates the primitive cell by given times. reshape_prim_cell
reshapes the cell to new lattice vectors, while sprical_prim_
cell shifts and rotates the cell with respect to c-axis, both of
which are particularly useful for constructing hetero-structures.
make_hetero_layer is a wrapper over reshape_prim_cell
and produces one layer of the hetero-structure. Inter-cell hop-
ping terms within a hetero-structure can be searched with the
find_neighbors function and managed with the PCInter-
Hopping class. Finally, all the layers and intercell hopping terms
can be merged into one cell by the merge_prim_cell function.
Note all these functions work at PrimitiveCell level, i.e., they
either return a new primitive cell, or modify an existing one.

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Table 1
User APIs of PrimitiveCell, SK, SOC, ParamFit, PCInterHopping classes and miscellaneous tools.

Category API Purpose

PrimitiveCell

add_orbital Add a new orbital
set_orbital Modify an existing orbital
get_orbital Retrieve an existing orbital
remove_orbitals Remove selected orbitals
add_hopping Add a new or modify an existing hopping term
get_hopping Retrieve an existing hopping term
remove_hopping Remove an existing hopping term
trim Remove dangling orbitals and hopping terms
apply_pbc Modify the boundary conditions
sync_array Synchronize the array attributes
get_lattice_area Calculate the area spanned by lattice vectors
get_lattice_volume Calculate the volume spanned by lattice vectors
get_reciprocal_vectors Calculate reciprocal lattice vectors
calc_bands Calculate band structure of the primitive cell
calc_dos Calculate DOS and LDOS of the primitive cell
plot Plot the primitive cell to the screen or file
print Print orbital and hopping terms

SK eval Evaluate hopping term with Slater-Koster formula

SOC eval Evaluate matrix element of L · S in direct product basis

ParamFit fit Fit on-site energies and hopping terms to reference data

PCInterHopping add_hopping Add a new inter-cell hopping term

Lattice and k-points

gen_lattice_vectors Generate lattice vectors from lattice constants
rotate_coord Rotate Cartesian coordinates
cart2frac Convert coordinates from Cartesian to fractional
frac2cart Convert coordinates from fractional to Cartesian
gen_kpath Generate path connecting highly-symmetric k-points
gen_kmesh Generate a mesh grid in the first Brillouin zone

Model repository

make_antimonene Get the primitive cell of antimonene
make_graphene_diamond Get the diamond-shaped primitive cell of graphene
make_graphene_rect Get the rectangular primitive cell of graphene
make_graphene_sp Get the 8-band primitive cell of graphene
make_black_phosphorus Get the primitive cell of black phosphorus
make_tmdc Get the primitive cells of transition metal dichalcogenides
wan2pc Create primitive cell from the output of Wannier90

Modeling tools

extend_prim_cell Replicate the primitive cell
reshape_prim_cell Reshape primitive cell to new lattice vectors
spiral_prim_cell Rotate and shift primitive cell
make_hetero_layer Produce one layer of hetero-structure
find_neighbors Find neighboring orbital pairs up to cutoff distance
merge_prim_cell Merge primitive cells and inter-cell hopping terms
3.3. Lindhard

The Lindhard class evaluates response properties, i.e., dy-
namic polarization, dielectric function and optical conductivity of
primitive cell with the help of Lindhard function. The user APIs
of this class is summarized in Table 2. To instantiate a Lind-
hard object, one needs to specify the primitive cell, energy range
and resolution, dimension of k-grid in the first Brillouin zone, sys-
tem dimension, background dielectric constant and many other
quantities. Since dynamic polarization and dielectric function are
q-dependent, three types of coordinate systems are provided to
effectively represent the q-points: Cartesian coordinate system in
unit of Å−1 or nm−1, fractional coordinate system in unit of re-
ciprocal lattice vectors, and grid coordinate system in unit of di-
mension of k-grid. Grid coordinate system is actually a variant of
the fractional coordinate system. Conversion between coordinate
systems can be achieved with the frac2cart and cart2frac
functions.

Lindhard class offers two functions to calculate the dynamic
polarization: calc_dyn_pol_regular and calc_dyn_pol_
arbitrary. Both functions require an array of q-points as in-
put. The difference is that calc_dyn_pol_arbitrary accepts
arbitrary q-points, while calc_dyn_pol_regular requires that
the q-points should be on the uniform k-grid in the first Bril-
10
louin zone. This is due to the term k′ = k + q that appears in
the Lindhard function. For regular q on k-grid, k′ is still on
the same grid. However, this may not be true for arbitrary q-
points. So, calc_dyn_pol_arbitrary keeps two sets of en-
ergies and wave functions, for k and k′ grids respectively, al-
though they may be equivalent via translational symmetry. On the
contrary, calc_dyn_pol_regular utilizes translational sym-
metry and reuses energies and wave functions when possible. So,
calc_dyn_pol_regular uses less computational resources, at
the price that only regular q-points on k-grid can be taken as
input. From the dynamic polarization, dielectric function can be
obtained by calc_epsilon. Unlike dynamic polarization and di-
electric function, the optical conductivity considered in TBPLaS
does not depend on q-points. So, it can be evaluated directly by
calc_ac_cond.

3.4. Z2

The Z2 class evaluates and analyzes the topological phases θ D
m

to yield the Z2 number. The APIs of this class are summarized in
Table 2. To create a Z2 calculator, the primitive cell, as well as the
number of occupied bands should be provided as input. The phases
θ D

m can be obtained as the function of kb with the calc_phases
function, which can then be plotted with scatter plot to count the

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Table 2
User APIs of Lindhard and Z2 classes.

Category API Purpose

Lindhard

calc_dyn_pol_regular Calculate dynamic polarization for regular q-points
calc_dyn_pol_arbitrary Calculate dynamic polarization for arbitrary q-points
calc_epsilon Calculate dielectric function
calc_ac_cond Calculate optical conductivity

Z2
calc_phases Calculate phases θ D

m

reorder_phases Reorder phases improve continuity and smoothness
count_crossing Count crossing number of phases against reference line
crossing number against a reference line. If there are too many
occupied states, it may be difficult to determine the crossing num-
ber with human eyes. The count_crossing function can count
the crossings automatically, provided that the phases have been
correctly reordered with the reorder_phases function. Anyway,
the users are strongly recommended to cross-validate the crossing
numbers from scatter plot and count_crossing, respectively.
Finally, the Z2 number is determined as the remainder of crossing
number divided by 2.

3.5. SuperCell, SCInterHopping and sample

The tools discussed in section 3.2 are sufficiently enough to
build complex models of small and moderate size. However,
there are occasions where large models are essential, e.g., hetero-
structures with twisted layers, quasi crystals, distorted structures,
etc. In particular, TBPM calculations require large models for nu-
merical stability. To build and manipulate large models efficiently,
a new set of classes, namely SuperCell, SCInterHopping and
Sample are provided. The APIs of these classes are summarized
in Table 3.

The purpose of SuperCell class is to represent homoge-
neous models that are formed by replicating the primitive cell.
To create a supercell, the primitive cell, supercell dimension and
boundary conditions are required. Vacancies can be added to the
supercell upon creation, or through the add_vacancies and
set_vacancies functions afterwards. Modifications to the hop-
ping terms can be added by the add_hopping function. If the
hopping terms are already included in the supercell, the original
values will be overwritten. Otherwise, they will be added to the
supercell as new terms. The supercell can be assgined with an or-
bital position modifier with the set_orb_pos_modifier func-
tion, which is a Python function modifying the orbital positions
in-place. Dangling orbitals and hopping terms in the supercell can
be removed by the trim function. Orbital positions, on-site ener-
gies, hopping terms and distances, as well as many properties of
the supercell cell can be obtained with the get_xxx functions, as
listed in Table 3. TBPLaS utilizes the conjugate relation to reduce
the hopping terms, so only half of them are returned by get_hop
and get_dr.

Heterogeneous systems, e.g., slabs with adatoms or hetero-
structures with multiple layers, are modeled as separate supercells
and containers for inter-supercell hopping terms. The containers
are created from the SCInterHopping class, with a bra super-
cell and a ket supercell, between which the hopping terms can
be added by the add_hopping function. The SCInterHopping
class also implements the get_hop and get_dr functions for
extracting the hopping terms and distances, similar to the Super-
Cell class.

The Sample class is a unified interface to both homogeneous
and heterogeneous systems. A sample may consist of single super-
cell, or multiple supercells and inter-supercell hopping containers.
The on-site energies, orbital positions, hopping terms and dis-
tances are stored in the attributes of orb_eng, orb_pos, hop_i,
11
hop_j, hop_v and dr, respectively, which are all numpy arrays.
To reduce the memory usage, these attributes are filled only when
needed with the initialization functions. Different kinds of pertur-
bations, e.g., electric and magnetic fields, strain, can be specified
by directly calling the API, or manipulating the array attributes di-
rectly. The reset_array function is provided to reset the array
attributes of the sample, for removing the effects of perturba-
tions. Band structure and DOS of the sample can be obtained with
calc_bands and calc_dos respectively, similar to the Primi-
tiveCell class. Visualization is achieved through the plot func-
tion. Since the sample is typically large, its response properties
are no longer accessible via the Lindhard function. On the con-
trary, TBPM is much more efficient for large samples. Since the
Chebyshev polynomial decomposition of Hamiltonian requires its
eigenvalues to be within [-1, 1], an API rescale_ham is provided
for this purpose. Details on TBPM will be discussed in the next
section.

3.6. Config, solver, analyzer and visualizer

TBPM in TBPLaS is implemented in the classes of Config,
Solver and Analyzer. Config is a simple container class
holding all the parameters that controls the calculation. So, it has
no API but a few Python dictionaries as attributes. The Solver
class propagates the wave function and evaluates the correla-
tion functions, which are then analyzed by Analyzer class to
produce the results, including DOS, LDOS, optical conductivity,
electric conductivity, etc. The user APIs of Solver and Ana-
lyzer are summarized in Table 4. To create a solver or analyzer,
one needs the sample and the configuration object. The APIs of
Solver and Analyzer share a common naming convention,
where calc_corr_xxx calculates the correlation function for
property xxx and calc_xxx analyzes the correlation function to
yield the final results. Some of the properties, such as LDOS from
Green’s function and time-dependent wave function, can be ob-
tained from Solver directly without further analysis.

The Visualizer class is a thin wrapper over matplotlib for
quick visualization of the results from exact-diagonalization and
TBPM. Generic data, e.g., response functions, can be plotted with
the plot_xy function. There are also special functions to plot the
band structure, DOS and topological phases. Quasi-eigenstates and
time-dependent wave function can be plotted with the plot_wfc
function. Although Visualizer is intended for quick visualiza-
tion, it can be easily extended to produce figures of publication
quality, according to the user’s needs.

3.7. Parallelization

Tight-binding calculations can be time-consuming when the
model is large, or when ultra-fine results are desired. For example,
band structure, DOS, response properties from Lindhard function
and topological phases from Z2 require exact diagonalization for
a dense k-grid in the first Brillouin zone, optionally followed by
post-processing on an energy grid. TBPM calculations require large

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Table 3
User APIs of SuperCell, SCInterHopping and Sample classes.

Category API Purpose

SuperCell

add_vacancies Add a list of vacancies to the supercell
set_vacancies Reset the list of vacancies
add_hopping Add a modification to the hopping terms
set_orb_pos_modifier Assign an orbital position modifier to the supercell
trim Remove dangling orbitals and hopping terms
sync_array Synchronize the array attributes
get_orb_pos Get the Cartesian coordinates of orbitals
get_orb_eng Get the on-site energies
get_hop Get the hopping terms
get_dr Get the hopping distances
get_lattice_area Calculate the area spanned by lattice vectors
get_lattice_volume Calculate the volume spanned by lattice vectors
get_reciprocal_vectors Calculate reciprocal lattice vectors

SCInterHopping
add_hopping Add a new inter-supercell hopping term
get_hop Get the hopping terms
get_dr Get the hopping distances

Sample

init_orb_eng Initialize on-site energies on demand
init_orb_pos Initialize orbital positions on demand
init_hop Initialize hopping terms on demand
init_dr Initialize hopping distances on demand
reset_array Reset the array atributes
rescale_ham Rescale the Hamiltonian
set_magnetic_field Apply a perpendicular magnetic field
calc_bands Calculate band structure of the sample
calc_dos Calculate DOS and LDOS of the sample
plot Plot the sample to the screen or file

Table 4
User APIs of Solver, Analyzer, Visualizer classes.

Category API Purpose

Solver

set_output Prepare output directory and files
save_config Save configuration to file
calc_corr_dos Calculate correlation function of DOS
calc_corr_ldos Calculate correlation function of LDOS
calc_corr_dyn_pol Calculate correlation function of dynamical polarization
calc_corr_ac_cond Calculate correlation function of optical conductivity
calc_corr_dc_cond Calculate correlation function of electric conductivity
calc_hall_mu Calculate μmn required for the evaluation of Hall conductivity

using Kubo-Bastin formula
calc_quasi_eigenstates Calculate quasi-eigenstates of given energies
calc_ldos_haydock Calculate LDOS using Green’s function
calc_wfc_t Calculate propagation of wave function from given initial state

Analyzer

calc_dos Calculate DOS from its correlation function
calc_ldos Calculate LDOS from its correlation function
calc_dyn_pol Calculate dynamic polarization from its correlation function
calc_epsilon Calculate dielectric function from dynamic polarization
calc_ac_cond Calculate optical conductivity from its correlation function
calc_dc_cond Calculate electric conductivity from its correlation function
calc_diff_coeff Calculate diffusion coefficient from DC correlation function
calc_hall_cond Calculate Hall conductivity from μmn

Visualizer

plot_xy Plot generic data of y against x
plot_bands Plot band structure
plot_dos Plot DOS
plot_phases Plot phases θ D

m

plot_wfc Plot quasi-eigenstate or time-dependent wave function in real
space
models and averaging over multiple samples to converge the re-
sults, while the time-propagation of each sample involves heavy
matrix-vector multiplications. Consequently, dedicated parallelism
that can exploit the modern hardware of computers are essential
to promote the application of tight-binding techniques to millions
or even billions of orbitals. However, the Global Interpreter Lock
12
(GIL) of Python allows only one thread to run at one time, severely
hinders the parallelization at thread level. Although the GIL can
be bypassed with some tricks, thread-level parallelization is re-
stricted to only one computational node. TBPLaS tackles these
problems with a hybrid MPI+OpenMP parallelism. Tasks are firstly
distributed over MPI processes that can run among multiple nodes.

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
Since the processes are isolated mutually at operation system level
and each keeps a local copy of the data, there is no need to worry
about data conflicts and GIL. For the tasks assigned to each pro-
cess, thread-level parallelism is implemented with OpenMP in the
Cython and Fortran extensions. With a wise choice of the numbers
of processes and threads, excellent scaling can be achieved with
respect to the computational resources. Both MPI and OpenMP of
the hybrid parallelism can be enabled or disabled separately, en-
suring good flexibility.

3.7.1. Band structure and DOS
For calculating the band structure, k-points are firstly dis-

tributed over MPI processes, with each process dealing with some
of the k-points. For each k-point assigned to the process, the
Hamiltonian matrix has to be built in serial, while the diagonaliza-
tion is further parallelized with OpenMP in the NumPy and SciPy
libraries, which call OpenBLAS or MKL under the hood. The evalu-
ation of DOS consists of getting the eigenvalues for a dense k-grid,
and a summation over the eigenvalues to collect the contributions
following Eq. (39). Getting the eigenvalues is parallelized in the
same approach as the band structure. The summation is paral-
lelized with respect to the k-points over MPI processes. Local data
on each process is then collected via the MPI_Allreduce call.

3.7.2. Response properties from lindhard function
Evaluation of response properties using Lindhard function is

similar to that of DOS, which also consists of getting the eigen-
values and eigenvectors and subsequent post-processing. However,
the post-processing is much more expensive than DOS. Taking the
optical conductivity for example, whose formula follows Eq. (60).
To reuse the intermediate results, we define the following arrays

�ε(k,m,n) = εmk − εnk (93)

and

P (k,m,n) = fmk − fnk

εmk − εnk
〈ψnk|vα|ψmk〉〈ψmk|vβ |ψnk〉 (94)

The evaluation of �ε and P are firstly parallelized with respect
to k over MPI processes. For each process, tasks are further par-
allelized with respect to m over OpenMP threads. Once the arrays
are ready, the optical conductivity can be calculated as

σαβ(h̄ω) = ie2h̄

Nk�c

∑
k

∑
m,n

P (k,m,n)

�ε(k,m,n) − (h̄ω + iη+)
(95)

Typically, the response properties are evaluated on a discrete fre-
quency grid {ωi}. We firstly distribute k-points over MPI processes,
then distribute the frequencies over OpenMP threads. Final results
are collected by MPI calls, similar to the evaluation of DOS.

