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TBPLaS is an open-source software package for the accurate simulation of physical systems with 
arbitrary geometry and dimensionality utilizing the tight-binding (TB) theory. It has an intuitive 
object-oriented Python application interface (API) and Cython/Fortran extensions for the performance-
critical parts, ensuring both flexibility and efficiency. Under the hood, numerical calculations are 
mainly performed by both exact diagonalization and the tight-binding propagation method (TBPM) 
without diagonalization. Especially, the TBPM is based on the numerical solution of the time-dependent 
Schrödinger equation, achieving linear scaling with system size in both memory and CPU costs. 
Consequently, TBPLaS provides a numerically cheap approach to calculate the electronic, optical, 
plasmon and transport properties of large tight-binding models with billions of atomic orbitals. Current 
capabilities of TBPLaS include the calculations of band structure, density of states, local density 
of states, quasi-eigenstates, optical conductivity, electrical conductivity, Hall conductivity, polarization 
function, dielectric function, plasmon dispersion, carrier mobility and velocity, localization length and 
free path, Z2 topological invariant, wave-packet propagation, etc. All the properties can be obtained with 
only a few lines of code. Other algorithms involving tight-binding Hamiltonians can be implemented 
easily due to the extensible and modular nature of the code. In this paper, we discuss the theoretical 
framework, implementation details and common workflow of TBPLaS, and give a few demonstrations of 
its applications.
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ensuring both flexibility and efficiency. Moreover, TBPLaS implements hybrid MPI+OpenMP parallelism, 
which can exploit the modern hardware of high-performance computers.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Computational modeling is an essential tool for both funda-
mental and applied researches in the condensed matter commu-
nity. Among the widely used modeling tools, the tight-binding 
(TB) method is popular in both quantum chemistry and solid state 
physics [1,2], which can provide a fast and accurate understand-
ing of the electronic structures of crystals with small unit cells, or 
large complex systems with/without translational symmetry. The 
TB method investigates electronic structure via both exact diago-
nalization and non-diagonalization techniques. With exact diago-
nalization, the TB method can tackle crystalline structures contain-
ing up to tens of thousands of orbitals in the unit cell. With non-
diagonalization techniques, for instance the tight-binding propaga-
tion method (TBPM) [3–7] and the recursion technique [8], large 
systems with up to billions of orbitals can be easily handled.

Recently, a plethora of exotic properties, such as superconduc-
tivity [9–11], correlated insulator [12–14], charge-ordered states 
[15], ferromagnetism [16], quantum anomalous Hall effect [17]
and unconventional ferroelectricity [18], are constantly observed in 
moiré superlattices, which are formed by stacking single layers of 
two-dimensional (2D) materials on top of each other with a small 
misalignment [19]. To facilitate the exploration of the physical 
phenomena in the moiré superlattices, theoretical calculations are 
utilized to provide accurate and robust predictions. In the moiré 
patterns, the loss of angstrom-scale periodicity poses an obviously 
computing challenge. For instance, in twisted bilayer graphene 
(TBG) with rotation angle of 1.05◦–the so-called magic angle, the 
number of atoms in a supercell is 11908, which is too large for 
state-of-the-art first-principles methods. On the contrary, the TB 
method has been proved to be a simple and effective approach to 
investigate the electronic structure of moiré pattern [20,21]. More 
importantly, with the real-space TB method, the substrate effects, 
strains, disorders, defects, electric and magnetic fields and many 
other external perturbations can be naturally implemented via the 
modifications of the tight-binding parameters [3,22]. Therefore, the 
TB method provides a more powerful framework to tackle realistic 
materials fabricated in the laboratory.

There are some open source software packages implementing 
the TB method and covering different aspects of the modeling of 
quantum transport and electronic structure. For example, Kwant
is a Python package for numerical calculations of quantum trans-
port of nanodevices from the transmission probabilities, which is 
based on the Landauer-Buttiker formalism and the wave function-
matching technique [23]. PythTB is a Python package for the 
construction and solution of simple TB models [24]. It includes 
the tools for calculating quantities that are related to Berry phases 
or curvatures. Pybinding is a package with a Python interface 
and a C++ core, which is based on both the exact diagonalization 
and the kernel polynomial method (KPM) [25]. Technically, KPM 
utilizes convolutions with a kernel to attenuate the Gibbs oscil-
lations caused by discontinuities or singularities, and is a general 
tool to study large matrix problems [26]. In Pybinding, the KPM 
is adopted to model complex systems with disorder, strains or ex-
ternal fields. The software supports numerical calculations of band 
structures, density of states (DOS), local density of states (LDOS) 
and conductivity. TBTK is a C++ software development kit for nu-
merical calculations of quantum mechanical properties [27]. Partic-
ularly, it is also based on the KPM and designed for accurate real-
space simulations of electronic structures and quantum transport 
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properties of large-scale molecular and condensed systems with 
tens of billions of atomic orbitals [28]. KITE is an open-source 
software with a Python interface and a C++ core, which is based 
on the spectral expansions methods with an exact Chebyshev poly-
nomial expansion of Green’s function [29]. Several functionalities 
are demonstrated, ranging from calculations of DOS, LDOS, spec-
tral function, electrical (DC) conductivity, optical (AC) conductiv-
ity and wave-packet propagation. MathemaTB is a Mathematica 
package for TB calculations, which provides 62 functionalities to 
carry out matrix manipulation, data analysis and visualizations on 
molecules, wave functions, Hamiltonians, coefficient matrices, and 
energy spectra [30].

Previous implementations of the TB method have so far been 
limited to simple models or have limited functionalities. Therefore, 
we have developed the TBPM method, which is based on the nu-
merical solution of time-dependent Schrödinger equation (TDSE) 
without any diagonalization [4]. The core concepts of TBPM are 
the correlation functions, which are obtained directly from the 
time-dependent wave function and contain part of the features of 
the Hamiltonian. With enough small time step and long propa-
gation time, the whole characteristics of the Hamiltonian can be 
accurately captured. The correlation functions are then analyzed to 
yield the desired physical quantities. Compared to exact diagonal-
ization whose costs of memory and CPU time scale as O(N2) and 
O(N3), TBPM has linear scaling in both resources, allowing us to 
deal with models containing tens of billions of orbitals. Moreover, 
the calculations of electronic, optical, plasmon and transport prop-
erties can be easily implemented in TBPM without the requirement 
of any symmetries. Other calculations involving the TB Hamilto-
nian can also be implemented easily.

We implement TBPM in the open source software package 
named Tight-Binding Package for Large-scale Simulation, or TB-
PLaS in short. In TBPLaS, TB models can be constructed from 
scratch using the application interface (API), or imported from 
Wannier90 output files directly. Physical quantities can be obtained 
via four methods: (i) exact diagonalization to calculate the band 
structure, DOS, eigenfunction, polarization function [31] and AC 
conductivity; (ii) recursive Green’s function to get LDOS [32,33]; 
(iii) KPM to obtain DC and Hall conductivity [34,35]; (iv) TBPM to 
calculate DOS, LDOS, carrier density, AC conductivity, absorption 
spectrum, DC conductivity, time-dependent diffusion coefficient, 
carrier velocity and mobility, elastic mean free path, Anderson lo-
calization length, polarization function, response function, dielec-
tric function, energy loss function, plasmon dispersion, plasmon 
lifetime, damping rate, quasi-eigenstate, real-space charge density, 
and wave packet propagation [3,36–40,6,35,41]. At the core of TB-
PLaS, we use TBPM to achieve nearly linear scaling performance. 
Furthermore, crystalline defects, vacancies, adsorbates, charged im-
purities, strains and external electric and/or magnetic fields can be 
easily set up with TBPLaS’s API. These features make it possible 
for the simulation of systems with low concentrations of disorder 
[3,42] or large unit cells, such as twisted bilayer and multilayer 
systems [7]. What is more, the computations are performed in real 
space, so it also allows us to consider systems that lack translation 
symmetry, such as fractals [43,44] and quasicrystals [45,46].

The numerical calculations in TBPLaS are separated into two 
stages. In the first stage, the TB model can be constructed in 
Python using the API in an intuitive object-oriented manner. Many 
of the concepts of the API are natural in solid state physics, such 
as lattices, orbitals, hopping terms, vacancies, external electric and 



Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
magnetic fields, etc. Moreover, the TB model can also be im-
ported from Wannier90 output files directly. In the second stage, 
the Hamiltonian matrix is set up from the TB model and passed 
to backends written in Cython and Fortran, where the quanti-
ties are calculated by using either exact diagonalization, recursion 
method, KPM or post-processing of the correlation functions ob-
tained from the TBPM. The advantage of the two-state paradigm 
is that it provides both excellent flexibility and high efficiency. 
Up to now, TBPLaS has been utilized to investigate the elec-
tronic structures of a plenty of 2D materials, such as graphene 
[7,32], transition metal dichalcogenides [31,47], tin disulfide [48], 
arsenene [49], antimonene [50], black phosphorus [34,42], tin dis-
elenide [51], MoSi2N4 [52]. Moreover, TBPLaS is a powerful tool 
to tackle complex systems, for example, graphene with vacancies 
[36,37,39], twisted multilayer graphene [32,53–55], twisted multi-
layer transition metal dichalcogenides [56,47,31], graphene-boron 
nitride heterostructures [7,57], dodecagonal bilayer graphene qua-
sicrystals [45,58,59,46,60] and fractals [43,44,61–64].

The paper is organized as follows. In Sec. 2 we discuss the 
concepts and theories of TBPM and other methods. Then the im-
plementation details of TBPLaS are described in Sec. 3, followed 
by the usages in Sec. 4. In Sec. 5, we give some examples of cal-
culations that can be done with TBPLaS. Finally, in Sec. 6 we give 
the conclusions, outlooks and possible future developments.

2. Methodology

In this section, we discuss briefly the underlying concepts and 
theories of TBPLaS with which to calculate the electronic, optical, 
plasmon and transport properties. Note that if not explicitly given, 
we will take h̄ = 1 and omit it from the formula.

2.1. Tight-binding models

The Hamiltonian of any non-periodic system containing n or-
bitals follows

Ĥ =
∑

i

εic
†
i ci −

∑
i �= j

ti jc
†
i c j (1)

which can be rewritten in a compact matrix form

Ĥ = c† Hc (2)

with

c† =
[

c†
1, c†

2, · · · , c†
n

]
(3)

c =
[

c1, c2, · · · , cn

]T
(4)

Hij = εiδi j − ti j(1 − δi j) (5)

Here εi denotes the on-site energy of orbital i, ti j denotes the hop-
ping integral between orbitals i and j, c† and c are the creation 
and annihilation operators, respectively. The on-site energy εi is 
defined as

εi =
∫

φ∗
i (r)ĥ0(r)φi (r)dr (6)

and the hopping integral ti j is defined as

ti j = −
∫

φ∗
i (r)ĥ0(r)φ j (r)dr (7)

with ĥ0 being the single-particle Hamiltonian

ĥ0(r) = − h̄2

∇2 + V (r) (8)

2m

3

and φi being the reference single particle state. In actual calcu-
lations, the reference states are typically chosen to be localized 
states centered at τi , e.g., atomic wave functions or maximally 
localized generalized Wannier functions (MLWF). The on-site en-
ergies and hopping integrals can be determined by either direct 
evaluation following Eqs. (6)-(8), the Slater-Koster formula [1,65], 
numerical fitting to experimental or ab initio data. Once the param-
eters are determined, the eigenvalues and eigenstates can be ob-
tained by diagonalizing the Hamiltonian matrix defined in Eq. (5).