3.7.3. Z2
The evaluation of topological phases θ D

m according to Eq. (92)
can be done for each kb individually. So, tasks are distributed
among MPI process with respect to kb . For given kb , the D(kb) ma-
trix is evaluated in serial mode by iterative matrix multiplication
according to Eq. (90). Then it is diagonalized to yield the eigenvec-
tors λD

m , from which the phases θ D
m can be extracted. Finally the

results are collected with MPI calls.

3.7.4. TBPM
The TBPM calculations follow a common procedure. Firstly, the

time-dependent wave function is propagated from different initial
conditions and correlation functions are evaluated at each time-
step. Then the correlation functions are averaged and analyzed
to yield the final results. The averaging and analysis are cheap
13
and need no parallelization. The propagation of wave function, on
the contrary, is much more expensive and must be parallelized.
Fortunately, propagation from each initial condition is embarrass-
ingly parallel task, i.e., it can be split into individual sub-tasks that
do not exchange data mutually. So, the initial conditions are dis-
tributed among MPI processes. The propagation of wave function,
according to Eq. (30), involves heavy matrix-vector multiplications.
In TBPLaS the matrices are stored in Compressed Sparse Row
(CSR) format, significantly reducing the memory cost. The multi-
plication, as well as many other matrix operations, is parallelized
with respect to matrix elements among OpenMP threads. Averag-
ing of correlation functions is also done by MPI calls.

4. Usage

In this section we demonstrate the installation and usages of
TBPLaS. TBPLaS is released under the BSD license, which can be
found at https://opensource .org /licenses /BSD -3 -Clause. The source
code is available at the home page www.tbplas .net. Detailed docu-
mentation and tutorials can also be found there.

4.1. Installation

4.1.1. Prerequisites
To install and run TBPLaS, a Unix-like operating system is re-

quired. You need both C and Fortran compilers, as well as vendor-
provided math libraries if they are available. For Intel� CPUs, it is
better to use Intel compilers and Math Kernel Library (MKL). If In-
tel toolchain is not available, the GNU Compiler Collection (GCC)
is another choice. In that case, the built-in math library will be
enabled automatically.

TBPLaS requires a Python3 environment (interpreter and de-
velopment files), and the packages of NumPy, SciPy, Matplotlib,
Cython, Setuptools as mandatory dependencies. Optionally, the
LAMMPS interface requires the ASE package. If MPI+OpenMP hy-
brid parallelism is to be enabled, the MPI4PY package and an MPI
implementation, e.g., Open MPI or MPICH, become essential. Most
of the packages can be installed via the pip command, or manually
from the source code.

4.1.2. Installation
The configuration of compilation is stored in setup.cfg in

the top directory of the source code of TBPLaS. Examples of this
file can be found in the config directory. You should adjust it
according to your computer’s hardware and software settings. Here
is an example utilizing Intel compilers and MKL

1 [config_cc]
2 compiler = intelem
3
4 [c o n f i g _ f c]
5 fcompiler = intelem
6 arch = −xHost
7 opt = −qopenmp −O3 −ipo −heap−arrays 32
8 f 9 0 f l a g s = −fpp −DMKL −mkl= p a r a l l e l
9

10 [build_ext]
11 include_dirs = / software / i n t e l / p a r a l l e l s t u d i o /2019/

compilers_and_l ibrar ies / l inux / mkl / include
12 l i b r a r y _ d i r s = / software / i n t e l / p a r a l l e l s t u d i o /2019/

compilers_and_l ibrar ies / l inux / mkl / l i b / intel64
13 l i b r a r i e s = mkl_rt iomp5 pthread m dl

The config_cc and config_fc sections contain the settings
of C and Fortran compilers, while the libraries are configured
in build_ext. It is important that OpenMP should be enabled
by adding proper flags to config_fc and build_ext, e.g., -
qopenmp in opt and iomp5 in libraries for Intel compilers.

https://opensource.org/licenses/BSD-3-Clause
http://www.tbplas.net

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
Fig. 2. Workflow of common usages of TBPLaS. Blue rectangles and orange hexagons
denote the main steps and outputs, respectively. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

Here is another example utilizing GCC and the built-in math li-
brary

1 [config_cc]
2 compiler = unix
3
4 [c o n f i g _ f c]
5 fcompiler = gfortran
6 arch = −march= native
7 opt = −fopenmp −O3 −mtune= native
8 f 9 0 f l a g s = −fno−second−underscore −cpp
9

10 [build_ext]
11 l i b r a r i e s = gomp

where the OpenMP flags become -fopenmp and gomp.
Once setup.cfg has been properly configured, TBPLaS can

be compiled with python setup.py build. If everything goes
well, a new build directory will be created, which contains the
Cython and Fortran extensions. The installation into default path
is done by python setup.py install. After that, invoke the
Python interpreter and try import tbplas. If no error occurs,
then the installation of TBPLaS is successful.

4.2. Overview of the workflow

The workflow of common usages of TBPLaS is summarized
in Fig. 2. Tight-binding models can be created at either Primi-
tiveCell or Sample level, depending on the model size and
purpose. PrimitiveCell is recommended for models of small
and moderate size, and is essential for evaluating response func-
tions utilizing the Lindhard function or topological variants with
the Z2 class. On the contrary, Sample is for extra-large models
that may consist of millions or trillions of orbitals. Also, TBPM cal-
culations require the model to be an instance of the Sample class.
For a detailed comparison of PrimitiveCell and Sample, refer
to section 3.

Generally, all calculations utilizing TBPLaS begin with creat-
ing the primitive cell, which involves creating an empty cell from
the lattice vectors, adding orbitals and adding hoping terms. Com-
plex models, e.g., that with arbitrary shape and boundary con-
ditions, vacancies, impurities and hetero-structures can be con-
14
structed from the simple primitive cell with the Python-based
modeling tools, as discussed in section 3.2. Band structure and
DOS of the primitive cell can be obtained via exact diagonalization
with the calc_bands and calc_dos functions, respectively. Re-
sponse functions such dynamic polarization, dielectric function and
optical conductivity, need an additional step of creating a Lind-
hard calculator, followed by calling the corresponding functions.
Similar procedure applies to the topological properties, where a
Z2 calculator should be created and utilized.

To build a sample, the user needs to construct a supercell
with the Cython-based modeling tools. Heterogeneous systems are
modeled as separate supercells plus containers for inter-supercell
hopping terms. The sample is then formed by assembling the su-
percells and containers. Band structure and DOS of the sample
can be obtained via exact diagonalization in the same approach as
the primitive cell. However, these calculations may be extremely
slow due to the large size of the model. In that case, TBPM is
recommended. The user needs to setup the parameters using the
Config class, and create a solver and an analyzer from Solver
and Analyzer classes, respectively. Then evaluate and analyze
the correlation functions to yield the DOS, response functions,
quasieigenstates, etc. Finally, the results can be visualized using the
Visualizer class, or the matplotlib library directly.

4.3. Building the primitive cell

In this section we show how to build the primitive cell taking
monolayer graphene as the example. Monolayer graphene has lat-
tice constants of a = b = 2.46 Å and α = β = 90◦ . The lattice angle
γ can be either 60◦ or 120◦ , depending on the choice of lattice
vectors. Also, we need to specify an arbitrary cell length c since
TBPLaS internally treats all models as three-dimensional. We will
take γ = 60◦ and c = 10 Å. First of all, we need to invoke the
Python interpreter and import all necessary packages

1 import math
2 import numpy as np
3 import tbplas as tb

Then we generate the lattice vectors from the lattice constants
with the gen_lattice_vectors function

1 vectors = tb . ge n _ l a t t i c e _ v e c t o r s (a =2.46 , b=2.46 , c =10.0 ,
gamma=60)

The function accepts six arguments, namely a, b, c, alpha, beta,
and gamma. The default value for alpha and beta is 90 degrees,
if not specified. The return value vectors is a 3 ×3 array contain-
ing the Cartesian coordinates of the lattice vectors. Alternatively,
we can create the lattice vectors from their Cartesian coordinates
directly

1 a = 2.46
2 c = 10.0
3 a_hal f = a ∗ 0.5
4 sqrt3 = math . sqrt (3)
5
6 vectors = np . array ([
7 [a , 0 , 0 ,] ,
8 [a_half , sqrt3∗a_half , 0] ,
9 [0 , 0 , c]

10])

From the lattice vectors, we can create an empty primitive cell by

1 prim_cell = tb . P r i m i t i v e C e l l (vectors , unit =tb .ANG)

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 3. (a) Schematic plot of the primitive cell of monolayer graphene. Orbitals are shown as filled circles and numbered in green texts, while cells are indicated with dashed
diamonds and numbered in blue texts. Thick black arrows denote the lattice vectors. (b) Band structure, (c) DOS and (d) Optical conductivity of monolayer graphene. The
optical conductivity is in the unit of σ0 = e2

4h̄ .
where the argument unit specifies that the lattice vectors are in
Angstroms.

As we choose γ = 60◦ , the two carbon atoms are then located
at τ0 = 0 and τ1 = 1

3 a1 + 1
3 a2, as shown in Fig. 3 (a). In the sim-

plest 2-band model of graphene, each carbon atom carries one 2pz

orbital. We can add the orbitals with the add_orbital function

1 prim_cell . add_orbital ([0 . , 0 .] , energy =0 .0 , l a b e l ="pz")
2 prim_cell . add_orbita l ([1 . / 3 , 1 . / 3] , energy =0 .0 , l a b e l ="pz")

The first argument gives the position of the orbital, while energy
specifies the on-site energy, which is assumed to be 0 eV if not
specified. In absence of strain or external fields, the two orbitals
have equal on-site energies. The argument label is a tag to de-
note the orbital. In addition to fractional coordinates, the orbitals
can also be added using Cartesian coordinates by the add_or-
bital_cart function

1 prim_cell . add_orbi ta l_cart ([0 . , 0 .] , unit =tb .ANG, energy =0 .0 ,
l a b e l ="pz")

2 prim_cell . add_orbi ta l_cart ([1 . 2 3 , 0.71014083] , unit =tb .ANG,
energy =0 .0 , l a b e l ="pz")

Here we use the argument unit to specify the unit of Cartesian
coordinates.

When all the orbitals have been added to the primitive cell, we
can proceed with adding the hopping terms, which are defined as

ti j(R) = 〈φi0|ĥ0|φ jR〉 (96)

where R is the index of neighboring cell, i and j are orbital in-
dices, respectively. The hopping terms of monolayer graphene in
the nearest approximation are
15
• R = (0, 0), i = 0, j = 1
• R = (0, 0), i = 1, j = 0
• R = (1, 0), i = 1, j = 0
• R = (−1, 0), i = 0, j = 1
• R = (0, 1), i = 1, j = 0
• R = (0, −1), i = 0, j = 1

With the conjugate relation ti j(R) = t∗
ji(−R), the hopping terms

can be reduced to

• R = (0, 0), i = 0, j = 1
• R = (1, 0), i = 1, j = 0
• R = (0, 1), i = 1, j = 0

TBPLaS takes the conjugate relation into consideration. So, we
need only to add the reduced set of hopping terms. This can be
done with the add_hopping function

1 prim_cell . add_hopping (rn =[0 , 0] , orb_i =0 , orb_j =1 , energy
=−2.7)

2 prim_cell . add_hopping (rn =[1 , 0] , orb_i =1 , orb_j =0 , energy
=−2.7)

3 prim_cell . add_hopping (rn =[0 , 1] , orb_i =1 , orb_j =0 , energy
=−2.7)

The argument rn specifies the index of neighboring cell, while
orb_i and orb_j give the indices of orbitals of the hopping
term. energy is the hopping integral, which should be a com-
plex number in general cases.

Now we have successfully built the primitive cell. We can visu-
alize it with the plot function:

1 prim_cell . p lot ()

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
The output is shown in Fig. 3(a), with orbitals shown as filled cir-
cles and hopping terms as arrows. We can also print the details of
the model with the print function:

1 prim_cell . pr int ()

The output is as follows

1 L a t t i c e vectors (nm) :
2 0.24600 0.00000 0.00000
3 0.12300 0.21304 0.00000
4 0.00000 0.00000 1.00000
5 O r b i t a l s :
6 0.00000 0.00000 0.00000 0.0
7 0.33333 0.33333 0.00000 0.0
8 Hopping terms :
9 (0 , 0 , 0) (0 , 1) −2.7

10 (1 , 0 , 0) (1 , 0) −2.7
11 (0 , 1 , 0) (1 , 0) −2.7

4.4. Properties of primitive cell

In this section we show how to calculate the band structure,
DOS and response functions of the graphene primitive cell that cre-
ated in previous section. First of all, we need to generate a k-path
of � → M → K → � with the gen_kpath function

1 k_points = np . array ([
2 [0 . 0 , 0 . 0 , 0 . 0] ,
3 [1 . / 2 , 0 . 0 , 0 . 0] ,
4 [2 . / 3 , 1 . / 3 , 0 . 0] ,
5 [0 . 0 , 0 . 0 , 0 . 0] ,
6])
7 k_label = ["$ \Gamma$" , "M" , "K" , "$ \Gamma$"]
8 k_path , k_idx = tb . gen_kpath (k_points , [40 , 40 , 40])

In this example, we interpolate with 40 intermediate k-points
along each segment of the k-path. gen_kpath returns two arrays,
with k_path containing the coordinates of k-points and k_idx
containing the indices of highly-symmetric k-points in k_path.
Then we solve the band structure with the calc_bands function

1 k_len , bands = prim_cell . calc_bands (k_path)

Here k_len is the length of k-path, while bands is a Nk × Nb
matrix containing the energies. The band structure can be plotted
with matplotlib

1 num_bands = bands . shape [1]
2 for i in range (num_bands) :
3 p l t . p lot (k_len , bands [: , i] , color =" r " , l inewidth =1.2)
4 for idx in k_idx :
5 p l t . axvl ine (k_len [idx] , color ="k" , l inewidth =0.8)
6 p l t . xlim ((0 , np . amax(k_len)))
7 p l t . x t i c k s (k_len [k_idx] , k_ label)
8 p l t . y label (" Energy (eV) ")
9 p l t . t ight_ layout ()

10 p l t . show ()

Or alternatively, using the Visualizer class:

1 v i s = tb . V i s u a l i z e r ()
2 v i s . plot_bands (k_len , bands , k_idx , k_ label)
16
The output is shown in Fig. 3(b). The Dirac cone at K-point is per-
fectly reproduced.

To calculate the DOS, we need to sample the first Brillouin zone
with a dense k-grid, e.g., 240 × 240 × 1

1 k_mesh = tb . gen_kmesh((240 , 240 , 1))

where k_mesh contains the coordinates of k-points on the grid.
Then we evaluate and visualize the DOS as

1 energies , dos = prim_cell . calc_dos (k_mesh , e_min=−9, e_max=9)
2 v i s . plot_dos (energies , dos)

where energies is a uniform energy grid whose lower and up-
per bounds are controlled by the arguments e_min and e_max.
dos is an array containing the DOS values at the grid points in
energies. The output is shown in Fig. 3(c).

The evaluation of response functions requires a Lindhard calcu-
lator, which can be created by

1 l ind = tb . Lindhard (c e l l =prim_cell , energy_max=20 , energy_step
=2000 , kmesh_size =(4096 , 4096 , 1) , mu=0.0 , temperature
=300.0 , g_s =2 , back_epsilon =1.0)

The argument cell assigns the primitive cell to the calcula-
tor. energy_max and energy_step define a uniform energy
grid on which response functions will be evaluated. kmesh_size
specifies the size of k-grid in the first Brillouin zone. As mono-
layer graphene is semi-metallic, we need a very dense k-grid in
order to converge the response functions. mu, temperature and
g_s are the chemical potential, temperature and spin degeneracy
of the system, while back_epsilon is the background dielectic
constant, respectively. The xx component of optical conductivity,
namely σxx , can be evaluated with the calc_ac_cond function

1 omegas , ac_cond = l ind . calc_ac_cond (component="xx")

where omegas is the energy grid and ac_cond is the optical
conductivity. The results can be visualized using the Visualizer
class

1 ac_cond ∗= 4
2 v i s = tb . V i s u a l i z e r ()
3 v i s . plot_xy (omegas , ac_cond . real , x_ label =" Energy (eV) " ,

y_ label ="$ \ sigma_ { xx} (\ sigma_0) $")

The output is shown in Fig. 3(d), in the unit of σ0 = e2

4h̄ .

4.5. Building the sample

In this section we show how to construct a sample by making
a graphene model with 20 × 20 × 1 primitive cells. To build the
sample, we need to create the supercell first

1 super_cel l = tb . SuperCell (prim_cell , dim=(20 , 20 , 1) , pbc =(
True , True , False))

The SuperCell class is similar to the functions of extend_
prim_cell and apply_pbc, where the dimension and periodic
boundary conditions are set up at the same time. The sample
is formed by gluing the supercells and inter-hopping terms alto-
gether with the Sample class. In our case the sample consists of
only one supercell. So it can be created and visualized by

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 4. (a) Plot of the 20 × 20 × 1 graphene sample. (b) DOS of graphene from exact-diagonalization and TBPM. (c) Optical conductivity of graphene from Lindhard function
and TBPM. (d) DOS of graphene under zero and 50 Tesla magnetic fields.
1 sample = tb . Sample (super_cel l)
2 sample . plot (with_orbi ta ls = False , with_cel ls = False ,

hop_as_arrows= False)

where some options are switched for boosting the plot. The output
is shown in Fig. 4(a).

4.6. Properties of sample

The Sample class supports the evaluation of band structure
and DOS via exact-diagonalization with the calc_bands and
calc_dos functions, similar to the PrimitiveCell class. Tak-
ing the DOS as an example, in section 4.4 we have sampled the
first Brillouin zone with a k-grid of 240 × 240 × 1. Now that we
have a much larger sample, the dimension of k-grid can be re-
duced to 12 × 12 × 1 accordingly

1 k_mesh = tb . gen_kmesh ((12 , 12 , 1))
2 energies , dos = sample . calc_dos (k_mesh , e_min=−9, e_max=9)
3 v i s . plot_dos (energies , dos)

The output is shown in Fig. 4(b), which is consistent with Fig. 3(c).
Exact diagonalization-based techniques are not feasible for large

models as the computational costs scale cubically with the model
size. On the contrary, TBPM involves only matrix-vector multipli-
cation, and is less demanding on computational resources. There-
fore, TBPM is particularly suitable for large models with millions
of orbitals or more. Current capabilities of TBPM in TBPLaS are
summarized in section 3.6. We demonstrate the usage of TBPM
to evaluate the DOS and optical conductivity of a graphene sample
with 4096 × 4096 × 1 primitive cells, i.e., 33,554,432 orbitals. We
begin with creating the sample

1 super_cel l = tb . SuperCell (prim_cell , dim=(4096 , 4096 , 1) , pbc
=(True , True , False))
17
2 sample = tb . Sample (super_cel l)
3 sample . rescale_ham (9 . 0)

Since the model is extremely large, we will not visualize it as in
other examples. In TBPM the time evolution and Fermi-Dirac oper-
ators are expanded in Chebyshev polynomials, which requires the
eigenvalues of the Hamiltonian to be within [−1, 1]. So, we need
to rescale the Hamiltonian with the rescale_ham function. The
scaling factor can be specified as an argument. If not provided,
a reasonable default value will be estimated from the Hamilto-
nian. Then we set up the parameters of TBPM in an instance of
the Config class

1 config = tb . Config ()
2 config . generic [" nr_random_samples"] = 4
3 config . generic [" nr_time_steps "] = 4096

Here we set two parameters: nr_random_samples and nr_
time_steps. nr_random_samples specifies that we are going
to consider 4 random initial wave functions for the propagation,
while nr_time_steps indicates the number of steps to propa-
gate. The time step for the propagation is π/ f (in unit of h̄/eV),
with f being the scaling factor of Hamiltonian in eV. Now we cre-
ate a pair of solver and analyzer by

1 solver = tb . Solver (sample , conf ig)
2 analyzer = tb . Analyzer (sample , conf ig)

Then we calculate and analyze the correlation function to get DOS

1 corr_dos = solver . calc_corr_dos ()
2 energies , dos = analyzer . calc_dos (corr_dos)
3 v i s = tb . V i s u a l i z e r ()
4 v i s . plot_dos (energies , dos)

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 5. (a) Workflow of constructing hetero-structure. (b) Schematic plot of lattice vectors of fixed (a1, a2) and twisted (a′
1, a′

2) primitive cells and the hetero-structure (A1,
A2), as well as the twisting angle θ . (c) Twisted bilayer graphene sample with 4 × 4 × 1 merged cells of i = 5.
Here the correlation function corr_dos is obtained with the
calc_corr_dos function, and then analyzed by the calc_dos
function to yield the energy grid energies and DOS values dos.
The result is shown in Fig. 4(b), consistent with the results from
exact-diagonalization.

The calculation of optical conductivity is similar to DOS

1 config . generic [" correct_spin "] = True
2 corr_ac_cond = solver . calc_corr_ac_cond ()
3 omegas , ac_cond = analyzer . calc_ac_cond (corr_ac_cond)
4 ac_cond ∗= 4
5 v i s . plot_xy (omegas , ac_cond [0] . real , x_ label =" Energy (eV) " ,

y_ label ="$ \ sigma_ {xx} (\ sigma_0) $")

Note that we set the spin-degeneracy of the model to 2 by set-
ting the correct_spin argument to True, for consistency with
the example in section 4.4. The optical conductivity is shown in
Fig. 4(c), which matches perfectly with the results from Lindhard
function.

4.7. Advanced modeling

In this section, we demonstrate how to construct complex mod-
els, including hetero structure, quasicrystal and fractal. For the het-
ero structure, we are going to take the twisted bilayer graphene as
an example, while for the fractal we will consider the Sierpiński
carpet.

4.7.1. Hetero-structure
The workflow of constructing hetero structures is shown in

Fig. 5(a). First of all, we determine the twisting angle and lattice
vectors of the hetero-structure. Then we build the primitive cells
of each layer, shift the twisted layer along z-axis by the interlayer
distance and rotate it by the twisting angle. After that, we reshape
the primitive cells to the lattice vectors of the hetero-structure to
yield the layers, as depicted in Fig. 5(b). When all the layers are
ready, we merge them into one cell and add the intralayer and
interlayer hopping terms up to a given cutoff distance. For the vi-
sualization of Moiré pattern, we also need to build a sample from
the merged cell.
18
Before constructing the model, we need to import the required
packages and define some necessary functions. The packages are
imported by

1 import math
2 import numpy as np
3 from numpy . l i n a l g import norm
4 import tbplas as tb

The twisting angle and lattice vectors are determined following the
formulation in Ref. [82]

θi = arccos
3i2 + 3i + 1/2

3i2 + 3i + 1
, (97)

A1 = i · a1 + (i + 1) · a2, (98)

A2 = −(i + 1) · a1 + (2i + 1) · a2, (99)

where a1 and a2 are the lattice vectors of the primitive cell of
fixed layer and i is the index of hetero-structure. We define the
following functions accordingly

1 def calc_twist_angle (i) :
2 cos_ang = (3 ∗ i ∗∗2 + 3 ∗ i + 0 . 5) / (3 ∗ i ∗∗2 + 3 ∗ i +

1)
3 return math . acos (cos_ang)
4
5
6 def c a l c _ h e t e r o _ l a t t i c e (i , pr im_cel l_ f ixed) :
7 h e t e r o _ l a t t i c e = np . array ([[i , i + 1 , 0] ,
8 [−(i + 1) , 2 ∗ i + 1 , 0] ,
9 [0 , 0 , 1]])

10 h e t e r o _ l a t t i c e = tb . f r a c 2 c a r t (pr im_cel l_ f ixed . lat_vec ,
h e t e r o _ l a t t i c e)

11 return h e t e r o _ l a t t i c e

calc_twist_angle returns the twisting angle in radians, while
calc_hetero_lattice returns the Cartesian coordinates of
lattice vectors in nm. After merging the layers, we need to add
the interlayer hopping terms. Meanwhile, the intralayer hoppings
terms should also be extended in the same approach. We define
the extend_hop function to achieve these goals

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
1 def extend_hop (prim_cell , max_distance =0.75) :
2 neighbors = tb . f ind_neighbors (prim_cell , a_max=1 , b_max

=1 ,
3 max_distance=max_distance)
4 for term in neighbors :
5 i , j = term . pair
6 prim_cell . add_hopping (term . rn , i , j , calc_hop (term .

r i j))

Here in line 2 we call the find_neighbors function to get
the neighboring orbital pairs up to the cutoff distance max_dis-
tance. Then the hopping terms are evaluated according to the
displacement vector rij with the calc_hop function and added
to the primitive cell. The calc_hop function is defined according
to the formulation in Ref. [83]

1 def calc_hop (r i j) :
2 a0 = 0.1418
3 a1 = 0.3349
4 r_c = 0.6140
5 l _ c = 0.0265
6 gamma0 = 2.7
7 gamma1 = 0.48
8 decay = 22.18
9 q_pi = decay ∗ a0

10 q_sigma = decay ∗ a1
11 dr = norm(r i j) . item ()
12 n = r i j . item (2) / dr
13 v_pp_pi = − gamma0 ∗ math . exp (q_pi ∗ (1 − dr / a0))
14 v_pp_sigma = gamma1 ∗ math . exp (q_sigma ∗ (1 − dr / a1))
15 f c = 1 / (1 + math . exp ((dr − r_c) / l _ c))
16 hop = (n∗∗2 ∗ v_pp_sigma + (1 − n∗∗2) ∗ v_pp_pi) ∗ f c
17 return hop

With all the functions ready, we proceed to build the hetero-
structure. In line 2-4 we evaluate the twisting angle of bilayer
graphene for i = 5. Then we construct the primitive cells of the
fixed and twisted layers with the make_graphene_diamond
function. The fixed primitive cell is located at z = 0 and does not
need rotation or shifting. On the other hand, the twisted prim-
itive cell needs to be rotated counter-clockwise by the twisting
angle and shifted towards +z by 0.3349 nm, which is done with
the spiral_prim_cell function. After that, we reshape the
primitive cells to the lattice vectors of hetero-structure with the
make_hetero_layer function, which is a wrapper to coordi-
nate conversion and reshape_prim_cell. Then the layers are
merged with merge_prim_cell and the hopping terms are ex-
tended with extend_hop using a cutoff distance of 0.75 nm.
Finally, a sample with 4 ×4 ×1 merged cells is created and plotted,
with the hopping terms below 0.3 eV hidden for clarity. The out-
put is shown in Fig. 5 (c), where the Moiré pattern can be clearly
observed.

1 def main () :
2 # Evaluate twist ing angle
3 i = 5
4 angle = calc_twist_angle (i)
5
6 # Prepare primit ive c e l l s of f ixed and twisted layer
7 prim_cel l_ f ixed = tb . make_graphene_diamond ()
8 prim_cell_twisted = tb . make_graphene_diamond ()
9

10 # S h i f t and rotate the twisted layer
11 tb . s p i r a l _ p r i m _ c e l l (prim_cell_twisted , angle=angle , s h i f t

=0.3349)
12
13 # Reshape primit ive c e l l s to the l a t t i c e vectors of

hetero−structure
14 h e t e r o _ l a t t i c e = c a l c _ h e t e r o _ l a t t i c e (i , pr im_cel l_ f ixed)
15 l aye r _ f ixe d = tb . make_hetero_layer (prim_cel l_f ixed ,

h e t e r o _ l a t t i c e)
19
16 layer_twisted = tb . make_hetero_layer (prim_cell_twisted ,
h e t e r o _ l a t t i c e)

17
18 # Merge layers
19 merged_cell = tb . merge_prim_cell (layer_f ixed ,

layer_twisted)
20
21 # Extend hopping terms
22 extend_hop (merged_cell , max_distance =0.75)
23
24 # Visua l ize Moire pattern
25 sample = tb . Sample (tb . SuperCell (merged_cell , dim=(4 , 4 ,

1) , pbc =(True , True , False)))
26 sample . plot (with_orbi ta ls = False , hop_as_arrows= False ,

hop_eng_cutoff =0 .3)
27
28
29 i f __name__ == " __main__" :
30 main ()

4.7.2. Quasicrystal
Here we consider the construction of hetero structure-based

quasicrystal, in which we also need to shift, twist, reshape and
merge the cells. Taking bilayer graphene quasicrystal as an exam-
ple, a quasicrystal with 12-fold symmetry is formed by twisting
one layer by 30◦ with respect to the center of c = 2

3 a1 + 2
3 a2,

where a1 and a2 are the lattice vectors of the primitive cell of
fixed layer. We begin with defining the geometric parameters

1 angle = 30 / 180 ∗ math . pi
2 center = (2 . / 3 , 2 . / 3 , 0)
3 radius = 3.0
4 s h i f t = 0.3349
5 dim = (33 , 33 , 1)

Here angle is the twisting angle and center is the fractional
coordinate of twisting center. The radius of the quasicrystal is con-
trolled by radius, while shift specifies the interlayer distance.
We need a large cell to hold the quasicrystal, whose dimension is
given in dim. After introducing the parameters, we build the fixed
and twisted layers by

1 prim_cell = tb . make_graphene_diamond ()
2 l aye r _ f ixe d = tb . extend_prim_cell (prim_cell , dim=dim)
3 layer_twisted = tb . extend_prim_cell (prim_cell , dim=dim)

Then we shift and rotate the twisted layer with respect to the cen-
ter and reshape it to the lattice vectors of fixed layer

1 # Get the Cartesian coordinate of twist ing center
2 center = np . array ([dim [0] / / 2 , dim [1] / / 2 , 0]) + center
3 center = np . matmul(center , prim_cell . l a t_vec)
4
5 # Twist , s h i f t and reshape top layer
6 tb . s p i r a l _ p r i m _ c e l l (layer_twisted , angle=angle , center =center

, s h i f t = s h i f t)
7 conv_mat = np . matmul(l a y e r _ f i x e d . lat_vec , np . l i n a l g . inv (

layer_twisted . la t_vec))
8 layer_twisted = tb . reshape_prim_cell (layer_twisted , conv_mat)

Since we have extended the primitive cell by 33 × 33 × 1 times,
and we want the quasicrystal to be located in the center of the
cell, we need to convert the coordinate of twisting center in line
2-3. The twisting operation is done by the spiral_prim_cell
function, where the Cartesian coordinate of the center is given in
the center argument. The fixed and twisted layers have the same
lattice vectors after reshaping, so we can merge them safely

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
Fig. 6. Plot of the quasicrystal formed from the incommensurate 30◦ twisted bilayer
graphene with a radius of 3 nm.

1 # Merge bottom and top layers
2 f i n a l _ c e l l = tb . merge_prim_cell (layer_twisted , l aye r _ f ixe d)

Then we remove unnecessary orbitals to produce a round qua-
sicrystal with finite radius. This is done by a loop over orbital
positions to collect the indices of unnecessary orbitals, and func-
tion calls to remove_orbitals and trim functions

1 # Remove unnecessary o r b i t a l s
2 idx_remove = []
3 orb_pos = f i n a l _ c e l l . orb_pos_nm
4 for i , pos in enumerate (orb_pos) :
5 i f np . l i n a l g . norm(pos [: 2] − center [: 2]) > radius :
6 idx_remove . append (i)
7 f i n a l _ c e l l . remove_orbitals (idx_remove)
8
9 # Remove dangling o r b i t a l s

10 f i n a l _ c e l l . trim ()

Finally, we extend the hoppings and visualize the quasicrystal

1 extend_hop (f i n a l _ c e l l)
2 f i n a l _ c e l l . p lot (with_cel l s = False , with_orbi ta ls = False ,

hop_as_arrows= False , hop_eng_cutoff =0 .3)

The output is shown in Fig. 6.

4.7.3. Fractal
Generally, fractals can be constructed in two approaches,

namely bottom-up and top-down, as demonstrated in Fig. 7. The
bottom-up approach builds the fractal by iteratively replicating the
fractal of low iteration number following some specific pattern. On
the contrary, the top-down approach builds a large model at first,
then recursively removes unnecessary orbitals and hopping terms
following the pattern. Both approaches can be implemented with
TBPLaS, while the top-down approach is faster.