For periodic systems, the reference state gets an additional cell 
index R

φiR(r) = φi(r − R) (9)

We define the Bloch basis functions and creation (annihilation) op-
erators by Fourier transform

χik(r) = 1√
N

∑
R

eik·(R+τi)φiR(r) (10)

c†
i (k) = 1√

N

∑
R

eik·(R+τi)c†
i (R) (11)

ci (k) = 1√
N

∑
R

e−ik·(R+τi)ci (R) (12)

where N is the number of unit cells. Then the Hamiltonian in 
Bloch basis can be written as

Ĥ = N
∑

k

[∑
i∈uc

εic
†
i (k)ci (k)

−
∑

R�=0∨i �= j

ti j(R)eik·(R+τ j−τi)c†
i (k)c j(k)

⎤
⎦

(13)

Here the third summation is performed for all cell indices R and 
orbital pairs (i, j), except the diagonal terms with R = 0 and i = j. 
The Hamiltonian can also be rewritten in matrix form as

Ĥ = N
∑

k

c†(k)H(k)c(k) (14)

with

c†(k) =
[

c†
1(k), c†

2(k), · · · , c†
n(k)

]
(15)

c(k) =
[

c1(k), c2(k), · · · , cn(k)
]T

(16)

Hij(k) = εiδi j −
∑

R�=0∨i �= j

ti j(R)eik·(R+τ j−τi) (17)

Here ti j(R) is the hopping integral between φi0 and φ jR .
There is another convention to construct the Bloch basis func-

tions and creation (annihilation) operators, which excludes the or-
bital position τi in the Fourier transform

χik(r) = 1√
N

∑
R

eik·RφiR(r) (18)

c†
i (k) = 1√

N

∑
R

eik·Rc†
i (R) (19)

ci (k) = 1√
N

∑
R

e−ik·Rci (R) (20)

Then Eq. (17) becomes

Hij(k) = εiδi j −
∑

ti j(R)eik·R (21)

R�=0∨i �= j
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Both conventions have been implemented in TBPLaS, while the 
first convention is enabled by default.

External electric and magnetic fields can be introduced into the 
tight-binding model by modifying the on-site energies and hop-
ping integrals. For example, homogeneous electric fields towards 
−z direction can be described by

εi → εi + E · (zi − z0) (22)

where E is the intensity of electric field, zi is the position of or-
bital i along z-axis, and z0 is the position of zero-potential plane. 
Magnetic fields, on the other hand, can be described by the vector 
potential A and Peierls substitution [66]

ti j → ti j · exp

⎛
⎜⎝i

e

h̄c

j∫
i

A · dl

⎞
⎟⎠ = ti j · exp

⎛
⎜⎝i

2π

�0

j∫
i

A · dl

⎞
⎟⎠ (23)

where 
∫ j

i A · dl is the line integral of the vector potential from 
orbital i to orbital j, and �0 = ch/e is the flux quantum. For homo-
geneous magnetic field towards −z, we follow the Landau gauge 
A = (B y, 0, 0). Note that for numerical stability, the size of the sys-
tem should be larger than the magnetic length.

Finally, we mention that we have omitted the spin notations 
in above formulation for clarity. However, spin-related terms such 
as spin-orbital coupling (SOC), can be easily incorporated into the 
Hamiltonian and treated in the same approach in TBPM and TB-
PLaS.

2.2. Tight-binding propagation method

Exact diagonalization of the Hamiltonian matrix in Eq. (5), (17)
and (21) yields the eigenvalues and eigenstates of the model, even-
tually all the physical quantities. However, the memory and CPU 
time costs of exact diagonalization scale as O(N2) and O(N3) with 
the model size N , making it infeasible for large models. The TBPM, 
on the contrary, tackles the eigenvalue problem with a totally dif-
ferent philosophy. The memory and CPU time costs of TBPM scale 
linearly with the model size, so models with tens of billions of or-
bitals can be easily handled.

In TBPM, a set of randomly generated states are prepared as 
the initial wave functions. Then the wave functions are propagated 
following

|ψ(t)〉 = e−iĤt |ψ(0)〉 (24)

and correlation functions are evaluated at each time step. The cor-
relation functions contain a fraction of the features of the Hamilto-
nian. With enough small time step and long propagation time, the 
whole characteristics of the Hamiltonian will be accurately cap-
tured. Finally, the correlation functions are averaged and analyzed 
to yield the physical quantities. Taking the correlation function of 
DOS for example, which is defined as

CDOS(t) = 〈ψ(0)|ψ(t)〉 (25)

It can be proved that the inner product is related to the eigenval-
ues via

〈ψ(0)|ψ(t)〉 =
∑
i jk

Ukj U
∗
i jai a∗

k e−iε j t (26)

with ε j being the j-th eigenvalue, Ukj being the k-th component 
of j-th eigenstate, respectively. The initial wave function ψ(0) is a 
random superposition of all basis states

|ψ(0)〉 =
∑

ai |φi〉 (27)

i

4

where ai are random complex numbers with 
∑

i |ai |2 = 1, and φi
are the basis states. It is clear that the correlation function can be 
viewed as a linear combination of oscillations with frequencies of 
ε j . With inverse Fourier transform, the eigenvalues and DOS can 
be determined.

To propagate the wave function, one needs to numerically de-
compose the time evolution operator. As the TB Hamiltonian ma-
trix is sparse, it is convenient to use the Chebyshev polynomial 
method for the decomposition, which is proved to be uncondition-
ally stable for solving TDSE [67]. Suppose x ∈ [−1, 1], then

e−izx = J0(z) + 2
∞∑

m=1

(−i)m Jm(z)Tm(x) (28)

where Jm(z) is the Bessel function of integer order m, Tm(x) =
cos [m arccos x] is the Chebyshev polynomial of the first kind. Tm(x)
follows a recurrence relation as

Tm+1(x) + Tm−1(x) = 2xTm(x) (29)

To utilize the Chebyshev polynomial method, we need to rescale 
the Hamiltonian as H̃ = Ĥ/||Ĥ|| such that H̃ has eigenvalues in 
the range [−1, 1]. Then, the time evolution of the states can be 
represented as

|ψ(t)〉 =
[

J0(t̃)T̂0(H̃) + 2
∞∑

m=1

Jm(t̃)T̂m(H̃)

]
|ψ(0)〉 (30)

where t̃ = t · ||Ĥ||, Jm(t̃) is the Bessel function of integer order m, 
T̂ (H̃) is the modified Chebyshev polynomials, which can be calcu-
lated up to machine precision with the recurrence relation

T̂m+1(H̃)|ψ〉 = −2iH̃ T̂m(H̃)|ψ〉 + T̂m−1(H̃)|ψ〉 (31)

with

T̂0(H̃)|ψ〉 = |ψ〉, T̂1(H̃)|ψ〉 = −iH̃|ψ〉 (32)

The other operators appear in TBPM can also be decomposed 
numerically using the Chebyshev polynomial method. A function 
f (x) whose values are in the range [-1, 1] can be expressed as

f (x) = 1

2
c0T0(x) +

∞∑
k=1

ck Tk(x) (33)

where Tk(x) = cos (k arccos x) and the coefficients ck are

ck = 2

π

1∫
−1

dx√
1 − x2

f (x)Tk(x) (34)

Assume x = cos θ and substitute it into Eq. (34), we have

ck = 2

π

π∫
0

f (cos θ) cos kθdθ

= Re

[
2

π

N−1∑
n=0

f

(
cos

2πn

N

)
exp

(
i
2πn

N
k

)] (35)

which can be calculated by fast Fourier transform. For the Fermi-
Dirac operator as frequently used in TBPM, it is more convenient 
to express it as f = ze−βH/(1 + ze−βH ) [3], where z = eβμ is the 
fugacity, β = 1/kB T , kB is the Boltzmann constant, T is the tem-
perature and μ is the chemical potential. We define β̃ = β · ||H ||, 
then
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f (H̃) = ze−β̃ H̃

1 + ze−β̃ H̃
=

∞∑
k=0

ck Tk(H̃) (36)

where ck are the Chebyshev expansion coefficients of the function 
f (x) = ze−β̃x/(1 + ze−β̃x) . The Chebyshev polynomials Tk(H̃) have 
the following recursion relation

Tk+1(H̃) − 2H̃ Tk(H̃) + Tk−1(H̃) = 0 (37)

with

T0(H̃) = 1, T1(H̃) = H̃ (38)

For more details we refer to Ref. [3].

2.3. Band structure

The band structure of a periodic system can be determined by 
diagonalizing the Hamiltonian matrix in Eq. (17) or (21) for a list 
of k-points. Both conventions yield the same band structure. Typ-
ically, the k-points are sampled on a k-path connecting highly 
symmetric k-points in the first Brillouin zone. A recommended set 
of highly symmetric k-points can be found in Ref. [68].

2.4. Density of states

In TBPLaS, we have two approaches to calculate DOS. The first 
approach is based on exact diagonalization, which consists of get-
ting the eigenvalues of the Hamiltonian matrix on a dense k-grid, 
and a summation over the eigenvalues to collect the contributions

D(E) =
∑

ik

δ(E − εik) (39)

where εik is the i-th eigenvalue at point k. In actual calculations 
the delta function is approximated with a Gaussian function

G(E − εik) = 1√
2πσ

exp

[
− (E − εik)2

2σ 2

]
(40)

or a Lorentzian function

L(E − εik) = 1

πσ

σ 2

(E − εik)2 + σ 2
(41)

Here σ is the broadening parameter.
The other approach is the TBPM method, which evaluates the 

correlation function according to Eq. (25). The DOS is then cal-
culated by inverse Fourier transform of the averaged correlation 
function

D(E) = 1

S

S∑
p=1

1

2π

∞∫
−∞

eiEt CDOS(t)dt (42)

Here S is the number of random samples for the average. The 
inverse Fourier transform in Eq. (42) can be performed by fast 
Fourier transform, or integrated numerically if higher energy res-
olution is desired. We use a window function to alleviate the ef-
fects of the finite time used in the numerical time integration of 
TDSE. Currently, three types of window functions have been im-
plemented, namely Hanning window [69], Gaussian window and 
exponential window.

The statistical error in the calculation of DOS follows 1/
√

S N , 
where N is the model size. Thus the accuracy can be improved by 
either using large models or averaging over many initial states. For 
a large enough model (> 108 orbitals), one random initial state 
is generally enough to ensure convergence. The same conclusion 
5

holds for other quantities obtained from TBPM. The energy reso-
lution of DOS is determined by the number of propagation steps. 
Distinct eigenvalues that differ more than the resolution appear as 
separate peaks in DOS. If the eigenvalue is isolated from the rest 
of the spectrum, then the number of propagation steps determines 
the width of the peak. More details about the methodology of cal-
culating DOS can be found in Ref. [3,4]. We emphasize that the 
1/

√
S N dependence of the statistical error is a general conclusion 

which is also valid for other quantities calculated with TBPM, and 
the above discussions for improving accuracy and energy resolu-
tion work for these quantities as well.