In this section, we will take the Sierpiński carpet as an example
and built it in the top-down approach. We begin with defining the
following auxiliary classes

1 c l a s s Box :
2 def _ _ i n i t _ _ (s e l f , i0 , j0 , i1 , j1 , void= False) :
3 s e l f . i0 = i0
20
4 s e l f . j0 = j0
5 s e l f . i1 = i1
6 s e l f . j1 = j1
7 s e l f . void = void
8
9 c l a s s Mask:

10 def _ _ i n i t _ _ (s e l f , starting_box , num_grid , num_iter =0) :
11 s e l f . boxes = [start ing_box]
12 s e l f . num_grid = num_grid
13 for i in range (num_iter) :
14 new_boxes = []
15 for box in s e l f . boxes :
16 new_boxes . extend (s e l f . part i t ion_box (box))
17 s e l f . boxes = new_boxes
18
19 def part i t ion_box (s e l f , box) :
20 i f box . void :
21 sub_boxes = [box]
22 else :
23 sub_boxes = []
24 di = (box . i1 − box . i0 + 1) / / s e l f . num_grid
25 dj = (box . j1 − box . j0 + 1) / / s e l f . num_grid
26 for i i in range (s e l f . num_grid) :
27 i0 = box . i0 + i i ∗ di
28 i1 = i0 + di
29 for j j in range (s e l f . num_grid) :
30 j0 = box . j0 + j j ∗ dj
31 j1 = j0 + dj
32 i f (1 <= i i < s e l f . num_grid − 1 and
33 1 <= j j < s e l f . num_grid − 1) :
34 void = True
35 else :
36 void = False
37 sub_boxes . append (Box (i0 , j0 , i1 , j1 , void

))
38 return sub_boxes
39
40 def etch_prim_cell (s e l f , prim_cell , width) :
41 prim_cell . sync_array ()
42 masked_id_pc = []
43 for box in s e l f . boxes :
44 i f box . void :
45 id_pc = [(ia , ib)
46 for i a in range (box . i0 , box . i1)
47 for ib in range (box . j0 , box . j1)]
48 masked_id_pc . extend (id_pc)
49 masked_id_pc = [i [0]∗width + i [1] for i in

masked_id_pc]
50 prim_cell . remove_orbitals (masked_id_pc)
51 prim_cell . sync_array ()

Here the Box represents a rectangular area spanning from [i0, j0]
to (i1, j1). If the box is marked as void, then the orbitals inside it
will be removed. The Mask class is a collection of boxes, which re-
cursively partitions them into smaller boxes and marks the central
boxes as void. It offers the etch_prim_cell function to produce
the fractal by removing orbitals falling into void boxes.

To demonstrate the usage of the auxiliary classes, we define the
geometric parameters and create a square primitive cell

1 # Geometric parameters
2 start_width = 2
3 extension = 3
4 i t e r a t i o n = 4
5
6 # Create a square primit ive c e l l
7 l a t t i c e = np . eye (3 , dtype=np . f loat64)
8 prim_cell = tb . P r i m i t i v e C e l l (l a t t i c e)
9 prim_cell . add_orbita l ((0 , 0))

10 prim_cell . add_hopping ((1 , 0) , 0 , 0 , 1 . 0)
11 prim_cell . add_hopping ((0 , 1) , 0 , 0 , 1 . 0)

The Sierpiński carpet is characterized by 3 parameters: the start-
ing width S , the extension L which controls the pattern, and the

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
Fig. 7. Schematic plot of constructing Sierpiński carpet with S = 2, L = 3 and I = 2
in (a)-(c) bottom-up and (d)-(f) top-down approaches. The dashed squares in (a)-(c)
and filled squares in (d)-(f) indicate the void areas in the fractal.

iteration number I , as shown in Fig. 7. We extend the square prim-
itive cell to the final width of the carpet, which is determined as
D = S · LI

1 # Create the extended c e l l
2 f inal_width = start_width ∗ extension∗∗ i t e r a t i o n
3 extended_cell = tb . extend_prim_cell (prim_cell , dim=(

final_width , f inal_width , 1))
4 extended_cell . apply_pbc ((False , False , Fa lse))

Then we create a box covering the whole extended cell and a mask
from the box. The bottom-left corner of the box is located at [0, 0],
while the top-right corner is at (D − 1, D − 1)

1 # Create the mask
2 start_box = Box (0 , 0 , f inal_width −1, f inal_width −1)
3 mask = Mask(start_box , num_grid=extension , num_iter= i t e r a t i o n

)

Then we call the etch_prim_cell function to remove the or-
bitals falling into void boxes of the mask

1 # Remove o r b i t a l s
2 mask . etch_prim_cell (extended_cell , f inal_width)

Finally, we visualize the fractal

1 # Plot the f r a c t a l
2 extended_cell . p lot (with_orbi ta ls = False , with_cel l s = False ,

with_conj= False , hop_as_arrows= False)

The output is shown in Fig. 8.

4.8. Strain and external fields

In this section, we introduce the common procedure of apply-
ing strain and external fields on the model. It is difficult to design
common out-of-the-box user APIs that offer such functionalities
since they are strongly case-dependent. Generally, the user should
implement these perturbations by modifying model attributes such
as orbital positions, on-site energies and hopping integrals. For
the primitive cell, it is straightforward to achieve this goal with
the set_orbital and add_hopping functions, as mentioned
in section 3.2. The Sample class, on the contrary, does not offer
such functions. Instead, the user should work with the attributes
21
Fig. 8. Sierpiński carpet with S = 2, L = 3 and I = 4.

directly. In the Sample class, orbital positions and on-site ener-
gies are stored in the orb_pos and orb_eng attributes. Hopping
terms are represented with 3 attributes: hop_i and hop_j for
orbital indices, and hop_v for hopping integrals. There is also an
auxiliary attribute dr which holds the hopping vectors. All the at-
tributes are NumPy arrays. The on-site energies and hopping terms
can be modified directly, while the orbital positions should be
changed via a modifier function. The hopping vectors are updated
from the orbital positions and hopping terms automatically, thus
no need of explicit modification.

As the example, we will investigate the propagation of wave
function in a graphene sample. We begin with defining the func-
tions for adding strain and external fields, then calculate and plot
the time-dependent wave function to check their effects on the
propagation. The impact of magnetic field on electronic structure
will also be discussed.

4.8.1. Functions for strain
Strain will introduce deformation into the model, changing both

orbital positions and hopping integrals. It is a rule that orbital po-
sitions should not be modified directly, but through a modifier
function. We consider a Gaussian bump deformation, and define
the following function to generate the modifier

1 def make_deform (center , sigma =0.5 , extent = (1 . 0 , 1 . 0) , sca le
= (0 . 5 , 0 . 5)) :

2 def _deform (orb_pos) :
3 x , y , z = orb_pos [: , 0] , orb_pos [: , 1] , orb_pos [: , 2]
4 dx = (x − center [0]) ∗ extent [0]
5 dy = (y − center [1]) ∗ extent [1]
6 amp = np . exp(−(dx∗∗2 + dy∗∗2) / (2 ∗ sigma∗∗2))
7 x += amp ∗ dx ∗ sca le [0]
8 y += amp ∗ dy ∗ sca le [0]
9 z += amp ∗ sca le [1]

10 return _deform

Here center, sigma and extent control the location, width and
extent of the bump. For example, if extent is set to (1.0, 0.0), the
bump will become one-dimensional which varies along x-direction
while remains constant along y-direction. scale specifies the
scaling factors for in-plane and out-of-plane displacements. The
make_deform function returns another function as the modifier,

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
which updates the orbital positions in place according to the fol-
lowing expression

ri → ri + �i, (100)

�
‖
i = Ai · (r‖

i − c‖
0) · s‖, (101)

�⊥
i = Ai · s⊥, (102)

Ai = exp

⎡
⎣− 1

2σ 2

2∑
j=1

(r j
i − c j

0)
2 · η j

⎤
⎦ , (103)

where ri is the position of i-th orbital, �i is the displacement, s is
the scaling factor, ‖ and ⊥ are the in-plane and out-of-plane com-
ponents. The location, width and extent of the bump are denoted
as c0, σ and η, respectively.

In addition to the orbital position modifier, we also need to
update hopping integrals

1 def update_hop (sample) :
2 sample . init_hop ()
3 sample . i n i t _ d r ()
4 for i , r i j in enumerate (sample . dr) :
5 sample . hop_v [i] = calc_hop (r i j)

As we will make use of the hopping terms and vectors, we should
call the init_hop and init_dr functions to initialize the at-
tributes. Similar rule holds for the on-site energies and orbital po-
sitions, as discussed in section 3.5. Then we loop over the hopping
terms to update the integrals in hop_v according to the vectors in
dr with the calc_hop function, which is defined in section 4.7.1.

4.8.2. Functions for external fields
The effects of external electric field can be modeled by adding

position-dependent potential to the on-site energies. We consider
a Gaussian-type scattering potential described by

V i = V 0 · Ai (104)

and define the following function to add the potential to the sam-
ple

1 def add_ef ield (sample , center , sigma =0.5 , extent = (1 . 0 , 1 . 0) ,
v_pot =1.0) :

2 sample . init_orb_pos ()
3 sample . init_orb_eng ()
4 orb_pos = sample . orb_pos
5 orb_eng = sample . orb_eng
6 for i , pos in enumerate (orb_pos) :
7 dx = (pos . item (0) − center [0]) ∗ extent [0]
8 dy = (pos . item (1) − center [1]) ∗ extent [1]
9 orb_eng [i] += v_pot ∗ math . exp(−(dx∗∗2 + dy∗∗2) / (2

∗ sigma∗∗2))

The arguments center, sigma and extent are similar to
that of the make_deform function, while v_pot specifies V 0.
Similar to update_hop, we need to call init_orb_pos and
init_orb_eng to initialize orbital positions and on-site energies
before accessing them. Then the position-dependent scattering po-
tential is added to the on-site energies.

The effects of magnetic field can be modeled with Peierls sub-
stitution, as discussed in section 2. For homogeneous magnetic
field perpendicular to the xO y-plane along −z direction, the Sam-
ple class offers an API set_magnetic_field, which follows
the Landau gauge of vector potential A = (B y, 0, 0) and updates
the hopping terms as
22
ti j → ti j · exp

[
i

eB

2h̄c
· (rx

j − rx
i) · (ry

j + ry
i)

]
(105)

where B is the intensity of magnetic field, ri and r j are the posi-
tions of i-th and j-th orbitals, respectively.

4.8.3. Initial wave functions
The initial wave function we consider here as an example for

the propagation is a Gaussian wave-packet, which is defined by

1 def init_wfc_gaussian (sample , center , sigma =0.5 , extent = (1 . 0 ,
1 . 0)) :

2 sample . init_orb_pos ()
3 orb_pos = sample . orb_pos
4 wfc = np . zeros (orb_pos . shape [0] , dtype=np . complex128)
5 for i , pos in enumerate (orb_pos) :
6 dx = (pos . item (0) − center [0]) ∗ extent [0]
7 dy = (pos . item (1) − center [1]) ∗ extent [1]
8 wfc [i] = math . exp(−(dx∗∗2 + dy∗∗2) / (2 ∗ sigma∗∗2))
9 wfc /= np . l i n a l g . norm(wfc)

10 return wfc

Note that the wave function should be a complex vector whose
length must be equal to the number of orbitals. Also, it should be
normalized before being returned.

4.8.4. Propagation of wave function
We consider a rectangular graphene sample with 50 × 20 × 1

primitive cells, as shown in Fig. 9(a). We begin with importing the
necessary packages and defining some geometric parameters

1 import math
2 import numpy as np
3 from numpy . l i n a l g import norm
4 import tbplas as tb
5
6 prim_cell = tb . make_graphene_rect ()
7 dim = (50 , 20 , 1)
8 pbc = (True , True , False)
9 x_max = prim_cell . l a t_vec [0 , 0] ∗ dim[0]

10 y_max = prim_cell . l a t_vec [1 , 1] ∗ dim[1]
11 wfc_center = (x_max ∗ 0 . 5 , y_max ∗ 0 . 5)
12 deform_center = (x_max ∗ 0.75 , y_max ∗ 0 . 5)

Here dim and pbc define the dimension and boundary condition.
x_max and y_max are the lengths of the sample along x and y di-
rections. The initial wave function will be a Gaussian wave-packet
located at the center of the sample given by wfc_center. The
deformation and scattering potential will be located at the center
of right half of the sample, as specified by deform_center and
shown in Fig. 9 (b)-(c).

We firstly investigate the propagation of a one-dimensional
Gaussian wave-packet in pristine sample, which is given by

1 # Prepare the sample and i n i t a l wave function
2 sample = tb . Sample (tb . SuperCell (prim_cell , dim , pbc))
3 psi0 = init_wfc_gaussian (sample , center =wfc_center , extent

= (1 . 0 , 0 . 0))
4
5 # Propagate the wave function
6 config = tb . Config ()
7 config . generic [" nr_time_steps "] = 128
8 time_log = np . array ([0 , 16 , 32 , 64 , 128])
9 sample . rescale_ham ()

10 solver = tb . Solver (sample , conf ig)
11 p s i _ t = solver . c a l c _ p s i _ t (psi0 , time_log)
12
13 # Visua l ize the time−dependent wave function
14 v i s = tb . V i s u a l i z e r ()
15 for i in range (len (time_log)) :
16 v i s . plot_wfc (sample , np . abs (p s i _ t [i]) ∗∗2 , cmap=" hot " ,

s c a t t e r = False)

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 9. Top and side views of (a) pristine graphene sample and (b) sample with deformation. (c) Plot of on-site energies of graphene sample with scattering potential.
As the propagation is performed with the calc_psi_t function
of Solver class, it follows the common procedure of TBPM cal-
culation. We propagate the wave function by 128 steps, and save
the snapshots in psi_t at the time steps specified in time_log.
The snapshots are then visualized by the plot_wfc function of
Visualizer class, as shown in Fig. 10(a)-(e), where the wave-
packet diffuses freely, hits the boundary and forms interference
pattern.

We then add the bump deformation to the sample, by assigning
the modifier function to the supercell and calling update_hop to
update the hopping terms

1 deform = make_deform (center =deform_center)
2 sample = tb . Sample (tb . SuperCell (prim_cell , dim , pbc ,

orb_pos_modifier=deform))
3 update_hop (sample)

The propagation of wave-packet in deformed graphene sample is
shown in Fig. 10(f)-(j). Obviously, the wave function gets scattered
by the bump. Although similar interference pattern is formed, the
propagation in the right part of the sample is significantly hin-
dered, due to the increased inter-atomic distances and reduced
hopping integrals at the bump.

Similar phenomena are observed when the scattering potential
is added to the sample by

1 add_ef ield (sample , center=deform_center)

The time-dependent wave function is shown in Fig. 10(k)-(o). Due
to the higher on-site energies, the probability of emergence of
electron is suppressed near the scattering center.

As for the effects of magnetic field, it is well known that Lan-
dau levels will emerge in the DOS, as shown in Fig. 4(d). The
analytical solution to Schrödinger’s equation for free electron in
homogeneous magnetic field with A = (B y, 0, 0) shows that the
wave function will propagate freely along x and z-directions while
oscillates along y-direction. To simulate this process, we apply the
magnetic field to the sample by

1 sample . set_magnetic_f ie ld (50)

The snapshots of time-dependent wave function are shown in
Fig. 10(p)-(t). The interference pattern is similar to the case with-
out magnetic field, as the wave function propagates freely along
x direction. However, due to the oscillation along y-direction, the
interference pattern gets distorted during the propagation. These
phenomena agree well with the analytical results.
23
4.9. Miscellaneous

4.9.1. Wannier90 interface, Slater-Koster formula and parameter fitting
In this section, we demonstrate the usage of Wannier90 inter-

face wan2pc, Slater-Koster table SK and parameter fitting tool
ParamFit, by reducing an 8-band graphene primitive cell im-
ported from the output of Wannier90. We achieve this by truncat-
ing the hopping terms to the second nearest neighbor, and refitting
the on-site energies and Slater-Koster parameters to minimize the
residual between the reference and fitted band data, i.e.,

min
x

∑
i,k

ωi
∣∣Ē i,k − Ei,k(x)

∣∣2
(106)

where x are the fitting parameters, ω are the fitting weights, Ē
and E are the reference and fitted band data from the original and
reduced cells, i and k are band and k-point indices, respectively.