2.5. Local density of states

TBPLaS provides three approaches to calculate the LDOS. The 
first approach is based on exact diagonalization, which is similar 
to the evaluation of DOS

di(E) =
∑

jk

δ(E − ε jk)|Uijk|2 (43)

where Uijk is the i-th component of j-th eigenstate at point k. 
The second approach is the TBPM method, which also has much 
in common with DOS. The only difference is that the initial wave 
function |ψ(0)〉 in Eq. (25) is redefined. For instance, to calculate 
the LDOS on a particular orbital i, we set only the component ai in 
Eq. (27) as nonzero. Then the correlation function can be evaluated 
and analyzed in the same approach as DOS, following Eq. (25) and 
(42). It can be proved that in this case the correlation function 
becomes

〈ψ(0)|ψ(t)〉 =
∑

j

|Uijai|2e−iε jt (44)

which contains the contributions from the i-th components of all 
the eigenstates.

The third approach evaluates LDOS utilizing the recursion 
method in real space based on Lanczos algorithm [8,70]. The LDOS 
on a particular orbital i is

di(E) = − lim
ε→0+

1

π
Im〈φi|G(E + iε)|φi〉 (45)

Then, we use the recursion method to obtain the diagonal matrix 
elements of the Green’s function G(E)

G0(E) = 〈l0|G(E)|l0〉
= 1/(E − a0 − b2

1/(E − a1 − b2
2/(E − a2 − b2

3/ . . . ))) (46)

where l0 is a unit vector with non-zero component at orbital i
only. The elements an and bn are determined with the following 
recursion relation

ai = 〈li |H| li〉 (47)

|mi+1〉 = (H − ai)|li〉 − bi |li−1〉 (48)

bi+1 = √〈mi+1|mi+1〉 (49)

|li+1〉 = 1

bi+1
|mi+1〉 (50)

with |l−1〉 = |0〉.

2.6. Quasieigenstates

For a general Hamiltonian in Eq. (1) and for samples con-
taining millions of orbitals, it is computationally expensive to get 
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the eigenstates by exact diagonalization. An approximation of the 
eigenstates at a certain energy E can be calculated without di-
agonalization following the method in Ref. [3], which has been 
introduced for the calculation of electric transport properties of 
large complex models. With an inverse Fourier transform of the 
time-dependent wave function |ψ(t)〉, one gets the following ex-
pression

|
(E)〉 = 1

2π

∞∫
−∞

eiEt |ψ(t)〉dt

= 1

2π

∑
i

ai

∞∫
−∞

ei(E−Ei)t |φi〉dt

=
∑

i

aiδ(E − Ei)|φi〉 (51)

which can be normalized as

|
̃(E)〉 = 1√∑
i |ai|2δ(E − Ei)

∑
i

aiδ(E − Ei)|φi〉 (52)

Here, Ei is the i-th eigenvalue of the scaled Hamiltonian H̃ . Note 
that |
̃(E)〉 is an eigenstate if it is a single (non-degenerate) 
state [71], or a superposition of the degenerate eigenstates with 
the energy E . That is why it is called the quasieigenstate. Al-
though |
̃(E)〉 is written in the energy basis, the time-dependent 
wave function |ψ(t)〉 can be expanded in any orthogonal and com-
plete basis sets. Two methods can be adopted to improve the 
accuracy of quasieigenstates. The first one is to perform inverse 
Fourier transform on the states from both positive and negative 
time, which keeps the original form of the integral in Eq. (51). 
The other method is to multiply the wave function |ψ(t)〉 by a 
window function, which improves the approximation to the inte-
grals. Theoretically, the spatial distribution of the quasieigenstates 
reveals directly the electronic structure of the eigenstates with cer-
tain eigenvalue. It has been proved that the LDOS mapping from 
the quasieigenstates is highly consistent with the experimentally 
scanning tunneling microscopy (STM) dI/dV mapping [32].

2.7. Optical conductivity

In TBPLaS, we use both TBPM and exact diagonalization-based 
methods to compute the optical conductivity [72]. In the TBPM 
method, we combine the Kubo formula with the random state 
technology. For a non-interacting electronic system, the real part 
of the optical conductivity in direction α due to a field in direction 
β is (omitting the Drude contribution at ω = 0) [3]

Re σαβ(h̄ω) = lim
E→0+

e−βh̄ω − 1

h̄ωA

∞∫
0

e−Et sin(ωt)

× 2Im〈ψ | f (H) Jα(t)[1 − f (H)] Jβ |ψ〉dt

(53)

Here, A is the area or volume of the model in two or three dimen-
sional cases, respectively. For a generic tight-binding Hamiltonian, 
the current density operator is defined as

J = − ie

h̄

∑
i, j

ti j(r̂ j − r̂i)c†
i c j (54)

where r̂ is the position operator. The Fermi-Dirac distribution de-
fined as

f (H) = 1
β(H−μ)

(55)

e + 1
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In actual calculations, the accuracy of the optical conductivity is 
ensured by performing the Eq. (53) over a random superposition 
of all the basis states in the real space, similar to the calculation 
of the DOS. Moreover, the Fermi distribution operator f (H̃) and 
1 − f (H̃) can be obtained by the standard Chebyshev polynomial 
decomposition in section 2.4. We introduce two wave functions

|ψ1(t)〉α = e−iH̃t[1 − f (H̃)] Jα |ψ(0)〉 (56)

|ψ2(t)〉 = e−iH̃t f (H̃)|ψ(0)〉 (57)

Then the real part of σαβ(ω) is

Re σαβ(h̄ω) = lim
E→0+

e−βh̄ω − 1

h̄ωA

∞∫
0

e−Et sin(ωt)

× 2Im〈ψ2(t)| Jα |ψ1(t)〉βdt

(58)

while the imaginary part can be extracted with the Kramers-
Kronig relation

Im σαβ(h̄ω) = − 1

π
P

∞∫
−∞

Re σαβ(h̄ω′)
ω′ − ω

dω′ (59)

In the diagonalization-based method, the optical conductivity is 
evaluated as

σαβ(h̄ω)

= ie2h̄

Nk�c

∑
k

∑
m,n

fmk − fnk

εmk − εnk

〈ψnk|vα|ψmk〉〈ψmk|vβ |ψnk〉
εmk − εnk − (h̄ω + iη+)

(60)

where Nk is the number of k-points in the first Brillouin zone, 
and �c is the volume of unit cell, respectively. ψmk and ψnk are 
the eigenstates of Hamiltonian defined in Eq. (17), with εmk and 
εnk being the corresponding eigenvalues, and fmk and fnk being 
the occupation numbers. vα and vβ are components of velocity 
operator defined as v = − J/e, and η+ is the positive infestimal.

2.8. DC conductivity

The DC conductivity can be calculated by taking the limit ω →
0 in the Kubo formula [72]. Based on the DOS and quasieigenstates 
obtained in Eqs. (42) and (51), we can calculate the diagonal term 
of DC conductivity σαα in direction α at temperature T = 0 with

σαα(E) = lim
τ→∞σαα(E, τ )

= lim
τ→∞

D(E)

A

τ∫
0

Re
[

e−iEt CDC(t)
]

dt (61)

where the DC correlation function is defined as

CDC(t) = 〈ψ(0)| JαeiH̃t Jα |
̃(E)〉
|〈ψ(0)|
̃(E)〉| (62)

and A is the area of volume of the unit cell depending on sys-
tem dimension. It is important to note that |ψ(0)〉 must be the 
same random initial state used in the calculation of |
̃(E)〉. The 
semiclassic DC conductivity σ sc(E) without considering the effect 
of Anderson localization is defined as

σ sc(E) = σmax
αα (E, τ ) (63)

The measured field-effect carrier mobility is related to the semi-
classic DC conductivity as
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u(E) = σ sc(E)

ene(E)
(64)

where the carrier density ne(E) is obtained from the integral of 
density of states via ne(E) = ∫ E

0 D(ε)dε.
In TBPLaS, there is another efficient approach to evaluate DC 

conductivity, which is based on a real-space implementation of the 
Kubo formalism, where both the diagonal and off-diagonal terms of 
conductivity are treated on the same footing [22]. The DC conduc-
tivity tensor for non-interacting electronic system is given by the 
Kubo-Bastin formula [22,73]

σαβ(μ, T ) = ih̄e2

A

∞∫
−∞

dE f (E)Tr
〈
vαδ(E − H)vβ

dG+(E)

dE

− vα
G−(E)

dE
vβδ(E − H)

〉
(65)

where vα is the α component of the velocity operator, G±(E) =
1/(E − H ± iη) are the Green’s functions. Firstly, we rescale the 
Hamiltonian and energy, and denote them as H̃ and Ẽ , respec-
tively. Then the delta δ and the Green’s function G±(E) can be 
expanded in terms of Chebyshev polynomials using the kernel 
polynomial method (KPM)

δ(Ẽ − H̃) = 2

π
√

1 − Ẽ2

M∑
m=0

gm
Tm(Ẽ)

δm,0 + 1
Tm(H̃) (66)

G±(Ẽ, H̃) = ∓ 2i√
1 − Ẽ2

M∑
m=0

gm
e±im arccos (Ẽ)

δm,0 + 1
Tm(H̃) (67)

Truncation of the above expansions gives rise to Gibbs oscillations, 
which can be smoothed with a Jackson kernel gm [26]. Then the 
conductivity tensor can be written as [22]

σαβ(μ, T ) = 4e2h̄

π A

4

�E2

1∫
−1

dẼ
f (Ẽ)

(1 − Ẽ2)2

∑
m,n

�nm(Ẽ)μ
αβ
nm(H̃) (68)

where �E = E+
max − E−

min is the energy range of the spectrum, Ẽ

is the rescaled energy within [-1,1], �nm(Ẽ) and μαβ
nm(H̃) are func-

tions of the energy and the Hamiltonian, respectively

�nm(Ẽ) = Tm(Ẽ)(Ẽ − in
√

1 − Ẽ2)ein arccos (Ẽ)

+ Tn(Ẽ)(Ẽ + im
√

1 − Ẽ2)e−im arccos (Ẽ) (69)

μ
αβ
nm(H̃) = gm gn

(1 + δn0)(1 + δm0)
Tr[vαTm(H̃)vβ Tn(H̃)] (70)

2.9. Diffusion coefficient

In the Kubo formalism, the DC conductivity in Eq. (61) can also 
be written as a function of diffusion coefficient

σαα(E) = e2

A
D(E) lim

τ→∞Ddi f f (E, τ ) (71)

Therefore, the time-dependent diffusion coefficient is obtained as

Ddi f f (E, τ ) = 1

e2

τ∫
0

Re
[

e−iEt CDC(t)
]

dt (72)

Once we know the Ddi f f (E, τ ), we can extract the carrier velocity 
from a short time behavior of the diffusivity as
7

v(E) =
√
Ddi f f (E, τ )/τ (73)

and the elastic mean free path �(E) from the maximum of the 
diffusion coefficient as

�(E) = Dmax
di f f (E)

2v(E)
(74)