We begin with importing the necessary packages

1 import numpy as np
2 import matplotl ib . pyplot as p l t
3 import tbplas as tb

and define the following function to build the primitive cell from
the Slater-Koster parameters

1 def make_cell (sk_params) :
2 # L a t t i c e constants and o r b i t a l info .
3 lat_vec = np . array ([
4 [2.458075766398899 , 0.000000000000000,

0.000000000000000] ,
5 [−1.229037883199450, 2.128755065595607,

0.000000000000000] ,
6 [0.000000000000000 , 0.000000000000000,

15.000014072326660] ,
7])
8 orb_pos = np . array ([
9 [0.000000000 , 0.000000000 , 0.000000000] ,

10 [0.666666667 , 0.333333333 , 0.000000000] ,
11])
12 orb_label = (" s " , "px" , "py" , "pz")
13
14 # Create the c e l l and add o r b i t a l s
15 e_s , e_p = sk_params [0] , sk_params [1]
16 c e l l = tb . P r i m i t i v e C e l l (lat_vec , unit =tb .ANG)
17 for pos in orb_pos :
18 for l a b e l in orb_label :
19 i f l a b e l == " s " :
20 c e l l . add_orbita l (pos , energy=e_s , l a b e l = l a b e l

)
21 else :
22 c e l l . add_orbita l (pos , energy=e_p , l a b e l = l a b e l

)
23
24 # Add Hopping terms
25 neighbors = tb . f ind_neighbors (c e l l , a_max=5 , b_max=5 ,

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 10. (a)-(e) Propagation of one-dimensional Gaussian wave-packet in pristine graphene sample. (f)-(j) Propagation in graphene sample with deformation, (k)-(o) with
scattering potential and (p)-(t) with magnetic field of 50 Tesla.
26 max_distance =0.25)
27 sk = tb . SK ()
28 for term in neighbors :
29 i , j = term . pair
30 l a b e l _ i = c e l l . g e t _ o r b i t a l (i) . l a b e l
31 l a b e l _ j = c e l l . g e t _ o r b i t a l (j) . l a b e l
32 hop = calc_hop (sk , term . r i j , term . distance , l a b e l _ i ,

l a b e l _ j ,
33 sk_params)
34 c e l l . add_hopping (term . rn , i , j , hop)
35 return c e l l

In line 3-12 we define the lattice vectors, orbital positions and la-
bels. The SK class will utilize the orbital labels to evaluate the
hopping integrals, so they must be chosen from a set of prede-
fined strings, namely s for s orbitals, px/py/pz for p orbitals,
and dxy/dx2-y2/dyz/dzx/dz2 for d orbitals, respectively. Then
in line 15-22 we add the orbitals with on-site energies taken
from the first 2 elements of sk_params and the predefined la-
bels. In line 25 we call find_neighbors to find all the orbital
pairs within the cutoff distance of 0.25 nm, where the arguments
a_max and b_max specify the searching range. After that, we
create a Slater-Koster table from the SK class, and loop over the
orbital pairs to add the hopping terms, which are evaluated by the
calc_hop function depending on the displacement vector rij,
the distance distance, orbital labels label_i and label_j,
and Slater-Koster parameters sk_params. The calc_hop func-
tion is defined as

1 def calc_hop (sk , r i j , distance , l a b e l _ i , l a b e l _ j , sk_params) :
2 # 1 s t and 2nd hopping distances in nm
3 d1 = 0.1419170044439990
4 d2 = 0.2458074906840380
5 i f abs (distance − d1) < 1.0 e−5:
6 v_sss , v_sps , v_pps , v_ppp = sk_params [2 : 6]
7 e l i f abs (distance − d2) < 1.0 e−5:
8 v_sss , v_sps , v_pps , v_ppp = sk_params [6:10]
9 e lse :

10 r a i s e ValueError (f "Too large distance { distance } ")
11 return sk . eval (r= r i j , l a b e l _ i = l a b e l _ i , l a b e l _ j = l a b e l _ j ,
12 v_sss =v_sss , v_sps=v_sps ,
13 v_pps=v_pps , v_ppp=v_ppp)
24
where we extract the first and second-nearest Slater-Koster param-
eters from sk_params, and call the eval function of SK class to
evaluate the hopping integral, taking the displacement vector, or-
bital labels and SK parameters as input.

The fitting tool ParamFit is an abstract class. The users
should derive their own fitting class from it, and implement the
calc_bands_ref and calc_bands_fit functions, which re-
turn the reference and fitted band data, respectively. We define a
MyFit class as

1 c l a s s MyFit (tb . ParamFit) :
2 def calc_bands_ref (s e l f) :
3 c e l l = tb . wan2pc(" graphene ")
4 k_len , bands = c e l l . calc_bands (s e l f . k_points)
5 return bands
6
7 def ca lc_bands_f i t (s e l f , sk_params) :
8 c e l l = make_cell (sk_params)
9 k_len , bands = c e l l . calc_bands (s e l f . k_points ,

echo_detai ls = False)
10 return bands

In calc_bands_ref, we import the primitive cell with the Wan-
nier90 interface wan2pc, then calculate and return the band data.
The calc_bands_fit function does a similar job, with the only
difference that the primitive cell is constructed from Slater-Koster
parameters with the make_cell function we have just created.

The application of MyFit class is as follows

1 def main () :
2 # F i t the sk parameters
3 k_points = tb . gen_kmesh((120 , 120 , 1))
4 weights = np . array ([0 . 1 , 0 . 1 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 1 ,

0 . 1])
5 f i t = MyFit (k_points , weights)
6 sk0 = np . array ([−8.370 , 0 . 0 ,
7 −5.729, 5.618 , 6.050 , −3.070,
8 0.102 , −0.171, −0.377, 0 .070])
9 sk1 = f i t . f i t (sk0)

10 pr int ("SK parameters a f t e r f i t t i n g : ")
11 pr int (sk1 [: 2])
12 pr int (sk1 [2 : 6])
13 pr int (sk1 [6 : 1 0])
14

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
15 # Plot f i t t e d band structure
16 c e l l _ r e f = tb . wan2pc(" graphene ")
17 c e l l _ f i t = make_cell (sk1)
18 k_points = np . array ([
19 [0 . 0 , 0 . 0 , 0 . 0] ,
20 [1 . / 3 , 1 . / 3 , 0 . 0] ,
21 [1 . / 2 , 0 . 0 , 0 . 0] ,
22 [0 . 0 , 0 . 0 , 0 . 0] ,
23])
24 k_path , k_idx = tb . gen_kpath (k_points , [40 , 40 , 40])
25 k_len , bands_ref = c e l l _ r e f . calc_bands (k_path)
26 k_len , bands_f i t = c e l l _ f i t . calc_bands (k_path)
27 num_bands = bands_ref . shape [1]
28 for i in range (num_bands) :
29 p l t . plot (k_len , bands_ref [: , i] , color =" red " ,

linewidth =1.0)
30 p l t . plot (k_len , bands_f i t [: , i] , color =" blue " ,

linewidth =1.0)
31 p l t . show ()
32
33
34 i f __name__ == " __main__" :
35 main ()

To create a ParamFit instance, we need to specify the k-points
and fitting weights, as shown in line 3-4. For the k-points, we are
going to use a k-grid of 120 × 120 × 1. The length of weights
should be equal to the number of orbitals of the primitive cell,
which is 8 in our case. We assume all the bands to have the same
weights, and set them to 1. Then we create the ParamFit in-
stance, define the initial guess of parameters from Ref. [84], and
get the fitted results with the fit function. The output should
look like

1 SK parameters a f t e r f i t t i n g :
2 [−3.63102899 −1.08477167]
3 [−5.27742318 5.87219052 4.61650991 −2.75652966]
4 [−0.24734558 0.17599166 0.14798703 0.16545428]

The first two numbers are the on-site energies for s and p or-
bitals, while the following numbers are the Slater-Koster parame-
ters V ssσ , V spσ , V ppσ and V ppπ at first and second nearest hop-
ping distances, respectively. We can also plot and compare the
band structures from the reference and fitted primitive cells, as
shown in Fig. 11(a). It is clear that the fitted band structure agrees
well with the reference data near the Fermi level (-1.7 eV) and
at deep (-20 eV) or high energies (10 eV). However, the deriva-
tion from reference data of intermediate bands (-5 eV and 5 eV) is
non-negligible. To improve this, we lower the weights of band 1-2
and 7-8 by

1 weights = np . array ([0 . 1 , 0 . 1 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 1 , 0 . 1])

and refitting the parameters. The results are shown in Fig. 11(b),
where the fitted and reference band structures agree well from -5
to 5 eV.

4.9.2. Z2 topological invariant and spin-orbital coupling
In this section, we demonstrate the usage of Z2 and SOC

classes by calculating the topological invariant of bilayer bismuth
[85] and check the effects of SOC. We consider the intra-atom SOC
term

Hsoc = λL · S (107)

and evaluate its matrix elements in the direct product basis of |l〉 ⊗
|s〉, where |l〉 are the s/p/d orbitals and |s〉 are the eigenstates of
25
Pauli matrix σz . We prefer this basis set because it does not require
the evaluation of Clebsch-Gordan coefficients, thus much easier to
implement. In this basis, the matrix element of SOC becomes

Hsoc
i j = λ〈L · S〉i j = λ〈li, si |L · S| l j, s j〉 (108)

The eval function of SOC class calculates 〈L ·S〉i j taking the orbital
and spin labels as input. The orbital labels should follow the nota-
tions in 4.9.1, while the spin labels should be either up or down.
In actual calculations, we firstly double the orbitals and hopping
terms in the primitive cell to yield the product basis, then add
SOC as hopping terms between basis functions following Eq. (108).

We begin with importing the necessary packages

1 from math import sqrt , pi
2 import numpy as np
3 from numpy . l i n a l g import norm
4 import tbplas as tb
5 import tbplas . bui lder . exceptions as exc

Then we define the function to build the primitive cell without
SOC

1 def make_cell () :
2 # L a t t i c e constants
3 a = 4.5332
4 c = 11.7967
5 mu = 0.2341
6
7 # L a t t i c e vectors of bulk
8 a1 = np . array ([−0.5∗a , −sqrt (3) /6∗a , c / 3])
9 a2 = np . array ([0 . 5∗ a , −sqrt (3) /6∗a , c / 3])

10 a3 = np . array ([0 , sqrt (3) /3∗a , c / 3])
11
12 # L a t t i c e vectors and atomic posi t ions of b i l a y e r
13 a1_2d = a2 − a1
14 a2_2d = a3 − a1
15 a3_2d = np . array ([0 , 0 , c])
16 lat_vec = np . array ([a1_2d , a2_2d , a3_2d])
17 atom_position = np . array ([[0 , 0 , 0] , [1 / 3 , 1/3 , 2∗mu

−1/3]])
18
19 # Create c e l l and add o r b i t a l s
20 c e l l = tb . P r i m i t i v e C e l l (lat_vec , unit =tb .ANG)
21 atom_label = (" Bi1 " , " Bi2 ")
22 e_s , e_p = −10.906, −0.486
23 orbita l_energy = { " s " : e_s , "px" : e_p , "py" : e_p , "pz" :

e_p }
24 for i , pos in enumerate (atom_position) :
25 for o r b i t a l , energy in orbita l_energy . items () :
26 l a b e l = f " { atom_label [i] } : { o r b i t a l } "
27 c e l l . add_orbital (pos , l a b e l = label , energy=energy)
28
29 # Add hopping terms
30 neighbors = tb . f ind_neighbors (c e l l , a_max=5 , b_max=5 ,

max_distance =0.454)
31 sk = tb . SK ()
32 for term in neighbors :
33 i , j = term . pair
34 l a b e l _ i = c e l l . g e t _ o r b i t a l (i) . l a b e l
35 l a b e l _ j = c e l l . g e t _ o r b i t a l (j) . l a b e l
36 hop = calc_hop (sk , term . r i j , l a b e l _ i , l a b e l _ j)
37 c e l l . add_hopping (term . rn , i , j , hop)
38 return c e l l

The make_cell function is much similar to that of section 4.9.1,
where we firstly define the lattice vectors and orbital positions ac-
cording to Ref. [85,86], then add the orbitals and hopping terms
using Slater-Koster formulation. Note that we have included atom
labels in the orbital labels, namely Bi1 and Bi2, in order to dis-
tinguish the intra-atom terms when adding SOC afterwards. The
hopping terms are evaluated by the calc_hop function, which is
also similar to that of section 4.9.1

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 11. Band structures from reference (solid red lines) and fitted (dashed blue lines) primitive cells with (a) equal weights for all bands and (b) lower weights for bands 1-2
and 7-8. The horizontal dashed black lines indicate the Fermi level.
1 def calc_hop (sk , r i j , l a b e l _ i , l a b e l _ j) :
2 dict1 = { " v_sss " : −0.608, " v_sps " : 1.320 , " v_pps " : 1.854 ,

"v_ppp" : −0.600}
3 dict2 = { " v_sss " : −0.384, " v_sps " : 0.433 , " v_pps " : 1.396 ,

"v_ppp" : −0.344}
4 dict3 = { " v_sss " : 0 . 0 , " v_sps " : 0 . 0 , " v_pps " : 0.156 , "

v_ppp" : 0 .0}
5 r_norm = norm(r i j)
6 i f abs (r_norm − 0.30628728) < 1.0 e−5:
7 data = dict1
8 e l i f abs (r_norm − 0.35116131) < 1.0 e−5:
9 data = dict2

10 else :
11 data = dict3
12 lm_i = l a b e l _ i . s p l i t (" : ") [1]
13 lm_j = l a b e l _ j . s p l i t (" : ") [1]
14 return sk . eval (r= r i j , l a b e l _ i =lm_i , l a b e l _ j =lm_j ,
15 v_sss =data [" v_sss "] , v_sps=data [" v_sps "] ,
16 v_pps=data [" v_pps "] , v_ppp=data ["v_ppp"])

The intra-atom SOC is implemented in the add_soc function,
which is defined as

1 def add_soc (c e l l) :
2 # Double the o r b i t a l s and hopping terms
3 c e l l = tb . merge_prim_cell (c e l l , c e l l)
4
5 # Add spin notations to the o r b i t a l s
6 num_orb_half = c e l l . num_orb / / 2
7 num_orb_total = c e l l . num_orb
8 for i in range (num_orb_half) :
9 l a b e l = c e l l . g e t _ o r b i t a l (i) . l a b e l

10 c e l l . s e t _ o r b i t a l (i , l a b e l = f " { l a b e l } : up")
11 for i in range (num_orb_half , num_orb_total) :
12 l a b e l = c e l l . g e t _ o r b i t a l (i) . l a b e l
13 c e l l . s e t _ o r b i t a l (i , l a b e l = f " { l a b e l } :down")
14
15 # Add SOC terms
16 soc_lambda = 1.5
17 soc = tb . SOC ()
18 for i in range (num_orb_total) :
19 l a b e l _ i = c e l l . g e t _ o r b i t a l (i) . l a b e l . s p l i t (" : ")
20 atom_i , lm_i , sp in_ i = l a b e l _ i
21
22 for j in range (i +1 , num_orb_total) :
23 l a b e l _ j = c e l l . g e t _ o r b i t a l (j) . l a b e l . s p l i t (" : ")
24 atom_j , lm_j , sp in_ j = l a b e l _ j
25
26 i f atom_j == atom_i :
27 soc_ intens i ty = soc . eval (l a b e l _ i =lm_i , sp in_ i

= spin_i ,
28 l a b e l _ j =lm_j , sp in_ j

= spin_ j)
29 soc_ intens i ty ∗= soc_lambda
30 i f abs (soc_ intens i ty) >= 1.0 e−15:
31 try :
32 energy = c e l l . get_hopping ((0 , 0 , 0) ,

i , j)
26
33 except exc . PCHopNotFoundError :
34 energy = 0.0
35 energy += soc_ intens i ty
36 c e l l . add_hopping ((0 , 0 , 0) , i , j ,

soc_ intens i ty)
37 return c e l l

In line 3-13, we double the orbitals and hopping terms and add
spin labels to the orbitals. Then we define the spin-orbital coupling
intensity λ and create an SOC instance in 16-17. Afterwards, we
loop over the upper-triangular orbital pairs to add the SOC terms,
while the conjugate terms are handled automatically. In line 26
we check if the two orbitals reside on the same atom, while in
line 27 we call the eval function to calcualte the matrix element
〈L · S〉i j . If the corresponding hopping term already exists, the SOC
term will be added to it. Otherwise, a new hopping term will be
created.

With all the auxiliary functions ready, we now proceed to cal-
culate the Z2 invariant number of bilayer bismuth

1 def main () :
2 # Create c e l l and add soc
3 c e l l = make_cell ()
4 c e l l = add_soc (c e l l)
5
6 # Evaluate Z2
7 ka_array = np . l inspace (−0.5 , 0 . 5 , 200)
8 kb_array = np . l inspace (0 . 0 , 0 . 5 , 200)
9 kc = 0.0

10 z2 = tb . Z2 (c e l l , num_occ=10)
11 kb_array , phases = z2 . calc_phases (ka_array , kb_array , kc)
12
13 # Plot phases
14 v i s = tb . V i s u a l i z e r ()
15 v i s . plot_phases (kb_array , phases / pi)
16
17
18 i f __name__ == " __main__" :
19 main ()

To calculate Z2 we need to sample the ka from − 1
2 Ga to 1

2 Ga ,
and kb from 0 to 1

2 Gb . Then we create a Z2 instance and its
calc_phases function to get the topological phases θ D

m de-
fined in Eq. (92). After that, we plot θ D

m as the function of kb in
Fig. 12(a). It is clear that the crossing number of phases against
the reference line is 1, indicating that bilayer bismuth is a topolog-
ical insulator. We then decrease the SOC intensity λ to 0.15 eV and
re-calculate the phases. The results are shown in Fig. 12(b), where
the crossing number is 0, indicating that bilayer bismuth becomes
a normal insulator under weak SOC, similar to the case of bilayer
Sb [76].