This also allows us to estimate the Anderson localization lengths 
[40,74] by

ξ(E) = �(E)exp

[
πh

2e2
σ sc(E)

]
(75)

2.10. Dielectric function

In TBPM, the dynamic polarization can be obtained by combin-
ing Kubo formula [72] and random state technology as

�K (q, h̄ω) = − 2

A

∞∫
0

eiωt CDP(t)dt (76)

where the correlation function is defined as

CDP(t) = Im〈ψ2(t)|ρ(q)|ψ̃1(q, t)〉 (77)

Here, the density operator is

ρ(q) =
∑

i

eiq·ri c†
i ci (78)

and the introduced two functions are

|ψ̃1(q, t)〉β =e−iH̃t[1 − f (H̃)]ρ(−q)|ψ(0)〉 (79)

|ψ2(t)〉 =e−iH̃t f (H̃)|ψ(0)〉 (80)

The dynamical polarization function can also be obtained via 
diagonalization from the Lindhard function as [75]

�L(q, h̄ω) = − gs

(2π)p

∫
BZ

dpk
∑
m,n

fmk − fnk+q

εmk − εnk+q + h̄ω + iη+

× |〈ψnk+q|eiq·r|ψmk〉|2 (81)

where ψmk and εmk are the eigenstates and eigenvalues of the TB 
Hamiltonian defined in Eq. (21), respectively. gs is the spin de-
generacy, and p is the system dimension. With the polarization 
function obtained from the Kubo formula in Eq. (76) or the Lind-
hard function in Eq. (81), the dielectric function can be written 
within the random phase approximation (RPA) as

ε(q,ω) = 1 − V (q)�(q,ω) (82)

in which V (q) is the Fourier transform of Coulomb interaction. 
For two-dimensional systems V (q) = 2πe2/κ |q|, while for three-
dimensional systems V (q) = 4πe2/κ |q|2, with κ being the back-
ground dielectric constant. The energy loss function can be ob-
tained as

S(q,ω) = −Im
1

ε(q,ω)
(83)

The energy loss function can be measured by means of electron 
energy loss spectroscopy (EELS). A plasmon mode with frequency 
ωp and wave vector q is well defined when a peak exists in the 
S(q, ω) or ε(q, ω) = 0 at ωp . The damping rate γ of the mode is

γ = Im �(q,ωp)

∂ Re �(q,ω)| (84)

∂ω ω=ωp
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and the dimensionless damping rate is

γ̃ = 1

ωp

Im �(q,ωp)

∂
∂ω Re �(q,ω)|ω=ωp

(85)

The life time is defined as

τ = 1

γ̃ ωp
(86)

All the plasmon related quantities can be calculated numerically 
from the functions obtained with TBPM.

2.11. Z2 topological invariant

The Z2 invariant characterizes whether a system is topologi-
cally trivial or nontrivial. All the two-dimensional band insulators 
with time-reversal invariance can be divided into two classes, i.e., 
the normal insulators with even Z2 numbers and topological in-
sulators with odd Z2 numbers. In TBPLaS, we adopt the method 
proposed by Yu et al. to calculate the Z2 numbers of a band insu-
lator [76]. The main idea of the method is to calculate the evolu-
tion of the Wannier function center directly during a time-reversal 
pumping process, which is a Z2 analog to the charge polarization. 
The Z2 topological numbers can be determined as the remainder 
of the number of phase switching during a complete period of the 
time-reversal pumping process divided by 2, which is equivalent 
to the Z2 number proposed by Fu and Kane [77]. This method 
requires no gauge-fixing condition, thereby greatly simplifying the 
calculation. It can be easily applied to general systems that lack 
spacial inversion symmetry.

The eigenstate of a TB Hamiltonian defined by Eq. (17) can be 
expressed as

|ψnk〉 =
∑
α

gnα(k)|χαk〉 (87)

where the Bloch basis functions |χαk〉 are defined in Eq. (10). Let 
us take the 2D system as an example. In this case, each wave vec-
tor kb defines a one-dimensional subsystem. The Z2 topological 
invariant can be determined by looking at the evolution of Wan-
nier function centers for such effective 1D system as the function 
of kb in the subspace of occupied states. The eigenvalue of the po-
sition operator X̂ can be viewed as the center of the maximally 
localized Wannier functions, which is defined as

X̂ P (kb) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 F0,1 0 0 0 0

0 0 F1,2 0 0 0

0 0 0 F2,3 0 0

0 0 0 0 . . . 0

0 0 0 0 0 F Na−2,Na−1

F Na−1,0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(88)

where

F nm
i,i+1(kb) =

∑
α

g∗
nα(ka,i,kb)gmα(ka,i+1,kb) (89)

are the 2N × 2N matrices spanned in 2N-occupied states and ka,i

are the discrete k points sampled on the range of 
[− 1

2 Ga,
1
2 Ga

]
, 

with Ga being the reciprocal lattice vector along the a axis. We 
define a product of Fi,i+1 as

D(kb) = F0,1 F1,2 F2,3 . . . F Na−2,Na−1 F Na−1,0 (90)

D(kb) is a 2N × 2N matrix that has 2N eigenvalues

λD
m(kb) = |λD

m|eiθ D
m (kb), m = 1,2, . . . ,2N (91)
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where θ D
m (kb) is the phase of the eigenvalues

θ D
m (kb) = Im

[
logλD

m(kb)
]

(92)

The evolution of the Wannier function center for the effective 1D 
system with kb can be obtained by looking at the phase factor 
θ D

m . Equation (90) can be viewed as the discrete expression of 
the Wilson loop for the U(2N) non-Abelian Berry connection. It is 
invariant under the U (2N) gauge transformation, and can be calcu-
lated directly from the wave functions obtained by first-principles 
method without choosing any gauge-fixing condition. In the Z2 in-
variant number calculations, for a particular system, we calculate 
the evolution of the θ D

m defined in Eq. (92) as the function of kb
from 0 to 1

2 Gb , with Gb being the reciprocal lattice vector along 
the b axis. Then, we draw an arbitrary reference line parallel to 
the kb axis, and compute the Z2 number by counting how many 
times the evolution lines of the Wannier centers cross the refer-
ence line. Note that the choice of reference line is arbitrary, but 
the crossing numbers between the reference and evolution lines 
and the even/odd properties will not change. The topological prop-
erties of three dimensional bulk materials can be determined by 
checking two planes in k space, with kc = 0 and kc = 1

2 Gc , where 
Gc is the reciprocal lattice vector along the c axis. For more details 
we refer to Ref. [76]

3. Implementation

In this section, we introduce the implementation of TBPLaS, 
including the layout, main components, and parallelism. TB-
PLaS has been designed with emphasis on efficiency and user-
friendliness. The performance-critical parts are written in Fortran 
and Cython. Sparse matrices are utilized to reduce the memory 
cost, which can be linked to vendor-provided math libraries like 
Intel� MKL. A hybrid MPI+OpenMP parallelism has been imple-
mented to exploit the modern architecture of high-performance 
computers. On top of the Fortran/Cython core, there is the API 
written in Python following an intuitive object-oriented manner, 
ensuring excellent user-friendliness and flexibility. Tight-binding 
models with arbitrary shape and boundary conditions can be eas-
ily created with the API. Advanced modeling tools for constructing 
hetero-structures, quasi crystals and fractals are also provided. The 
API also features a dedicated error handling system, which checks 
for illegal input and yields precise error message on the first occa-
sion. Owing to all these features, TBPLaS can serve as not only an 
out-of-the-box tight-binding package, but also a common platform 
for the development of advanced models and algorithms.

3.1. Layout

The layout of TBPLaS is shown in Fig. 1. At the root of hierar-
chy there are the Cython and Fortran extensions, which contain the 
core subroutines for building the model, constructing the Hamilto-
nian and performing actual calculations. The Python API consists 
of a comprehensive set of classes directly related to the concepts 
of tight-binding theory. For example, orbitals and hopping terms in 
a tight-binding model are represented by the Orbital and In-
traHopping classes, respectively. There are also auxiliary classes 
for setting up the orbitals and hopping terms, namely SK, SOC
and ParamFit. From the orbitals and hopping terms, as well as 
lattice vectors, a primitive cell can be created as an instance of 
the PrimitiveCell class. The goal of PrimitiveCell is to 
represent and solve tight-binding models of small and moderate 
size. Modeling tools for constructing complex primitive cells, e.g., 
with arbitrary shape and boundary conditions, vacancies, impuri-
ties, hetero-structures, are also available. Many properties, includ-
ing band structure, DOS, dynamic polarization, dielectric function, 
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Fig. 1. Program layout of TBPLaS. Components of the same level in the hierarchy 
share the same color.

optical conductivity and Z2 topological invariant number can be 
obtained at primitive cell level, either by calling proper functions 
of PrimitiveCell class, or with the help of Lindhard and Z2
classes.

SuperCell, SCInterHopping and Sample are a set of 
classes specially designed for constructing large models from the 
primitive cell, especially for TBPM calculations. The computational 
expensive parts of these classes are written in Cython, making 
them extremely fast. For example, it takes less than 1 second to 
construct a graphene model with 1,000,000 orbitals from the Sam-
ple class on a single core of Intel� Xeon� E5-2690 v3 CPU. At
SuperCell level the user can specify the number of replicated 
primitive cells, boundary conditions, vacancies, and modifier to or-
bital positions. Heterogeneous systems, e.g., slabs with adatoms or 
hetero-structures with multiple layers, are modeled as separate su-
percells and containers (instances of the SCInterHopping class) 
for inter-supercell hopping terms. The Sample class is a unified 
interface to both homogeneous and heterogeneous systems, from 
which the band structure and DOS can be obtained via exact-
diagonalization. Different kinds of perturbations, e.g., electric and 
magnetic fields, strain, can be specified at Sample level. Also, it is 
the starting point for TBPM calculations.

The parameters of TBPM calculation are stored in the Config
class. Based on the sample and configuration, a solver and an ana-
lyzer can be created from Solver and Analyzer classes, respec-
tively. The main purpose of solver is to obtain the time-dependent 
correlation functions, which are then analyzed by the analyzer to 
yield DOS, LDOS, optical conductivity, electric conductivity, Hall 
conductance, polarization function and quasi-eigenstates, etc. The 
results from TBPM calculation and exact-diagonalization at ei-
ther PrimitiveCell or Sample level, can be visualized using 
matplotlib directly, or alternatively with the Visualizer class, 
which is a wrapper over matplotlib functions.

3.2. PrimitiveCell

As aforementioned in section 3.1, the main purpose of Prim-
itiveCell class is to represent and solve tight-binding mod-
els of small and moderate size. It is also the building block for 
large and complex models. All calculations utilizing TBPLaS begin 
with creating the primitive cell. The user APIs of Primitive-
Cell as well as many miscellaneous tools are summarized in Ta-
ble 1. To create the primitive cell, one needs to provide the lattice 
9

vectors, which can be generated with the gen_lattice_vec-
tors function or manually specifying their Cartesian coordinates. 
Then the orbitals and hopping terms are added to the primitive 
cell with the add_orbital and add_hopping functions, re-
spectively. TBPLaS utilizes the conjugate relation to reduce the 
hopping terms, so only half of them are needed. There are also 
functions to extract, modify and remove existing orbitals and hop-
ping terms in the cell, e.g., set_orbital/get_orbital/re-
move_orbitals and get_hopping/remove_hopping. Re-
moving orbitals and hopping terms may leave dangling items in 
the cell. In that case, the trim function becomes useful. By de-
fault, the primitive cell is assumed to be periodic along all 3 
directions. However, it can be made non-periodic along specific 
directions by removing hopping terms along that direction, as im-
plemented in the apply_pbc function. As TBPLaS utilizes the 
lazy evaluation technique, the sync_array function is provided 
for synchronizing the array attributes after modifying the model. 
Once the primitive cell has been created, it can be visualized by 
the plot function and dumped by the print function. Geomet-
ric properties such as lattice area, volume and reciprocal lattice 
vectors, and electronic properties like band structure and DOS can 
be obtained with proper functions as listed in Table 1. The k-
points required for the evaluation of band structure and DOS can 
be generated with the gen_kpath and gen_kmesh functions, re-
spectively.

TBPLaS ships with a collection of auxiliary tools for setting up 
the on-site energies and hopping terms. The SK class evaluates the 
hopping terms between atomic states up to d orbitals according 
to the Slater-Koster formula. The SOC class evaluates the matrix 
element of intra-atom spin-orbital coupling term L · S in the di-
rect product basis of |l〉 ⊗ |s〉. The ParamFit class is intended for 
fitting the on-site energies and hopping terms to reference data, 
which is typically from experiments or ab initio calculations.

For the user’s convenience, TBPLaS provides a model repos-
itory which offers the utilities to obtain the primitive cells 
of popular two-dimensional materials, as summarized in Ta-
ble 1. The function make_antimonene returns the 3-orbital 
or 6-orbital primitive cell of antimonene [78] depending on the 
inclusion of spin-orbital coupling. Diamond-shaped and rectangu-
lar primitive cells of graphene based on pz orbitals can be built 
with make_graphene_diamond and make_graphene_rect
functions, respectively. A more complicated 8-band primitive 
cell based on s, px , p y and pz orbitals can be obtained with
make_graphene_sp. The 4-orbital primitive cell of black phos-
phorus [79] can be obtained with make_black_phospho-
rus, while the 11-orbital models of transition metal dichalco-
genides [80] are available with the make_tmdc function. The 
primitive cell can also be created from the output of Wan-
nier90 [81] package, namely seedname.win, seedname_cen-
tres.xyz and seedname_hr.dat, with the wan2pc function.

Starting from the simple primitive cell, more complex cells can 
be constructed through some common operations. A set of func-
tions are provided for this purpose. extend_prim_cell repli-
cates the primitive cell by given times. reshape_prim_cell
reshapes the cell to new lattice vectors, while sprical_prim_
cell shifts and rotates the cell with respect to c-axis, both of 
which are particularly useful for constructing hetero-structures.
make_hetero_layer is a wrapper over reshape_prim_cell
and produces one layer of the hetero-structure. Inter-cell hop-
ping terms within a hetero-structure can be searched with the
find_neighbors function and managed with the PCInter-
Hopping class. Finally, all the layers and intercell hopping terms 
can be merged into one cell by the merge_prim_cell function. 
Note all these functions work at PrimitiveCell level, i.e., they 
either return a new primitive cell, or modify an existing one.
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Table 1
User APIs of PrimitiveCell, SK, SOC, ParamFit, PCInterHopping classes and miscellaneous tools.

Category API Purpose

PrimitiveCell

add_orbital Add a new orbital
set_orbital Modify an existing orbital
get_orbital Retrieve an existing orbital
remove_orbitals Remove selected orbitals
add_hopping Add a new or modify an existing hopping term
get_hopping Retrieve an existing hopping term
remove_hopping Remove an existing hopping term
trim Remove dangling orbitals and hopping terms
apply_pbc Modify the boundary conditions
sync_array Synchronize the array attributes
get_lattice_area Calculate the area spanned by lattice vectors
get_lattice_volume Calculate the volume spanned by lattice vectors
get_reciprocal_vectors Calculate reciprocal lattice vectors
calc_bands Calculate band structure of the primitive cell
calc_dos Calculate DOS and LDOS of the primitive cell
plot Plot the primitive cell to the screen or file
print Print orbital and hopping terms

SK eval Evaluate hopping term with Slater-Koster formula

SOC eval Evaluate matrix element of L · S in direct product basis

ParamFit fit Fit on-site energies and hopping terms to reference data

PCInterHopping add_hopping Add a new inter-cell hopping term

Lattice and k-points

gen_lattice_vectors Generate lattice vectors from lattice constants
rotate_coord Rotate Cartesian coordinates
cart2frac Convert coordinates from Cartesian to fractional
frac2cart Convert coordinates from fractional to Cartesian
gen_kpath Generate path connecting highly-symmetric k-points
gen_kmesh Generate a mesh grid in the first Brillouin zone

Model repository

make_antimonene Get the primitive cell of antimonene
make_graphene_diamond Get the diamond-shaped primitive cell of graphene
make_graphene_rect Get the rectangular primitive cell of graphene
make_graphene_sp Get the 8-band primitive cell of graphene
make_black_phosphorus Get the primitive cell of black phosphorus
make_tmdc Get the primitive cells of transition metal dichalcogenides
wan2pc Create primitive cell from the output of Wannier90

Modeling tools

extend_prim_cell Replicate the primitive cell
reshape_prim_cell Reshape primitive cell to new lattice vectors
spiral_prim_cell Rotate and shift primitive cell
make_hetero_layer Produce one layer of hetero-structure
find_neighbors Find neighboring orbital pairs up to cutoff distance
merge_prim_cell Merge primitive cells and inter-cell hopping terms
3.3. Lindhard

The Lindhard class evaluates response properties, i.e., dy-
namic polarization, dielectric function and optical conductivity of 
primitive cell with the help of Lindhard function. The user APIs 
of this class is summarized in Table 2. To instantiate a Lind-
hard object, one needs to specify the primitive cell, energy range 
and resolution, dimension of k-grid in the first Brillouin zone, sys-
tem dimension, background dielectric constant and many other 
quantities. Since dynamic polarization and dielectric function are 
q-dependent, three types of coordinate systems are provided to 
effectively represent the q-points: Cartesian coordinate system in 
unit of Å−1 or nm−1, fractional coordinate system in unit of re-
ciprocal lattice vectors, and grid coordinate system in unit of di-
mension of k-grid. Grid coordinate system is actually a variant of 
the fractional coordinate system. Conversion between coordinate 
systems can be achieved with the frac2cart and cart2frac
functions.

Lindhard class offers two functions to calculate the dynamic 
polarization: calc_dyn_pol_regular and calc_dyn_pol_
arbitrary. Both functions require an array of q-points as in-
put. The difference is that calc_dyn_pol_arbitrary accepts 
arbitrary q-points, while calc_dyn_pol_regular requires that 
the q-points should be on the uniform k-grid in the first Bril-
10
louin zone. This is due to the term k′ = k + q that appears in 
the Lindhard function. For regular q on k-grid, k′ is still on 
the same grid. However, this may not be true for arbitrary q-
points. So, calc_dyn_pol_arbitrary keeps two sets of en-
ergies and wave functions, for k and k′ grids respectively, al-
though they may be equivalent via translational symmetry. On the 
contrary, calc_dyn_pol_regular utilizes translational sym-
metry and reuses energies and wave functions when possible. So,
calc_dyn_pol_regular uses less computational resources, at 
the price that only regular q-points on k-grid can be taken as 
input. From the dynamic polarization, dielectric function can be 
obtained by calc_epsilon. Unlike dynamic polarization and di-
electric function, the optical conductivity considered in TBPLaS
does not depend on q-points. So, it can be evaluated directly by
calc_ac_cond.

3.4. Z2

The Z2 class evaluates and analyzes the topological phases θ D
m

to yield the Z2 number. The APIs of this class are summarized in 
Table 2. To create a Z2 calculator, the primitive cell, as well as the 
number of occupied bands should be provided as input. The phases 
θ D

m can be obtained as the function of kb with the calc_phases
function, which can then be plotted with scatter plot to count the 
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Table 2
User APIs of Lindhard and Z2 classes.

Category API Purpose

Lindhard

calc_dyn_pol_regular Calculate dynamic polarization for regular q-points
calc_dyn_pol_arbitrary Calculate dynamic polarization for arbitrary q-points
calc_epsilon Calculate dielectric function
calc_ac_cond Calculate optical conductivity

Z2
calc_phases Calculate phases θ D

m

reorder_phases Reorder phases improve continuity and smoothness
count_crossing Count crossing number of phases against reference line
crossing number against a reference line. If there are too many 
occupied states, it may be difficult to determine the crossing num-
ber with human eyes. The count_crossing function can count 
the crossings automatically, provided that the phases have been 
correctly reordered with the reorder_phases function. Anyway, 
the users are strongly recommended to cross-validate the crossing 
numbers from scatter plot and count_crossing, respectively. 
Finally, the Z2 number is determined as the remainder of crossing 
number divided by 2.

3.5. SuperCell, SCInterHopping and sample

The tools discussed in section 3.2 are sufficiently enough to 
build complex models of small and moderate size. However, 
there are occasions where large models are essential, e.g., hetero-
structures with twisted layers, quasi crystals, distorted structures, 
etc. In particular, TBPM calculations require large models for nu-
merical stability. To build and manipulate large models efficiently, 
a new set of classes, namely SuperCell, SCInterHopping and
Sample are provided. The APIs of these classes are summarized 
in Table 3.

The purpose of SuperCell class is to represent homoge-
neous models that are formed by replicating the primitive cell. 
To create a supercell, the primitive cell, supercell dimension and 
boundary conditions are required. Vacancies can be added to the 
supercell upon creation, or through the add_vacancies and
set_vacancies functions afterwards. Modifications to the hop-
ping terms can be added by the add_hopping function. If the 
hopping terms are already included in the supercell, the original 
values will be overwritten. Otherwise, they will be added to the 
supercell as new terms. The supercell can be assgined with an or-
bital position modifier with the set_orb_pos_modifier func-
tion, which is a Python function modifying the orbital positions 
in-place. Dangling orbitals and hopping terms in the supercell can 
be removed by the trim function. Orbital positions, on-site ener-
gies, hopping terms and distances, as well as many properties of 
the supercell cell can be obtained with the get_xxx functions, as 
listed in Table 3. TBPLaS utilizes the conjugate relation to reduce 
the hopping terms, so only half of them are returned by get_hop
and get_dr.

Heterogeneous systems, e.g., slabs with adatoms or hetero-
structures with multiple layers, are modeled as separate supercells 
and containers for inter-supercell hopping terms. The containers 
are created from the SCInterHopping class, with a bra super-
cell and a ket supercell, between which the hopping terms can 
be added by the add_hopping function. The SCInterHopping
class also implements the get_hop and get_dr functions for 
extracting the hopping terms and distances, similar to the Super-
Cell class.