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 12. Topological phases θ D
m of bilayer bismuth under SOC intensity of (a) λ = 1.5 eV and (b) λ = 0.15 eV. The horizontal dashed lines indicate the reference lines with

which the crossing number is determined.

1
2
3

4.10. Parallelization

In this section, we give the general guidelines to set up the
parallelization environment and show how to run calculations in
parallel mode within TBPLaS. It should be noted that the de-
termination of optimal parallelization configuration is a non-trivial
task and strongly case-dependent. So, the guidelines provided here
serve only as a starting point, whereas intensive tests and bench-
marks are required before production runs.

4.10.1. General guidelines
The technical details of parallelism of TBPLaS have been dis-

cussed in section 3.7. Up to now, hybrid MPI+OpenMP paral-
lelization has been implemented for the evaluation of band struc-
ture and DOS from exact-diagonalization, response properties from
Lindhard function, topological invariant Z2 and TBPM calculations.
Both MPI and OpenMP can be switched on/off separately on de-
mand, while pure OpenMP mode is enabled by default.

The number of OpenMP threads is controlled by the OMP_NUM_
THREADS environment variable. If TBPLaS has been compiled
with MKL support, then the MKL_NUM_THREADS environment
variable will also take effect. If none of the environment vari-
ables has been set, OpenMP will make use of all the CPU cores
on the computing node. To switch off OpenMP, set the environ-
ment variables to 1. On the contrary, MPI-based parallelization is
disabled by default, but can be easily enabled with a single option.
The calc_bands and calc_dos functions of PrimitiveCell
and Sample classes, the initialization functions of Lindhard, Z2,
Solver and Analyzer classes all accept an argument named
enable_mpi whose default value is taken to be False. If set to
True, MPI-based parallelization is turned on, provided that the
MPI4PY package has been installed. Hybrid MPI+OpenMP paral-
lelization is achieved by enabling MPI and OpenMP simultaneously.
The number of processes is controlled by the MPI launcher, which
receives arguments from the command line, environment vari-
ables or configuration file. The user is recommended to check the
manual of job queuing system on the computer for properly set-
ting the environment variables and invoking the MPI launcher. For
computers without a queuing system, e.g., laptops, desktops and
standalone workstations, the MPI launcher should be mpirun or
mpiexec, while the number of processes is controlled by the -np
command line option.

The optimal parallelization configuration, i.e., the numbers of
MPI processes and OpenMP threads, depend on the hardware, the
model size and the type of calculation. Generally speaking, ma-
trix diagonalization for a single k-point is poorly parallelized over
threads. But the diagonalization for multiple k-points can be ef-
ficiently parallelized over processes. Therefore, for band structure
and DOS calculations, as well as response properties from Lindhard
27
function and topological invariant from Z2, it is recommended
to run in pure MPI-mode by setting the number of MPI pro-
cesses to the total number of allocated CPU cores and the number
of OpenMP threads to 1. However, MPI-based parallelization uses
more RAM since every process has to keep a copy of the wave
functions and energies. So, if the available RAM imposes a limit,
try to use less processes and more threads. Anyway, the product
of the numbers of processes and threads should be equal to the
number of allocated CPU cores. For example, if you have allocated
16 cores, then you can try 16 processes × 1 thread, 8 processes ×
2 threads, 4 processes × 4 threads, etc. For TBPM calculations, the
number of random initial wave functions should be divisible by
the number of processes. For example, if you are going to consider
16 initial wave functions, then the number of processes should be
1, 2, 4, 8, or 16. The number of threads should be set according to
the number of processes. Again, if the RAM size is a problem, try
to decrease the number of processes and increase the number of
threads.

If MPI-based parallelization is enabled, either in pure MPI or
hybrid MPI+OpenMP mode, special care should be taken to out-
put and plotting part of the job script. These operations should
be performed on the master process only, otherwise the output
will mess up or files get corrupted, since all the processes will try
to modify the same file or plotting the same data. This situation
is avoided by checking the rank of the process before action. The
Lindhard, Z2, Solver, Analyzer and Visualizer classes
all offer an is_master attribute to detect the master process,
whose usage will be demonstrated in the following sections.

Last but not least, we have to mention that all the calculations
in previous sections can be run in either interactive or batch mode.
You can input the script line-by-line in the terminal, or save it to
a file and pass the file to the Python interpreter. However, MPI-
based parallelization supports only the batch mode, since there is
no possibility to input anything in the terminal for multiple pro-
cesses in one time. In the following sections, we assume the script
file to be test_mpi.py. A common head block of the script is
given in 4.10.2 and will not be explicitly repeated in subsequent
sections.

4.10.2. Band structure and DOS
We demonstrate the usage of calc_bands and calc_dos in

parallel mode by calculating the band structure and DOS of a 12 ×
12 ×1 graphene sample. Procedure shown here is also valid for the
primitive cell. To enable MPI-based parallelization, we need to save
the script to a file, for instance, test_mpi.py. The head block of
this file should be

#! / usr / bin / env python

import numpy as np

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

4
5
6
7
8

import tbplas as tb

timer = tb . Timer ()
v i s = tb . V i s u a l i z e r (enable_mpi=True)

where the first line is a magic line declaring that the script should
be interpreted by the Python program. In the following lines we
import the necessary packages. To record and report the time us-
age, we need to create a timer from the Timer class. We also need
a visualizer for plotting the results, where the enable_mpi argu-
ment is set to True during initialization. This head block also is
essential for other examples in subsequent sections.

For convenience, we will not build the primitive cell from
scratch, but import it from the material repository with the
make_graphene_diamond function

1 c e l l = tb . make_graphene_diamond ()

Then we build the sample by

1 sample = tb . Sample (tb . SuperCell (c e l l , dim=(12 , 12 , 1) , pbc =(
True , True , False)))

The evaluation of band structure in parallel mode is similar to the
serial mode, which also involves generating the k-path and call-
ing calc_bands. The only difference is that we need to set the
enable_mpi argument to True when calling calc_bands

1 k_points = np . array ([
2 [0 . 0 , 0 . 0 , 0 . 0] ,
3 [2 . / 3 , 1 . / 3 , 0 . 0] ,
4 [1 . / 2 , 0 . 0 , 0 . 0] ,
5 [0 . 0 , 0 . 0 , 0 . 0] ,
6])
7 k_path , k_idx = tb . gen_kpath (k_points , [40 , 40 , 40])
8 timer . t i c ("band")
9 k_len , bands = sample . calc_bands (k_path , enable_mpi=True)

10 timer . toc ("band")
11 v i s . plot_bands (k_len , bands , k_idx , k_ label)
12 i f v i s . is_master :
13 timer . report_total_t ime ()

The tic and toc functions begin and end the recording of time
usage, which receive a string as the argument for tagging the
record. The visualizer is aware of the parallel environment, so no
special treatment is needed when plotting the results. Finally, the
time usage is reported with the report_total_time function
on the master process only, by checking the is_master attribute
of the visualizer.

We run test_mpi.py by

1 $ export OMP_NUM_THREADS=1
2 $ mpirun −np 1 . / test_mpi . py

With the environment variable OMP_NUM_THREADS set to 1, the
script will run in pure MPI-mode. We invoke 1 MPI process by the
-np option of the MPI launcher (mpirun). The output should look
like

1 band : 11.03 s

So, the evaluation of bands takes 11.03 seconds on 1 process. We
try with more processes
28
1 $ mpirun −np 2 . / test_mpi . py
2 band : 5.71 s
3 $ mpirun −np 4 . / test_mpi . py
4 band : 2.93 s

Obviously, the time usage scales reversely with the number of pro-
cesses. Detailed discussion on the time usage and speedup under
different parallelization configurations will be discussed in sec-
tion 4.10.6.

Evaluation of DOS can be parallelized in the same approach, by
setting the enable_mpi argument to True

1 k_mesh = tb . gen_kmesh ((20 , 20 , 1))
2 timer . t i c (" dos ")
3 energies , dos = sample . calc_dos (k_mesh , enable_mpi=True)
4 timer . toc (" dos ")
5 v i s . plot_dos (energies , dos)
6 i f v i s . is_master :
7 timer . report_total_t ime ()

The script can be run in the same approach as evaluating the band
structure.

4.10.3. Response properties from Lindhard function
To evaluate response properties in parallel mode, simply set the

enable_mpi argument to True when creating the Lindhard cal-
culator

1 l ind = tb . Lindhard (c e l l = c e l l , energy_max =10.0 , energy_step
=2048 , kmesh_size =(600 , 600 , 1) , mu=0.0 , temperature
=300.0 , g_s =2 , back_epsilon =1.0 , dimension =2 , enable_mpi
=True)

Subsequent calls to the functions of Lindhard class do not need
further special treatment. For example, the optical conductivity can
be evaluated in the same approach as in serial mode

1 timer . t i c (" ac_cond ")
2 omegas , ac_cond = l ind . calc_ac_cond (component="xx")
3 timer . toc (" ac_cond ")
4 v i s . plot_xy (omegas , ac_cond)
5 i f v i s . is_master :
6 timer . report_total_t ime ()

4.10.4. Topological invariant from Z2
The evaluation of phases θ D

m can be paralleled in the same ap-
proach as response functions

1 z2 = tb . Z2 (c e l l , num_occ=10 , enable_mpi=True)
2 timer . t i c ("z2 ")
3 kb_array , phases = z2 . calc_phases (ka_array , kb_array , kc)
4 timer . toc ("z2 ")
5 v i s . plot_phases (kb_array , phases / pi)
6 i f v i s . is_master :
7 timer . report_total_t ime ()

where we only need to set enable_mpi argument to True when
creating the Z2 instance.

4.10.5. Properties from TBPM
TBPM calculations in parallel mode are similar to the evalua-

tion of response functions. The user only needs to set the en-
able_mpi argument to True. To make the time usage noticeable,
we build a larger sample first

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
1 sample = tb . Sample (tb . SuperCell (c e l l , dim=(240 , 240 , 1) , pbc
=(True , True , False)))

Then we create the configuration, solver and analyzer, with the
argument enable_mpi=True

1 sample . rescale_ham (9 . 0)
2 config = tb . Config ()
3 config . generic [" nr_random_samples"] = 4
4 config . generic [" nr_time_steps "] = 256
5 solver = tb . Solver (sample , config , enable_mpi=True)
6 analyzer = tb . Analyzer (sample , config , enable_mpi=True)

Correlation function can be obtained and analyzed in the same
way as in serial mode

1 timer . t i c (" corr_dos ")
2 corr_dos = solver . calc_corr_dos ()
3 timer . toc (" corr_dos ")
4 energies , dos = analyzer . calc_dos (corr_dos)
5 v i s . plot_dos (energies , dos)
6 i f v i s . is_master :
7 timer . report_total_t ime ()

4.10.6. Benchmarks
The time usages and speedups of different types of calculations

are summarized in Table 5. The benchmarks have been performed
on an Intel� Xeon� Gold 6248 CPU, with 16 cores allocated at
most. It is obvious that for the evaluation of band structure and
DOS, increasing the number of MPI processes significantly boosts
the calculation. However, the efficiency enhancement of increas-
ing OpenMP threads is much lower. The average speedup drops
significantly when OpenMP is enbaled, indicating a poor scaling
versus the number of CPU cores. This is due to the fact that matrix
diagonalization cannot be efficiently parallelized over threads. On
the contrary, pure MPI-based parallelization has the best efficiency,
with an almost linear scaling (average speedup ≈ 1).

The evaluation of optical conductivity has an additional post-
processing step after diagonalization, which is suitable for both
MPI and OpenMP-based parallelization. So, the speedup and scal-
ing versus the number of threads improve slightly. Z2 topological
invariant shows a similar scaling behavior as band structure and
DOS, i.e., pure MPI parallelization has the best efficiency. For TBPM
calculations, the speedups and efficiencies of multi-threading and
multi-processing are almost equal, since sparse matrix-vector mul-
tiplication can be efficiently parallelized over threads. Although
pure MPI-mode still has the best efficiency, the number of pro-
cesses is limited by the number of random initial wave functions
and available RAM size, as discussed in section 4.10.1. So, pure
OpenMP or hybrid MPI+OpenMP paralelization is recommended
for TBPM calculations, with the optimal numbers of processes and
threads determined from benchmarks.

5. Examples

As mentioned in previous sections, TBPLaS is capable of tack-
ling complex systems with tens of billions of atoms. In this section,
we present an example utilizing TBPLaS to calculate the proper-
ties of TBG with magic angle θ = 1.05◦ . For TBG with the magic
angle, flat bands appear near the Fermi level, which provide a
platform to explore strongly correlated phases and superconduc-
tivity [9,12,87]. The moiré supercell of twisted bilayer graphene
is constructed by identifying a common periodicity between the
29
Table 5
Time usages and speedups of benchmarks for various calculation types with respect
to the numbers of MPI processes (np) and OpenMP threads (nt) per process. The
standard (t0) of each type is defined as the time usage on 1 process × 1 thread,
while the speedup is defined as t0/tnp nt . Numbers in the brackets are the average
speedups to each CPU core defined as t0/(tnp nt × np × nt).

Type t0/s np
nt

1 2 4

Band structure 2.56
1 1.00 (1.00) 1.19 (0.60) 1.45 (0.36)
2 1.92 (0.96) 1.61 (0.40) 2.03 (0.25)
4 4.00 (1.00) 3.05 (0.38) 4.06 (0.25)

DOS 10.62
1 1.00 (1.00) 1.17 (0.58) 1.33 (0.33)
2 1.84 (0.92) 1.74 (0.44) 2.00 (0.25)
4 3.74 (0.93) 3.23 (0.40) 3.88 (0.24)

Optical conductivity 24.45
1 1.00 (1.00) 1.58 (0.79) 2.25 (0.56)
2 1.76 (0.88) 2.61 (0.65) 3.49 (0.44)
4 3.30 (0.83) 4.57 (0.57) 5.93 (0.37)

Z2 invariant 34.37
1 1.00 (1.00) 0.99 (0.50) 1.00 (0.25)
2 1.67 (0.84) 1.72 (0.43) 1.71 (0.21)
4 3.32 (0.83) 3.34 (0.42) 3.38 (0.21)

TBPM 24.71
1 1.00 (1.00) 1.91 (0.96) 3.48 (0.87)
2 1.96 (0.98) 3.80 (0.95) 6.84 (0.86)
4 3.55 (0.89) 6.68 (0.83) 12.80 (0.80)

Fig. 13. Atomic structure of TBG with twist angle θ = 1.05◦ . Highly-symmetric
stacking regions of AA, AB and BA are marked by red, blue and magenta circles,
respectively. Carbon atoms in the top and bottom layers are depicted in blue and
red, respectively.

two layers. We start with a AA stacking bilayer graphene (θ = 0◦),
and choose the rotation origin (O) at an atom site. Then, we ro-
tate one layer relatively to the other one by the angle θ . Fig. 13
shows the atomic structure of the magic angle TBG. The moiré su-
perlattice contains three types of high-symmetry staking patterns,
namely AA, AB and BA stacking. For TBG with twist angles smaller
that 1.2◦ , the system suffers significant lattice reconstruction due
to the interplay between the interlayer van der Waals interaction
and the in-plane strain field [88]. The lattice relaxation (both the
out-of-plane and in-plane) of TBG is performed with the LAMMPS
package [89]. The intralyer and interlayer interactions of TBG are
simulated with the long-range carbon bond-order potential [90]
and Kolmogorov-Crespi potential [91], respectively.

The properties of both rigid (without lattice relaxation) and
relaxed (with lattice relaxation) TBG with magic angle are calcu-
lated with a full tight-binding model based on pz orbitals [83].
The on-site energies εi are set to zero, and the hopping parame-
ters between sites i and j are described by a distance-dependent
function as

ti j = n2 V ppσ (ri j) + (1 − n2)V ppπ (ri j) (109)

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 14. Band structures of (a) rigid and (b) relaxed TBG with θ = 1.05◦ .

Fig. 15. (a) Density of states of relaxed magic angle TBG with (blue line) and without (black line) magnetic field. (b) Local density of states of the highly-symmetric stacking
regions of AA (black line) and AB (red line) in relaxed magic angle TBG.
where ri j = |ri j| is the distance between two sites located at ri

and r j , n is the direction cosine of ri j along the direction that is
perpendicular to the graphene layer. The Slater-Koster parameters
V ppσ and V ppπ are

V ppπ (ri j) = −t0eqπ (1−ri j/d) Fc(ri j) (110)

V ppσ (ri j) = t1eqσ (1−ri j/h) Fc(ri j) (111)

where d = 1.42 Å and h = 3.349 Å are the nearest in-plane and
out-of-plane carbon-carbon distances, respectively. t0 = 2.8 eV and
t1 = 0.44 eV are re-optimized to obtain the magic angle at rotation
angle θ = 1.05◦ [53]. The parameters qσ and qπ satisfy qσ /h =
qπ/d = 2.218 Å−1, and the smooth function is defined as Fc(r) =
(1 + e(r−rc)/lc)−1 with lc = 0.265 Åand rc = 5.0 Å.