The Sample class is a unified interface to both homogeneous
and heterogeneous systems. A sample may consist of single super-
cell, or multiple supercells and inter-supercell hopping containers. 
The on-site energies, orbital positions, hopping terms and dis-
tances are stored in the attributes of orb_eng, orb_pos, hop_i,
11
hop_j, hop_v and dr, respectively, which are all numpy arrays. 
To reduce the memory usage, these attributes are filled only when 
needed with the initialization functions. Different kinds of pertur-
bations, e.g., electric and magnetic fields, strain, can be specified 
by directly calling the API, or manipulating the array attributes di-
rectly. The reset_array function is provided to reset the array 
attributes of the sample, for removing the effects of perturba-
tions. Band structure and DOS of the sample can be obtained with
calc_bands and calc_dos respectively, similar to the Primi-
tiveCell class. Visualization is achieved through the plot func-
tion. Since the sample is typically large, its response properties 
are no longer accessible via the Lindhard function. On the con-
trary, TBPM is much more efficient for large samples. Since the 
Chebyshev polynomial decomposition of Hamiltonian requires its 
eigenvalues to be within [-1, 1], an API rescale_ham is provided 
for this purpose. Details on TBPM will be discussed in the next 
section.

3.6. Config, solver, analyzer and visualizer

TBPM in TBPLaS is implemented in the classes of Config,
Solver and Analyzer. Config is a simple container class 
holding all the parameters that controls the calculation. So, it has 
no API but a few Python dictionaries as attributes. The Solver
class propagates the wave function and evaluates the correla-
tion functions, which are then analyzed by Analyzer class to 
produce the results, including DOS, LDOS, optical conductivity, 
electric conductivity, etc. The user APIs of Solver and Ana-
lyzer are summarized in Table 4. To create a solver or analyzer, 
one needs the sample and the configuration object. The APIs of
Solver and Analyzer share a common naming convention, 
where calc_corr_xxx calculates the correlation function for 
property xxx and calc_xxx analyzes the correlation function to 
yield the final results. Some of the properties, such as LDOS from 
Green’s function and time-dependent wave function, can be ob-
tained from Solver directly without further analysis.

The Visualizer class is a thin wrapper over matplotlib for 
quick visualization of the results from exact-diagonalization and 
TBPM. Generic data, e.g., response functions, can be plotted with 
the plot_xy function. There are also special functions to plot the 
band structure, DOS and topological phases. Quasi-eigenstates and 
time-dependent wave function can be plotted with the plot_wfc
function. Although Visualizer is intended for quick visualiza-
tion, it can be easily extended to produce figures of publication 
quality, according to the user’s needs.

3.7. Parallelization

Tight-binding calculations can be time-consuming when the 
model is large, or when ultra-fine results are desired. For example, 
band structure, DOS, response properties from Lindhard function 
and topological phases from Z2 require exact diagonalization for 
a dense k-grid in the first Brillouin zone, optionally followed by 
post-processing on an energy grid. TBPM calculations require large 
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Table 3
User APIs of SuperCell, SCInterHopping and Sample classes.

Category API Purpose

SuperCell

add_vacancies Add a list of vacancies to the supercell
set_vacancies Reset the list of vacancies
add_hopping Add a modification to the hopping terms
set_orb_pos_modifier Assign an orbital position modifier to the supercell
trim Remove dangling orbitals and hopping terms
sync_array Synchronize the array attributes
get_orb_pos Get the Cartesian coordinates of orbitals
get_orb_eng Get the on-site energies
get_hop Get the hopping terms
get_dr Get the hopping distances
get_lattice_area Calculate the area spanned by lattice vectors
get_lattice_volume Calculate the volume spanned by lattice vectors
get_reciprocal_vectors Calculate reciprocal lattice vectors

SCInterHopping
add_hopping Add a new inter-supercell hopping term
get_hop Get the hopping terms
get_dr Get the hopping distances

Sample

init_orb_eng Initialize on-site energies on demand
init_orb_pos Initialize orbital positions on demand
init_hop Initialize hopping terms on demand
init_dr Initialize hopping distances on demand
reset_array Reset the array atributes
rescale_ham Rescale the Hamiltonian
set_magnetic_field Apply a perpendicular magnetic field
calc_bands Calculate band structure of the sample
calc_dos Calculate DOS and LDOS of the sample
plot Plot the sample to the screen or file

Table 4
User APIs of Solver, Analyzer, Visualizer classes.

Category API Purpose

Solver

set_output Prepare output directory and files
save_config Save configuration to file
calc_corr_dos Calculate correlation function of DOS
calc_corr_ldos Calculate correlation function of LDOS
calc_corr_dyn_pol Calculate correlation function of dynamical polarization
calc_corr_ac_cond Calculate correlation function of optical conductivity
calc_corr_dc_cond Calculate correlation function of electric conductivity
calc_hall_mu Calculate μmn required for the evaluation of Hall conductivity 

using Kubo-Bastin formula
calc_quasi_eigenstates Calculate quasi-eigenstates of given energies
calc_ldos_haydock Calculate LDOS using Green’s function
calc_wfc_t Calculate propagation of wave function from given initial state

Analyzer

calc_dos Calculate DOS from its correlation function
calc_ldos Calculate LDOS from its correlation function
calc_dyn_pol Calculate dynamic polarization from its correlation function
calc_epsilon Calculate dielectric function from dynamic polarization
calc_ac_cond Calculate optical conductivity from its correlation function
calc_dc_cond Calculate electric conductivity from its correlation function
calc_diff_coeff Calculate diffusion coefficient from DC correlation function
calc_hall_cond Calculate Hall conductivity from μmn

Visualizer

plot_xy Plot generic data of y against x
plot_bands Plot band structure
plot_dos Plot DOS
plot_phases Plot phases θ D

m

plot_wfc Plot quasi-eigenstate or time-dependent wave function in real 
space
models and averaging over multiple samples to converge the re-
sults, while the time-propagation of each sample involves heavy 
matrix-vector multiplications. Consequently, dedicated parallelism 
that can exploit the modern hardware of computers are essential 
to promote the application of tight-binding techniques to millions 
or even billions of orbitals. However, the Global Interpreter Lock 
12
(GIL) of Python allows only one thread to run at one time, severely 
hinders the parallelization at thread level. Although the GIL can 
be bypassed with some tricks, thread-level parallelization is re-
stricted to only one computational node. TBPLaS tackles these 
problems with a hybrid MPI+OpenMP parallelism. Tasks are firstly 
distributed over MPI processes that can run among multiple nodes. 
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Since the processes are isolated mutually at operation system level 
and each keeps a local copy of the data, there is no need to worry 
about data conflicts and GIL. For the tasks assigned to each pro-
cess, thread-level parallelism is implemented with OpenMP in the 
Cython and Fortran extensions. With a wise choice of the numbers 
of processes and threads, excellent scaling can be achieved with 
respect to the computational resources. Both MPI and OpenMP of 
the hybrid parallelism can be enabled or disabled separately, en-
suring good flexibility.

3.7.1. Band structure and DOS
For calculating the band structure, k-points are firstly dis-

tributed over MPI processes, with each process dealing with some 
of the k-points. For each k-point assigned to the process, the 
Hamiltonian matrix has to be built in serial, while the diagonaliza-
tion is further parallelized with OpenMP in the NumPy and SciPy 
libraries, which call OpenBLAS or MKL under the hood. The evalu-
ation of DOS consists of getting the eigenvalues for a dense k-grid, 
and a summation over the eigenvalues to collect the contributions 
following Eq. (39). Getting the eigenvalues is parallelized in the 
same approach as the band structure. The summation is paral-
lelized with respect to the k-points over MPI processes. Local data 
on each process is then collected via the MPI_Allreduce call.

3.7.2. Response properties from lindhard function
Evaluation of response properties using Lindhard function is 

similar to that of DOS, which also consists of getting the eigen-
values and eigenvectors and subsequent post-processing. However, 
the post-processing is much more expensive than DOS. Taking the 
optical conductivity for example, whose formula follows Eq. (60). 
To reuse the intermediate results, we define the following arrays

�ε(k,m,n) = εmk − εnk (93)

and

P (k,m,n) = fmk − fnk

εmk − εnk
〈ψnk|vα|ψmk〉〈ψmk|vβ |ψnk〉 (94)

The evaluation of �ε and P are firstly parallelized with respect 
to k over MPI processes. For each process, tasks are further par-
allelized with respect to m over OpenMP threads. Once the arrays 
are ready, the optical conductivity can be calculated as

σαβ(h̄ω) = ie2h̄

Nk�c

∑
k

∑
m,n

P (k,m,n)

�ε(k,m,n) − (h̄ω + iη+)
(95)

Typically, the response properties are evaluated on a discrete fre-
quency grid {ωi}. We firstly distribute k-points over MPI processes, 
then distribute the frequencies over OpenMP threads. Final results 
are collected by MPI calls, similar to the evaluation of DOS.

3.7.3. Z2
The evaluation of topological phases θ D

m according to Eq. (92)
can be done for each kb individually. So, tasks are distributed 
among MPI process with respect to kb . For given kb , the D(kb) ma-
trix is evaluated in serial mode by iterative matrix multiplication 
according to Eq. (90). Then it is diagonalized to yield the eigenvec-
tors λD

m , from which the phases θ D
m can be extracted. Finally the 

results are collected with MPI calls.

3.7.4. TBPM
The TBPM calculations follow a common procedure. Firstly, the 

time-dependent wave function is propagated from different initial 
conditions and correlation functions are evaluated at each time-
step. Then the correlation functions are averaged and analyzed 
to yield the final results. The averaging and analysis are cheap 
13
and need no parallelization. The propagation of wave function, on 
the contrary, is much more expensive and must be parallelized. 
Fortunately, propagation from each initial condition is embarrass-
ingly parallel task, i.e., it can be split into individual sub-tasks that 
do not exchange data mutually. So, the initial conditions are dis-
tributed among MPI processes. The propagation of wave function, 
according to Eq. (30), involves heavy matrix-vector multiplications. 
In TBPLaS the matrices are stored in Compressed Sparse Row 
(CSR) format, significantly reducing the memory cost. The multi-
plication, as well as many other matrix operations, is parallelized
with respect to matrix elements among OpenMP threads. Averag-
ing of correlation functions is also done by MPI calls.

4. Usage

In this section we demonstrate the installation and usages of
TBPLaS. TBPLaS is released under the BSD license, which can be 
found at https://opensource .org /licenses /BSD -3 -Clause. The source 
code is available at the home page www.tbplas .net. Detailed docu-
mentation and tutorials can also be found there.

4.1. Installation

4.1.1. Prerequisites
To install and run TBPLaS, a Unix-like operating system is re-

quired. You need both C and Fortran compilers, as well as vendor-
provided math libraries if they are available. For Intel� CPUs, it is 
better to use Intel compilers and Math Kernel Library (MKL). If In-
tel toolchain is not available, the GNU Compiler Collection (GCC) 
is another choice. In that case, the built-in math library will be 
enabled automatically.

TBPLaS requires a Python3 environment (interpreter and de-
velopment files), and the packages of NumPy, SciPy, Matplotlib, 
Cython, Setuptools as mandatory dependencies. Optionally, the 
LAMMPS interface requires the ASE package. If MPI+OpenMP hy-
brid parallelism is to be enabled, the MPI4PY package and an MPI 
implementation, e.g., Open MPI or MPICH, become essential. Most 
of the packages can be installed via the pip command, or manually 
from the source code.

4.1.2. Installation
The configuration of compilation is stored in setup.cfg in 

the top directory of the source code of TBPLaS. Examples of this 
file can be found in the config directory. You should adjust it 
according to your computer’s hardware and software settings. Here 
is an example utilizing Intel compilers and MKL

1 [ config_cc ]
2 compiler = intelem
3
4 [ c o n f i g _ f c ]
5 fcompiler = intelem
6 arch = −xHost
7 opt = −qopenmp −O3 −ipo −heap−arrays 32
8 f 9 0 f l a g s = −fpp −DMKL −mkl= p a r a l l e l
9

10 [ build_ext ]
11 include_dirs = / software / i n t e l / p a r a l l e l s t u d i o /2019/

compilers_and_l ibrar ies / l inux / mkl / include
12 l i b r a r y _ d i r s = / software / i n t e l / p a r a l l e l s t u d i o /2019/

compilers_and_l ibrar ies / l inux / mkl / l i b / intel64
13 l i b r a r i e s = mkl_rt iomp5 pthread m dl

The config_cc and config_fc sections contain the settings 
of C and Fortran compilers, while the libraries are configured 
in build_ext. It is important that OpenMP should be enabled 
by adding proper flags to config_fc and build_ext, e.g., -
qopenmp in opt and iomp5 in libraries for Intel compilers. 

https://opensource.org/licenses/BSD-3-Clause
http://www.tbplas.net


Y. Li, Z. Zhan, X. Kuang et al. Computer Physics Communications 285 (2023) 108632
Fig. 2. Workflow of common usages of TBPLaS. Blue rectangles and orange hexagons 
denote the main steps and outputs, respectively. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Here is another example utilizing GCC and the built-in math li-
brary

1 [ config_cc ]
2 compiler = unix
3
4 [ c o n f i g _ f c ]
5 fcompiler = gfortran
6 arch = −march= native
7 opt = −fopenmp −O3 −mtune= native
8 f 9 0 f l a g s = −fno−second−underscore −cpp
9

10 [ build_ext ]
11 l i b r a r i e s = gomp

where the OpenMP flags become -fopenmp and gomp.
Once setup.cfg has been properly configured, TBPLaS can 

be compiled with python setup.py build. If everything goes 
well, a new build directory will be created, which contains the 
Cython and Fortran extensions. The installation into default path 
is done by python setup.py install. After that, invoke the 
Python interpreter and try import tbplas. If no error occurs, 
then the installation of TBPLaS is successful.

4.2. Overview of the workflow

The workflow of common usages of TBPLaS is summarized 
in Fig. 2. Tight-binding models can be created at either Primi-
tiveCell or Sample level, depending on the model size and 
purpose. PrimitiveCell is recommended for models of small 
and moderate size, and is essential for evaluating response func-
tions utilizing the Lindhard function or topological variants with 
the Z2 class. On the contrary, Sample is for extra-large models 
that may consist of millions or trillions of orbitals. Also, TBPM cal-
culations require the model to be an instance of the Sample class. 
For a detailed comparison of PrimitiveCell and Sample, refer 
to section 3.

Generally, all calculations utilizing TBPLaS begin with creat-
ing the primitive cell, which involves creating an empty cell from 
the lattice vectors, adding orbitals and adding hoping terms. Com-
plex models, e.g., that with arbitrary shape and boundary con-
ditions, vacancies, impurities and hetero-structures can be con-
14
structed from the simple primitive cell with the Python-based 
modeling tools, as discussed in section 3.2. Band structure and 
DOS of the primitive cell can be obtained via exact diagonalization 
with the calc_bands and calc_dos functions, respectively. Re-
sponse functions such dynamic polarization, dielectric function and 
optical conductivity, need an additional step of creating a Lind-
hard calculator, followed by calling the corresponding functions. 
Similar procedure applies to the topological properties, where a
Z2 calculator should be created and utilized.

To build a sample, the user needs to construct a supercell 
with the Cython-based modeling tools. Heterogeneous systems are 
modeled as separate supercells plus containers for inter-supercell 
hopping terms. The sample is then formed by assembling the su-
percells and containers. Band structure and DOS of the sample 
can be obtained via exact diagonalization in the same approach as 
the primitive cell. However, these calculations may be extremely 
slow due to the large size of the model. In that case, TBPM is 
recommended. The user needs to setup the parameters using the
Config class, and create a solver and an analyzer from Solver
and Analyzer classes, respectively. Then evaluate and analyze 
the correlation functions to yield the DOS, response functions, 
quasieigenstates, etc. Finally, the results can be visualized using the
Visualizer class, or the matplotlib library directly.

4.3. Building the primitive cell

In this section we show how to build the primitive cell taking 
monolayer graphene as the example. Monolayer graphene has lat-
tice constants of a = b = 2.46 Å and α = β = 90◦ . The lattice angle 
γ can be either 60◦ or 120◦ , depending on the choice of lattice 
vectors. Also, we need to specify an arbitrary cell length c since
TBPLaS internally treats all models as three-dimensional. We will 
take γ = 60◦ and c = 10 Å. First of all, we need to invoke the 
Python interpreter and import all necessary packages

1 import math
2 import numpy as np
3 import tbplas as tb

Then we generate the lattice vectors from the lattice constants 
with the gen_lattice_vectors function

1 vectors = tb . ge n _ l a t t i c e _ v e c t o r s ( a =2.46 , b=2.46 , c =10.0 ,
gamma=60)

The function accepts six arguments, namely a, b, c, alpha, beta, 
and gamma. The default value for alpha and beta is 90 degrees, 
if not specified. The return value vectors is a 3 ×3 array contain-
ing the Cartesian coordinates of the lattice vectors. Alternatively, 
we can create the lattice vectors from their Cartesian coordinates 
directly

1 a = 2.46
2 c = 10.0
3 a_hal f = a ∗ 0.5
4 sqrt3 = math . sqrt (3)
5
6 vectors = np . array ( [
7 [ a , 0 , 0 , ] ,
8 [ a_half , sqrt3∗a_half , 0 ] ,
9 [0 , 0 , c ]

10 ] )

From the lattice vectors, we can create an empty primitive cell by

1 prim_cell = tb . P r i m i t i v e C e l l ( vectors , unit =tb .ANG)
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Fig. 3. (a) Schematic plot of the primitive cell of monolayer graphene. Orbitals are shown as filled circles and numbered in green texts, while cells are indicated with dashed 
diamonds and numbered in blue texts. Thick black arrows denote the lattice vectors. (b) Band structure, (c) DOS and (d) Optical conductivity of monolayer graphene. The 
optical conductivity is in the unit of σ0 = e2

4h̄ .
where the argument unit specifies that the lattice vectors are in 
Angstroms.

As we choose γ = 60◦ , the two carbon atoms are then located 
at τ0 = 0 and τ1 = 1

3 a1 + 1
3 a2, as shown in Fig. 3 (a). In the sim-

plest 2-band model of graphene, each carbon atom carries one 2pz

orbital. We can add the orbitals with the add_orbital function

1 prim_cell . add_orbital ( [ 0 . , 0 . ] , energy =0 .0 , l a b e l ="pz" )
2 prim_cell . add_orbita l ( [ 1 . / 3 , 1 . / 3 ] , energy =0 .0 , l a b e l ="pz" )

The first argument gives the position of the orbital, while energy
specifies the on-site energy, which is assumed to be 0 eV if not 
specified. In absence of strain or external fields, the two orbitals 
have equal on-site energies. The argument label is a tag to de-
note the orbital. In addition to fractional coordinates, the orbitals 
can also be added using Cartesian coordinates by the add_or-
bital_cart function

1 prim_cell . add_orbi ta l_cart ( [ 0 . , 0 . ] , unit =tb .ANG, energy =0 .0 ,
l a b e l ="pz" )

2 prim_cell . add_orbi ta l_cart ( [ 1 . 2 3 , 0.71014083] , unit =tb .ANG,
energy =0 .0 , l a b e l ="pz" )

Here we use the argument unit to specify the unit of Cartesian 
coordinates.

When all the orbitals have been added to the primitive cell, we 
can proceed with adding the hopping terms, which are defined as

ti j(R) = 〈φi0|ĥ0|φ jR〉 (96)

where R is the index of neighboring cell, i and j are orbital in-
dices, respectively. The hopping terms of monolayer graphene in 
the nearest approximation are
15
• R = (0, 0), i = 0, j = 1
• R = (0, 0), i = 1, j = 0
• R = (1, 0), i = 1, j = 0
• R = (−1, 0), i = 0, j = 1
• R = (0, 1), i = 1, j = 0
• R = (0, −1), i = 0, j = 1

With the conjugate relation ti j(R) = t∗
ji(−R), the hopping terms 

can be reduced to

• R = (0, 0), i = 0, j = 1
• R = (1, 0), i = 1, j = 0
• R = (0, 1), i = 1, j = 0

TBPLaS takes the conjugate relation into consideration. So, we 
need only to add the reduced set of hopping terms. This can be 
done with the add_hopping function

1 prim_cell . add_hopping ( rn =[0 , 0 ] , orb_i =0 , orb_j =1 , energy
=−2.7)

2 prim_cell . add_hopping ( rn =[1 , 0 ] , orb_i =1 , orb_j =0 , energy
=−2.7)

3 prim_cell . add_hopping ( rn =[0 , 1] , orb_i =1 , orb_j =0 , energy
=−2.7)

The argument rn specifies the index of neighboring cell, while
orb_i and orb_j give the indices of orbitals of the hopping 
term. energy is the hopping integral, which should be a com-
plex number in general cases.

Now we have successfully built the primitive cell. We can visu-
alize it with the plot function:

1 prim_cell . p lot ( )
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The output is shown in Fig. 3(a), with orbitals shown as filled cir-
cles and hopping terms as arrows. We can also print the details of 
the model with the print function:

1 prim_cell . pr int ( )

The output is as follows

1 L a t t i c e vectors (nm) :
2 0.24600 0.00000 0.00000
3 0.12300 0.21304 0.00000
4 0.00000 0.00000 1.00000
5 O r b i t a l s :
6 0.00000 0.00000 0.00000 0.0
7 0.33333 0.33333 0.00000 0.0
8 Hopping terms :
9 ( 0 , 0 , 0) ( 0 , 1) −2.7

10 ( 1 , 0 , 0) ( 1 , 0) −2.7
11 ( 0 , 1 , 0) ( 1 , 0) −2.7

4.4. Properties of primitive cell

In this section we show how to calculate the band structure, 
DOS and response functions of the graphene primitive cell that cre-
ated in previous section. First of all, we need to generate a k-path 
of � → M → K → � with the gen_kpath function

1 k_points = np . array ( [
2 [ 0 . 0 , 0 . 0 , 0 . 0 ] ,
3 [ 1 . / 2 , 0 . 0 , 0 . 0 ] ,
4 [ 2 . / 3 , 1 . / 3 , 0 . 0 ] ,
5 [ 0 . 0 , 0 . 0 , 0 . 0 ] ,
6 ] )
7 k_label = [ "$ \Gamma$" , "M" , "K" , "$ \Gamma$" ]
8 k_path , k_idx = tb . gen_kpath ( k_points , [40 , 40 , 40])

In this example, we interpolate with 40 intermediate k-points 
along each segment of the k-path. gen_kpath returns two arrays, 
with k_path containing the coordinates of k-points and k_idx
containing the indices of highly-symmetric k-points in k_path. 
Then we solve the band structure with the calc_bands function

1 k_len , bands = prim_cell . calc_bands ( k_path )

Here k_len is the length of k-path, while bands is a Nk × Nb
matrix containing the energies. The band structure can be plotted 
with matplotlib

1 num_bands = bands . shape [1]
2 for i in range (num_bands) :
3 p l t . p lot ( k_len , bands [ : , i ] , color =" r " , l inewidth =1.2)
4 for idx in k_idx :
5 p l t . axvl ine ( k_len [ idx ] , color ="k" , l inewidth =0.8)
6 p l t . xlim ( ( 0 , np . amax( k_len ) ) )
7 p l t . x t i c k s ( k_len [ k_idx ] , k_ label )
8 p l t . y label ( " Energy (eV) " )
9 p l t . t ight_ layout ( )

10 p l t . show ( )

Or alternatively, using the Visualizer class:

1 v i s = tb . V i s u a l i z e r ( )
2 v i s . plot_bands ( k_len , bands , k_idx , k_ label )
16
The output is shown in Fig. 3(b). The Dirac cone at K-point is per-
fectly reproduced.