Fig. 14 shows the band structure of rigid and relaxed TBG with
twist angle θ = 1.05◦ , which are obtained by exact diagonalization.
In TBG without lattice relaxation (rigid sample), ultraflat bands ap-
pear in the charge neutrality. The bandwidth (energy difference
between the K and � points of the Brillouin zone) of the flat
band is 7 meV, and the bandgap (energy difference between the
flat band and the remote bands at the � point) is zero. In relaxed
sample (with lattice relaxation), the bandwidth and bandgap are 4
meV and 43 meV, respectively. Obviously, the lattice relaxation has
a significant effect on the electronic structure of magic angle TBG.
The black line in Fig. 15(a) is the density of states of relaxed TBG
with magic angle, which is calculated via the TBPM in Eq. (42). In
the calculations, the accuracy of the DOS can be guaranteed by uti-
lizing a large enough model with more than ten million atoms. The
number of time integration steps is 4096, which gives an energy
resolution of 3.7 meV. In DOS a sharp peak appears in the charge
30
neutrality, which corresponds to the flat bands. When a perpen-
dicular magnetic field is applied, Landau levels appear in the DOS.
The splitting of the peak around the energy E = 68 meV is the lift-
ing of the twofold degeneracy due to the Dirac point splitting in
twisted bilayer graphene [92].

The LDOS is an important quantity to describe the local prop-
erties of a system, which can be utilized to simulate the dI/dV
spectra obtained with the STM in experiments. TBPLaS provides
three approaches to evaluate the LDOS, i.e. exact-diagonalization,
TBPM and the recursion method. Both TBPM and the recursion
method are capable of dealing with very large models. The LDOS of
different stacking regions in magic angle TBG obtained with TBPM
are shown in Fig. 15. It is clear that the LDOS of the AA and AB
regions have obvious different features. Only the LDOS of the AA
region has a sharp peak at energy E = 0, which means that the
states of the flat bands are mainly localized in the AA region. The
LDOS of the AB region has some peaks located at high energies.
Such strong LDOS modulation shows spatially localized electronic
states with specific energies, which can be justified by calculat-
ing the LDOS mapping (quasieigenstates) via Eq. (51). The LDOS
mappings at different energies are shown in Fig. 16. At energy
E = 0, states are mainly localized in the AA regions. At the en-
ergy E = −0.17 eV, states are mainly localized in the AB and BA
regions. Such periodic variation of the local electronic structure is
a consequence of different interlayer couplings in TBG. The LDOS
mapping is equivalent to the dI/dV mapping observed experimen-
tally with STM.

In TBPLaS, we can also investigate the optical conductivity via
the Kubo formula or the Lindhard function. The Lindhard function
is more suitable for small models since it requires a diagonaliza-
tion process. On the contrary, by combining the Kubo formula and

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 16. Local density of states mappings of magic angle TBG (with lattice relaxation) at energies E = −0.17 eV, −0.10 eV, −0.04 eV and 0 eV.
Fig. 17. Optical conductivity of relaxed TBG with twist angle θ = 1.05◦ and mono-
layer graphene. The temperature is T = 300 K and the chemical potential is μ = 0
eV.

TBPM, we can tackle large models that contain tens of millions of
orbitals. In Fig. 17, the optical conductivity of the magic angle TBG
and monolayer graphene is calculated with TBPM. Note that we
omit the Drude weight part in the calculation. For TBG the peak
with energy around E = 0.1 eV is due to the transition between
the flat bands and their adjacent bands. A dip-peak feature around
E = 0.1 eV is due to the electron-hole asymmetry [93].

In addition to the optical conductivity, many other response
properties can also be obtained with TBPLaS. Fig. 18 shows the
electron energy loss function of the magic angle TBG. Firstly, we
calculate the dynamical polarization by using the Kubo formula in
Eq. (76). Then the dielectric function and energy loss function are
obtained within the random phase approximation with Eqs. (82)
and (83), respectively. The plasmon mode can be detected by many
experimental techniques, e.g. the scattering-type scanning near-
field optical microscope (s-SNOM) and electron energy loss spec-
troscopy. In experiments, when a plasmon mode with frequency
ωp exists with low damping, the energy loss spectra possess a
sharp peak at ω = ωp . For the magic angle TBG, interband plas-
mon modes close to 100 meV appear at both temperature T = 300
K and 1 K, which are attributed to the interband transitions from
the flat bands to bands located at energy of 100 meV. These modes
originate from the collective oscillations of electrons in the AA re-
gion [94]. The ωp = 100 meV plasmon mode disperses within the
particle-hole continuum in Figs. 18(c) and 18(d) with fast damping
into electron-hole pairs. It becomes clear with a fine and flat shape
with momentum larger than 0.2 nm−1. Single-particle transitions
are almost forbidden in flat bands below 40 meV, corresponding
to the value of band gap between the flat bands and the excited
bands at � point, from which the continuum spectrum rises to
non-zero zone in Fig. 18 (c). When the temperature declines to
the critical temperature 1 K at which the superconductivity can be
detected in the magic-angle system [9], a thin plasmon mode with
energy 9 meV emerges and stretches to large q in Fig. 18(b), which
is contributed to the collective excitations among flat bands, i.e.
flat-band plasmon. Meanwhile, underneath the collective flat-band
plasmon mode, the particle-hole transitions arise with occupying
31
a tiny energy region ranging from 0 meV to 8 meV in Fig. 18(d).
As a result, this plasmon mode extends above the edge of this tiny
energy zone and is free from the Laudau damping.

6. Summary

In summary, we have introduced the TBPLaS package, an
open-source software suite for accurate electronic structure, op-
tical properties, plasmon and transport calculations in real-space
based on the tight-binding theory. It has an intuitive Python API
for convenient simulation set-up, and Cython/Fortran cores for ef-
ficient performance. The main advantage of TBPLaS is that the
numerical calculations are based on the TBPM without diagonal-
ization. Both the memory and CPU costs have a linear scaling with
the system size. So we can tackle models contain tens of mil-
lions of atoms or even billions of atoms if necessary. In addition to
TBPM, exact diagonalization-based methods are also implemented.
Moreover, crystalline defects, vacancies, adsorbates, charge impu-
rity centers, strains and external perturbations can be easily and
intuitively set up in TPLaS, which allows us to simulate large and
complex models. With a wide range of pre-defined functions, the
numerical calculations can be performed only with a few lines of
code.

In the first release, TBPLaS already features a large variety of
functionalities, e.g. the band structure, DOS, LDOS, wave functions,
plasmon, optical conductivity, electric conductivity, Hall conductiv-
ity, quasi-eigenstate, real-space electron density and wave packet
propagation. Moreover, thanks to its extensible and modular na-
ture, it is easy to implemented other algorithms involving the
tight-binding Hamiltonian. Further developments and extensions
of TBPLaS, for instance, the real-space self-consistent Hartree and
Hubbard methods for large systems [95,96] and support for GPU
acceleration, will be implemented in the future.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We thank Edo van Veen, Guus Slotman, Kaixiang Huang, and
Yalei Zhang for their contributions to the earlier version of the
code. This work is supported by the National Natural Science Foun-
dation of China (Grant No. 12174291) and the National Key R&D
Program of China (Grant No. 2018YFA0305800). Numerical calcula-
tions presented in this paper have been performed in the Super-
computing Center of Wuhan University.

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632

Fig. 18. Plot of the loss function −Im [1/ε(q,ω)] as function of frequency ω and wave vector q for relaxed TBG with twist angel θ = 1.05◦ at temperatures (a) T = 300 K
and (b) T = 1 K [53]. Plot of the particle-hole continuum −Im �(q, ω) with respect to the frequency ω and wave vector q at (c) T = 300 K and (d) T = 1 K. The chemical
potential is μ = 0 and the background dielectric constant κ = 3.03 of hBN substrate.
Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2022 .108632.

References

[1] J.C. Slater, G.F. Koster, Phys. Rev. 94 (1954) 1498–1524.
[2] C. Goringe, D. Bowler, E. Hernandez, Rep. Prog. Phys. 60 (12) (1997) 1447.
[3] S. Yuan, H. De Raedt, M.I. Katsnelson, Phys. Rev. B 82 (2010) 115448.
[4] A. Hams, H. De Raedt, Phys. Rev. E 62 (2000) 4365–4377.
[5] S. Yuan, R. Roldán, M.I. Katsnelson, Phys. Rev. B 84 (13) (2011) 035439.
[6] R. Logemann, K. Reijnders, T. Tudorovskiy, M. Katsnelson, S. Yuan, Phys. Rev. B

91 (4) (2015) 045420.
[7] G.J. Slotman, M.M. van Wijk, P.-L. Zhao, A. Fasolino, M.I. Katsnelson, S. Yuan,

Phys. Rev. Lett. 115 (2015) 186801.
[8] R. Haydock, V. Heine, M. Kelly, J. Phys. C, Solid State Phys. 5 (20) (1972) 2845.
[9] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-

Herrero, Nature 556 (7699) (2018) 43–50.
[10] J.M. Park, Y. Cao, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Nature

590 (7845) (2021) 249–255.
[11] H. Zhou, L. Holleis, Y. Saito, L. Cohen, W. Huynh, C.L. Patterson, F. Yang, T.

Taniguchi, K. Watanabe, A.F. Young, Science 375 (6582) (2022) 774–778.
[12] Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-

Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, et al., Nature 556 (7699)
(2018) 80–84.

[13] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T. Taniguchi, B.A.
Bernevig, A. Yazdani, Nature 572 (7767) (2019) 101–105.

[14] X. Lu, P. Stepanov, W. Yang, M. Xie, M.A. Aamir, I. Das, C. Urgell, K. Watanabe,
T. Taniguchi, G. Zhang, et al., Nature 574 (7780) (2019) 653–657.

[15] Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J. Mao, E.Y. Andrei, Nature
573 (7772) (2019) 91–95.

[16] A.L. Sharpe, E.J. Fox, A.W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. Kast-
ner, D. Goldhaber-Gordon, Science 365 (6453) (2019) 605–608.

[17] M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi,
L. Balents, A. Young, Science 367 (6480) (2020) 900–903.

[18] Z. Zheng, Q. Ma, Z. Bi, S. de La Barrera, M.-H. Liu, N. Mao, Y. Zhang, N. Kiper, K.
Watanabe, T. Taniguchi, et al., Nature 588 (7836) (2020) 71–76.

[19] A.K. Geim, I.V. Grigorieva, Nature 499 (7459) (2013) 419–425.
[20] S. Carr, S. Fang, E. Kaxiras, Nat. Rev. Mater. 5 (10) (2020) 748–763.
[21] B. Andrews, A. Soluyanov, Phys. Rev. B 101 (2020) 235312.
[22] J.H. García, L. Covaci, T.G. Rappoport, Phys. Rev. Lett. 114 (2015) 116602.
[23] C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, New J. Phys. 16 (6) (2014)

063065.
[24] Pythtb website, http://physics .rutgers .edu /pythtb/. (Accessed 25 July 2019).
32
[25] D. Moldovan, M. And̄elković, F. Peeters, pybinding v0.9.5: a Python package for
tight- binding calculations, This work was supported by the Flemish Science
Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government,
https://doi .org /10 .5281 /zenodo .4010216, Aug. 2020.

[26] A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78 (2006)
275–306.

[27] K. Björnson, SoftwareX 9 (2019) 205–210.
[28] S.M. João, M. And̄elković, L. Covaci, T.G. Rappoport, J.M. Lopes, A. Ferreira, R.

Soc. Open Sci. 7 (2) (2020) 191809.
[29] A. Ferreira, E.R. Mucciolo, Phys. Rev. Lett. 115 (10) (2015) 106601.
[30] P.H. Jacobse, Comput. Phys. Commun. 244 (2019) 392–408.
[31] X. Kuang, Z. Zhan, S. Yuan, Phys. Rev. B 105 (2022) 245415.
[32] H. Shi, Z. Zhan, Z. Qi, K. Huang, E. van Veen, J.Á. Silva-Guillén, R. Zhang, P. Li,

K. Xie, H. Ji, et al., Nat. Commun. 11 (371) (2020) 371.
[33] Y.-W. Liu, Z. Zhan, Z. Wu, C. Yan, S. Yuan, L. He, Phys. Rev. Lett. 129 (2022)

056803.
[34] S. Yuan, A. Rudenko, M. Katsnelson, Phys. Rev. B 91 (11) (2015) 115436.
[35] S. Yuan, E. van Veen, M.I. Katsnelson, R. Roldán, Phys. Rev. B 93 (24) (2016)

245433.
[36] S. Yuan, M. Rösner, A. Schulz, T.O. Wehling, M.I. Katsnelson, Phys. Rev. Lett.

114 (4) (2015) 047403.
[37] S. Yuan, H. De Raedt, M.I. Katsnelson, Phys. Rev. B 82 (23) (2010) 235409.
[38] S. Yuan, R. Roldán, M.I. Katsnelson, Phys. Rev. B 84 (12) (2011) 125455.
[39] S. Yuan, R. Roldán, H. De Raedt, M.I. Katsnelson, Phys. Rev. B 84 (19) (2011)

195418.
[40] S. Yuan, T. Wehling, A. Lichtenstein, M. Katsnelson, Phys. Rev. Lett. 109 (15)

(2012) 156601.
[41] E. Van Veen, A. Nemilentsau, A. Kumar, R. Roldán, M.I. Katsnelson, T. Low, S.

Yuan, Phys. Rev. Appl. 12 (1) (2019) 014011.
[42] F. Jin, R. Roldán, M.I. Katsnelson, S. Yuan, Phys. Rev. B 92 (2015) 115440.
[43] E. van Veen, S. Yuan, M.I. Katsnelson, M. Polini, A. Tomadin, Phys. Rev. B 93

(2016) 115428.
[44] E. van Veen, A. Tomadin, M. Polini, M.I. Katsnelson, S. Yuan, Phys. Rev. B 96

(2017) 235438.
[45] G. Yu, Z. Wu, Z. Zhan, M.I. Katsnelson, S. Yuan, npj Comput. Mater. 5 (1) (2019)

1–10.
[46] G. Yu, Y. Wang, M.I. Katsnelson, H.-Q. Lin, S. Yuan, Phys. Rev. B 105 (12) (2022)

125403.
[47] Z. Zhan, Y. Zhang, P. Lv, H. Zhong, G. Yu, F. Guinea, J.Á. Silva-Guillén, S. Yuan,

Phys. Rev. B 102 (24) (2020) 241106.
[48] J. Yu, E. van Veen, M.I. Katsnelson, S. Yuan, Phys. Rev. B 97 (24) (2018) 245410.
[49] J. Yu, M.I. Katsnelson, S. Yuan, Phys. Rev. B 98 (11) (2018) 115117.
[50] G. Slotman, A. Rudenko, E. van Veen, M.I. Katsnelson, R. Roldán, S. Yuan, Phys.

Rev. B 98 (15) (2018) 155411.
[51] H. Zhong, J. Yu, X. Kuang, K. Huang, S. Yuan, Phys. Rev. B 101 (12) (2020)

125430.

https://doi.org/10.1016/j.cpc.2022.108632
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib9FC8A571080730AA3ECC974417E4B720s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib73F215F36C390EAE96AEF8FC06D25DB3s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibFA807D107957F4BB6D309543C4C2E9C2s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib93260DA5793CF87EF2BE5E4C16649EA6s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibB653FB770A062BCE9B6B907EB951C803s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib2D4084AF942F6DE8257FDC70104EF18As1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib2D4084AF942F6DE8257FDC70104EF18As1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibF3B464B9AF949FB04A975249100A885Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibF3B464B9AF949FB04A975249100A885Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib922CD502B3C7E0206227FD160FAF9F34s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib9AEBF42BBBA71D88367960B6FCAE446Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib9AEBF42BBBA71D88367960B6FCAE446Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibAE35D76D5816802189B6D6AA93574868s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibAE35D76D5816802189B6D6AA93574868s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib905E485B4E394AE86436A0E1163C7800s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib905E485B4E394AE86436A0E1163C7800s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibFAB8B3939F5BB3D1104BE060CC275714s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibFAB8B3939F5BB3D1104BE060CC275714s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibFAB8B3939F5BB3D1104BE060CC275714s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib3FD3F1AE7415D37C5E95A06AD65FD315s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib3FD3F1AE7415D37C5E95A06AD65FD315s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib08C17E962C4D8FC3DA55A038B2347309s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib08C17E962C4D8FC3DA55A038B2347309s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibAAFA091423B31C2C8094014D12F3CAC0s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibAAFA091423B31C2C8094014D12F3CAC0s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib5378A86601B02468FAC09AF59072A59Es1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib5378A86601B02468FAC09AF59072A59Es1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibC35D5CFF3D23548A9CCAE0F4436DF7ACs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibC35D5CFF3D23548A9CCAE0F4436DF7ACs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib54FF1D026DF0EA512EB09DDC4B9B388Fs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib54FF1D026DF0EA512EB09DDC4B9B388Fs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibADCDC1368EEBE5D6C600468B10D75BB1s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib88345051927661DF30A670E4B19BE6DCs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib4E028F9DBFE0C7EFD13120A0E13C2C49s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib50A3B462D7063390CEF8BF25D37D355Ds1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibC1460E4BD30F9784E7A9FC10253457A4s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibC1460E4BD30F9784E7A9FC10253457A4s1
http://physics.rutgers.edu/pythtb/
https://doi.org/10.5281/zenodo.4010216
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib00417FC37D7A2BD7C85B6D7E7BB2E720s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib00417FC37D7A2BD7C85B6D7E7BB2E720s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibCDAF5A1198583104B0FEA5C5903085E7s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibE1D695A7703D65EDE95FA5D0B1B75487s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibE1D695A7703D65EDE95FA5D0B1B75487s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib308D5B7E8707A4527B96A5C1997BC4B2s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibCACE345FCB510F0B51648244461B6C42s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib191B13A580BCBBF0B581C631270A2070s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibE2274934466E180DD0D624919332ED23s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibE2274934466E180DD0D624919332ED23s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib8A359CF8088AF33799467315C70B6DACs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib8A359CF8088AF33799467315C70B6DACs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibA6AFC413F5897819EAC2DC9B40BDD4A8s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib5B60319F5A5B15F214426BD0B8E01C4Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib5B60319F5A5B15F214426BD0B8E01C4Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib58004371DCEBF9BC1E0441E8E45C7248s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib58004371DCEBF9BC1E0441E8E45C7248s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib593D6573CDB58BFF164F313423AACAC6s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib5A3DC05C4E1CBC98895F5673B6079CACs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib1C0B242ECCECECAE3F5C55E827C73C6Cs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib1C0B242ECCECECAE3F5C55E827C73C6Cs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib3FAA177ECEB8149FCF0C43DE9FA8C749s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib3FAA177ECEB8149FCF0C43DE9FA8C749s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibD53F3C317B24DB7763A954E4A9DFE2BCs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibD53F3C317B24DB7763A954E4A9DFE2BCs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEC3268E8DC1D755E482952C9E3E65A64s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib840403D5CF754073CDB6975966A0918As1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib840403D5CF754073CDB6975966A0918As1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib1774410C3519413E5D8CF9C26FE6BA08s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib1774410C3519413E5D8CF9C26FE6BA08s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib51C3963F080F71D7AFEB661C8081FD54s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib51C3963F080F71D7AFEB661C8081FD54s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib1827384D5B934E38CCBB59756EE3EACBs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib1827384D5B934E38CCBB59756EE3EACBs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib79BD17C7CC335BFD459F068EFBDDBBCFs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib79BD17C7CC335BFD459F068EFBDDBBCFs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibDF7F6B52CDAD9498E0882E7979BC8FD8s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib5874F9C52733C4EA74A076E05D48B6C1s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibE567AA225700CE42BA13FEB6C0263756s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibE567AA225700CE42BA13FEB6C0263756s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib285BDF8CBFB551A491EB8CF2C8B3DE83s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib285BDF8CBFB551A491EB8CF2C8B3DE83s1

Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
[52] Z. Wang, X. Kuang, G. Yu, P. Zhao, H. Zhong, S. Yuan, Phys. Rev. B 104 (2021)
155110.

[53] X. Kuang, Z. Zhan, S. Yuan, Phys. Rev. B 103 (11) (2021) 115431.
[54] Z. Wu, Z. Zhan, S. Yuan, Sci. China, Phys. Mech. Astron. 64 (6) (2021) 1–7.
[55] Z. Wu, X. Kuang, Z. Zhan, S. Yuan, Phys. Rev. B 104 (20) (2021) 205104.
[56] Y. Zhang, Z. Zhan, F. Guinea, J.Á. Silva-Guillén, S. Yuan, Phys. Rev. B 102 (23)

(2020) 235418.
[57] M. Long, P.A. Pantaleón, Z. Zhan, F. Guinea, J.Á. Silva-Guillén, S. Yuan, npj Com-

put. Mater. 8 (1) (2022) 1–10.
[58] G. Yu, Z. Wu, Z. Zhan, M.I. Katsnelson, S. Yuan, Phys. Rev. B 102 (11) (2020)

115123.
[59] G. Yu, M.I. Katsnelson, S. Yuan, Phys. Rev. B 102 (4) (2020) 045113.
[60] Y. Wang, G. Yu, M. Rösner, M.I. Katsnelson, H.-Q. Lin, S. Yuan, Phys. Rev. X

12 (2) (2022) 021055.
[61] T. Westerhout, E. van Veen, M.I. Katsnelson, S. Yuan, Phys. Rev. B 97 (20) (2018)

205434.
[62] A.A. Iliasov, M.I. Katsnelson, S. Yuan, Phys. Rev. B 99 (7) (2019) 075402.
[63] A.A. Iliasov, M.I. Katsnelson, S. Yuan, Phys. Rev. B 101 (4) (2020) 045413.
[64] X. Yang, W. Zhou, P. Zhao, S. Yuan, Phys. Rev. B 102 (24) (2020) 245425.
[65] E. Cappelluti, R. Roldán, J. Silva-Guillén, P. Ordejón, F. Guinea, Phys. Rev. B

88 (7) (2013) 075409.
[66] S.V. Vonsovsky, M.I. Katsnelson, Quantum Solid-State Physics, Springer-Verlag,

Berlin, Heidelberg, New York, 1989.
[67] F. Jin, D. Willsch, M. Willsch, H. Lagemann, K. Michielsen, H. De Raedt, J. Phys.

Soc. Jpn. 90 (1) (2021) 012001.
[68] W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49 (2) (2010) 299–312.
[69] W.H. Press, H. William, S.A. Teukolsky, A. Saul, W.T. Vetterling, B.P. Flannery,

Numerical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge
University Press, 2007.

[70] S. Bose, Philos. Mag. B 49 (6) (1984) 631–645.
[71] D. Kosloff, R. Kosloff, J. Comput. Phys. 52 (1) (1983) 35–53.
[72] R. Kubo, J. Phys. Soc. Jpn. 12 (6) (1957) 570–586.
[73] A. Bastin, C. Lewiner, O. Betbeder-Matibet, P. Nozieres, J. Phys. Chem. Solids

32 (8) (1971) 1811–1824.
[74] A. Lherbier, S.M.-M. Dubois, X. Declerck, S. Roche, Y.-M. Niquet, J.-C. Charlier,

Phys. Rev. Lett. 106 (2011) 046803.
[75] G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid, Cambridge Uni-

versity Press, 2005.

[76] R. Yu, X.L. Qi, A. Bernevig, Z. Fang, X. Dai, Phys. Rev. B 84 (7) (2011) 075119.
[77] L. Fu, C.L. Kane, Phys. Rev. B 74 (19) (2006) 195312.
[78] A.N. Rudenko, M.I. Katsnelson, R. Roldán, Phys. Rev. B 95 (2017) 081407.
[79] A.N. Rudenko, S. Yuan, M.I. Katsnelson, Phys. Rev. B 92 (2015) 085419.
[80] S. Fang, R.K. Defo, S.N. Shirodkar, S. Lieu, G.A. Tritsaris, E. Kaxiras, Phys. Rev. B

92 (2015) 205108.
[81] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini,

D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D.
Marchand, A. Marrazzo, Y. Mokrousov, J.I. Mustafa, Y. Nohara, Y. Nomura, L.
Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S.S. Tsirkin, M. Wierzbowska,
N. Marzari, D. Vanderbilt, I. Souza, A.A. Mostofi, J.R. Yates, J. Phys. Condens.
Matter 32 (16) (2020) 165902.

[82] J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 99
(2007) 256802.

[83] G. Trambly de Laissardière, D. Mayou, L. Magaud, Phys. Rev. B 86 (2012)
125413.

[84] S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82 (2010) 245412.
[85] S. Murakami, Phys. Rev. Lett. 97 (2006) 236805.
[86] Y. Liu, R.E. Allen, Phys. Rev. B 52 (1995) 1566–1577.
[87] R. Bistritzer, A.H. MacDonald, Proc. Natl. Acad. Sci. USA 108 (30) (2011)

12233–12237.
[88] F. Gargiulo, O.V. Yazyev, Materials 5 (1) (2017) 015019.
[89] S. Plimpton, J. Comput. Phys. 117 (1) (1995) 1–19.
[90] J.H. Los, L.M. Ghiringhelli, E.J. Meijer, A. Fasolino, Phys. Rev. B 72 (21) (2005)

214102.
[91] A.N. Kolmogorov, V.H. Crespi, Phys. Rev. B 71 (23) (2005) 235415.
[92] D.S. Lee, C. Riedl, T. Beringer, A.C. Neto, K. von Klitzing, U. Starke, J.H. Smet,

Phys. Rev. Lett. 107 (21) (2011) 216602.
[93] P. Moon, M. Koshino, Phys. Rev. B 87 (20) (2013) 205404.
[94] N.C. Hesp, I. Torre, D. Rodan-Legrain, P. Novelli, Y. Cao, S. Carr, S. Fang, P.

Stepanov, D. Barcons-Ruiz, H. Herzig Sheinfux, et al., Nat. Phys. 17 (10) (2021)
1162–1168.

[95] F. Guinea, N.R. Walet, Proc. Natl. Acad. Sci. USA 115 (52) (2018) 13174–13179.
[96] Z.A. Goodwin, V. Vitale, X. Liang, A.A. Mostofi, J. Lischner, Electron. Struct. 2 (3)

(2020) 034001.
33

http://refhub.elsevier.com/S0010-4655(22)00351-4/bib105D728018BAA2C6176135261416ECD6s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib105D728018BAA2C6176135261416ECD6s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib5DF40101714319F3D358EF1768A40175s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib03BD3ABCBCBA348E7DDFB54AF75B2CBFs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib4E3BC68686CAD2322431F478463FAF92s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib47883CE8E0A35F39CD4E002BBAB40B2Fs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib47883CE8E0A35F39CD4E002BBAB40B2Fs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib780E5B2D451E5257DA766E5EFF4DAF11s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib780E5B2D451E5257DA766E5EFF4DAF11s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib346032A6726E975ED2F457813E47053As1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib346032A6726E975ED2F457813E47053As1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib7E2C3ABBB5405B90846F7B0A84D59E73s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib614711C0531B3C329D773E86EE349137s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib614711C0531B3C329D773E86EE349137s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibAAFA410B3375935FF7AB49BDF0F941FCs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibAAFA410B3375935FF7AB49BDF0F941FCs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib26E9ED425793175A08CF8BA0BB5DC11Fs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib9D49498BBC46499BE01F5A326F3B8A68s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib925B1EEB9A4994B688AE61225D36A0D6s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib3F99F5DB6B479C79C076B7885C89F7D4s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib3F99F5DB6B479C79C076B7885C89F7D4s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib38E6D428C2260C9908E9A4D950C2B53Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib38E6D428C2260C9908E9A4D950C2B53Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib2CB49FF82896CAF4F36C1FB2B9D52670s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib2CB49FF82896CAF4F36C1FB2B9D52670s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibC1E35EF61ACC406D3BED5449FC4D0ACAs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib624526D779F7D6EF1912B6386B9B138Fs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib624526D779F7D6EF1912B6386B9B138Fs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib624526D779F7D6EF1912B6386B9B138Fs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib26ECD0FDE9DA7D35B391410D6E223684s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib9733E06217E552B1D760CEF668BCB077s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib188CB4DBF71EA3246D43E8ED5242A49Ds1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEE412A4AC4CF773D943DA5645DA51557s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEE412A4AC4CF773D943DA5645DA51557s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib41706C13091D625E1B8224F305E3D6DEs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib41706C13091D625E1B8224F305E3D6DEs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib938E120E847285AB56074B9585BA69E5s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib938E120E847285AB56074B9585BA69E5s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib10208E1E33802DC9C4245C2279DDAB44s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibB1D8C8599469D757351C25C51F0441FBs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibF9DA0853D711A44818432C11AA02966Es1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib23AC58C01893B96CE6F470E1C815E17Cs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib0BF08CECD747D00C2492099E229335A4s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib0BF08CECD747D00C2492099E229335A4s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEA39CEB89004CF63FEA48FE3F41911EDs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEA39CEB89004CF63FEA48FE3F41911EDs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEA39CEB89004CF63FEA48FE3F41911EDs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEA39CEB89004CF63FEA48FE3F41911EDs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEA39CEB89004CF63FEA48FE3F41911EDs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibEA39CEB89004CF63FEA48FE3F41911EDs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib0821DEC8FE70657FE2571F67563126A5s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib0821DEC8FE70657FE2571F67563126A5s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibDB6D05A1473EB6911A383630105EAD69s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibDB6D05A1473EB6911A383630105EAD69s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibCF12BF5E714BC9BBD22B78AAE817A71As1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib2CDCB3B5B7F638C707C7735EF576AFC2s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib0EAC5C784D97B81BCAFAF552380BE3B2s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib3C0D2831D56D0397914AD7C4A5DA4169s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib3C0D2831D56D0397914AD7C4A5DA4169s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib8625E80CCD656E037984AA371FFE3448s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib46C3EA4B17243F67E0D4D1DF0DDA7869s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib59687AB510D149481E08FF85399EFC4Es1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib59687AB510D149481E08FF85399EFC4Es1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib63D39CB858062C74D468E68515182A6Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibF0B1A885084E37E45ACC9B79F0BC8E3Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibF0B1A885084E37E45ACC9B79F0BC8E3Bs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib9E934C884FB17F2C6C837626C7AB6B8Cs1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibB3F8C4D89A21698BC1B2F0DD83F63582s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibB3F8C4D89A21698BC1B2F0DD83F63582s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibB3F8C4D89A21698BC1B2F0DD83F63582s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bib2715A1F84F3053F903E99363AB7F1251s1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibD5524719BDAB5A2E01C06D317150AA1Es1
http://refhub.elsevier.com/S0010-4655(22)00351-4/bibD5524719BDAB5A2E01C06D317150AA1Es1

	TBPLaS: A tight-binding package for large-scale simulation
	1 Introduction
	2 Methodology
	2.1 Tight-binding models
	2.2 Tight-binding propagation method
	2.3 Band structure
	2.4 Density of states
	2.5 Local density of states
	2.6 Quasieigenstates
	2.7 Optical conductivity
	2.8 DC conductivity
	2.9 Diffusion coefficient
	2.10 Dielectric function
	2.11 Z2 topological invariant

	3 Implementation
	3.1 Layout
	3.2 PrimitiveCell
	3.3 Lindhard
	3.4 Z2
	3.5 SuperCell, SCInterHopping and sample
	3.6 Config, solver, analyzer and visualizer
	3.7 Parallelization
	3.7.1 Band structure and DOS
	3.7.2 Response properties from lindhard function
	3.7.3 Z2
	3.7.4 TBPM

	4 Usage
	4.1 Installation
	4.1.1 Prerequisites
	4.1.2 Installation

	4.2 Overview of the workflow
	4.3 Building the primitive cell
	4.4 Properties of primitive cell
	4.5 Building the sample
	4.6 Properties of sample
	4.7 Advanced modeling
	4.7.1 Hetero-structure
	4.7.2 Quasicrystal
	4.7.3 Fractal

	4.8 Strain and external fields
	4.8.1 Functions for strain
	4.8.2 Functions for external fields
	4.8.3 Initial wave functions
	4.8.4 Propagation of wave function

	4.9 Miscellaneous
	4.9.1 Wannier90 interface, Slater-Koster formula and parameter fitting
	4.9.2 Z2 topological invariant and spin-orbital coupling

	4.10 Parallelization
	4.10.1 General guidelines
	4.10.2 Band structure and DOS
	4.10.3 Response properties from Lindhard function
	4.10.4 Topological invariant from Z2
	4.10.5 Properties from TBPM
	4.10.6 Benchmarks

	5 Examples
	6 Summary
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