To calculate the DOS, we need to sample the first Brillouin zone 
with a dense k-grid, e.g., 240 × 240 × 1

1 k_mesh = tb . gen_kmesh((240 , 240 , 1) )

where k_mesh contains the coordinates of k-points on the grid. 
Then we evaluate and visualize the DOS as

1 energies , dos = prim_cell . calc_dos (k_mesh , e_min=−9, e_max=9)
2 v i s . plot_dos ( energies , dos )

where energies is a uniform energy grid whose lower and up-
per bounds are controlled by the arguments e_min and e_max.
dos is an array containing the DOS values at the grid points in
energies. The output is shown in Fig. 3(c).

The evaluation of response functions requires a Lindhard calcu-
lator, which can be created by

1 l ind = tb . Lindhard ( c e l l =prim_cell , energy_max=20 , energy_step
=2000 , kmesh_size =(4096 , 4096 , 1) , mu=0.0 , temperature
=300.0 , g_s =2 , back_epsilon =1.0)

The argument cell assigns the primitive cell to the calcula-
tor. energy_max and energy_step define a uniform energy 
grid on which response functions will be evaluated. kmesh_size
specifies the size of k-grid in the first Brillouin zone. As mono-
layer graphene is semi-metallic, we need a very dense k-grid in 
order to converge the response functions. mu, temperature and
g_s are the chemical potential, temperature and spin degeneracy 
of the system, while back_epsilon is the background dielectic 
constant, respectively. The xx component of optical conductivity, 
namely σxx , can be evaluated with the calc_ac_cond function

1 omegas , ac_cond = l ind . calc_ac_cond ( component="xx" )

where omegas is the energy grid and ac_cond is the optical 
conductivity. The results can be visualized using the Visualizer
class

1 ac_cond ∗= 4
2 v i s = tb . V i s u a l i z e r ( )
3 v i s . plot_xy ( omegas , ac_cond . real , x_ label =" Energy (eV) " ,

y_ label ="$ \ sigma_ { xx} ( \ sigma_0 ) $" )

The output is shown in Fig. 3(d), in the unit of σ0 = e2

4h̄ .

4.5. Building the sample

In this section we show how to construct a sample by making 
a graphene model with 20 × 20 × 1 primitive cells. To build the 
sample, we need to create the supercell first

1 super_cel l = tb . SuperCell ( prim_cell , dim=(20 , 20 , 1) , pbc =(
True , True , False ) )

The SuperCell class is similar to the functions of extend_
prim_cell and apply_pbc, where the dimension and periodic 
boundary conditions are set up at the same time. The sample 
is formed by gluing the supercells and inter-hopping terms alto-
gether with the Sample class. In our case the sample consists of 
only one supercell. So it can be created and visualized by
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Fig. 4. (a) Plot of the 20 × 20 × 1 graphene sample. (b) DOS of graphene from exact-diagonalization and TBPM. (c) Optical conductivity of graphene from Lindhard function 
and TBPM. (d) DOS of graphene under zero and 50 Tesla magnetic fields.
1 sample = tb . Sample ( super_cel l )
2 sample . plot ( with_orbi ta ls = False , with_cel ls = False ,

hop_as_arrows= False )

where some options are switched for boosting the plot. The output 
is shown in Fig. 4(a).

4.6. Properties of sample

The Sample class supports the evaluation of band structure 
and DOS via exact-diagonalization with the calc_bands and
calc_dos functions, similar to the PrimitiveCell class. Tak-
ing the DOS as an example, in section 4.4 we have sampled the 
first Brillouin zone with a k-grid of 240 × 240 × 1. Now that we 
have a much larger sample, the dimension of k-grid can be re-
duced to 12 × 12 × 1 accordingly

1 k_mesh = tb . gen_kmesh ( ( 12 , 12 , 1) )
2 energies , dos = sample . calc_dos (k_mesh , e_min=−9, e_max=9)
3 v i s . plot_dos ( energies , dos )

The output is shown in Fig. 4(b), which is consistent with Fig. 3(c).
Exact diagonalization-based techniques are not feasible for large 

models as the computational costs scale cubically with the model 
size. On the contrary, TBPM involves only matrix-vector multipli-
cation, and is less demanding on computational resources. There-
fore, TBPM is particularly suitable for large models with millions 
of orbitals or more. Current capabilities of TBPM in TBPLaS are 
summarized in section 3.6. We demonstrate the usage of TBPM 
to evaluate the DOS and optical conductivity of a graphene sample 
with 4096 × 4096 × 1 primitive cells, i.e., 33,554,432 orbitals. We 
begin with creating the sample

1 super_cel l = tb . SuperCell ( prim_cell , dim=(4096 , 4096 , 1) , pbc
=( True , True , False ) )
17
2 sample = tb . Sample ( super_cel l )
3 sample . rescale_ham ( 9 . 0 )

Since the model is extremely large, we will not visualize it as in 
other examples. In TBPM the time evolution and Fermi-Dirac oper-
ators are expanded in Chebyshev polynomials, which requires the 
eigenvalues of the Hamiltonian to be within [−1, 1]. So, we need 
to rescale the Hamiltonian with the rescale_ham function. The 
scaling factor can be specified as an argument. If not provided, 
a reasonable default value will be estimated from the Hamilto-
nian. Then we set up the parameters of TBPM in an instance of 
the Config class

1 config = tb . Config ( )
2 config . generic [ " nr_random_samples" ] = 4
3 config . generic [ " nr_time_steps " ] = 4096

Here we set two parameters: nr_random_samples and nr_
time_steps. nr_random_samples specifies that we are going 
to consider 4 random initial wave functions for the propagation, 
while nr_time_steps indicates the number of steps to propa-
gate. The time step for the propagation is π/ f (in unit of h̄/eV ), 
with f being the scaling factor of Hamiltonian in eV. Now we cre-
ate a pair of solver and analyzer by

1 solver = tb . Solver ( sample , conf ig )
2 analyzer = tb . Analyzer ( sample , conf ig )

Then we calculate and analyze the correlation function to get DOS

1 corr_dos = solver . calc_corr_dos ( )
2 energies , dos = analyzer . calc_dos ( corr_dos )
3 v i s = tb . V i s u a l i z e r ( )
4 v i s . plot_dos ( energies , dos )
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Fig. 5. (a) Workflow of constructing hetero-structure. (b) Schematic plot of lattice vectors of fixed (a1, a2) and twisted (a′
1, a′

2) primitive cells and the hetero-structure (A1, 
A2), as well as the twisting angle θ . (c) Twisted bilayer graphene sample with 4 × 4 × 1 merged cells of i = 5.
Here the correlation function corr_dos is obtained with the
calc_corr_dos function, and then analyzed by the calc_dos
function to yield the energy grid energies and DOS values dos. 
The result is shown in Fig. 4(b), consistent with the results from 
exact-diagonalization.

The calculation of optical conductivity is similar to DOS

1 config . generic [ " correct_spin " ] = True
2 corr_ac_cond = solver . calc_corr_ac_cond ( )
3 omegas , ac_cond = analyzer . calc_ac_cond ( corr_ac_cond )
4 ac_cond ∗= 4
5 v i s . plot_xy ( omegas , ac_cond [ 0 ] . real , x_ label =" Energy (eV) " ,

y_ label ="$ \ sigma_ {xx} ( \ sigma_0 ) $" )

Note that we set the spin-degeneracy of the model to 2 by set-
ting the correct_spin argument to True, for consistency with 
the example in section 4.4. The optical conductivity is shown in 
Fig. 4(c), which matches perfectly with the results from Lindhard 
function.

4.7. Advanced modeling

In this section, we demonstrate how to construct complex mod-
els, including hetero structure, quasicrystal and fractal. For the het-
ero structure, we are going to take the twisted bilayer graphene as 
an example, while for the fractal we will consider the Sierpiński 
carpet.

4.7.1. Hetero-structure
The workflow of constructing hetero structures is shown in 

Fig. 5(a). First of all, we determine the twisting angle and lattice 
vectors of the hetero-structure. Then we build the primitive cells 
of each layer, shift the twisted layer along z-axis by the interlayer 
distance and rotate it by the twisting angle. After that, we reshape 
the primitive cells to the lattice vectors of the hetero-structure to 
yield the layers, as depicted in Fig. 5(b). When all the layers are 
ready, we merge them into one cell and add the intralayer and 
interlayer hopping terms up to a given cutoff distance. For the vi-
sualization of Moiré pattern, we also need to build a sample from 
the merged cell.
18
Before constructing the model, we need to import the required 
packages and define some necessary functions. The packages are 
imported by

1 import math
2 import numpy as np
3 from numpy . l i n a l g import norm
4 import tbplas as tb

The twisting angle and lattice vectors are determined following the 
formulation in Ref. [82]

θi = arccos
3i2 + 3i + 1/2

3i2 + 3i + 1
, (97)

A1 = i · a1 + (i + 1) · a2, (98)

A2 = −(i + 1) · a1 + (2i + 1) · a2, (99)

where a1 and a2 are the lattice vectors of the primitive cell of 
fixed layer and i is the index of hetero-structure. We define the 
following functions accordingly

1 def calc_twist_angle ( i ) :
2 cos_ang = (3 ∗ i ∗∗2 + 3 ∗ i + 0 . 5 ) / (3 ∗ i ∗∗2 + 3 ∗ i +

1)
3 return math . acos ( cos_ang )
4
5
6 def c a l c _ h e t e r o _ l a t t i c e ( i , pr im_cel l_ f ixed ) :
7 h e t e r o _ l a t t i c e = np . array ( [ [ i , i + 1 , 0 ] ,
8 [−( i + 1) , 2 ∗ i + 1 , 0 ] ,
9 [0 , 0 , 1 ] ] )

10 h e t e r o _ l a t t i c e = tb . f r a c 2 c a r t ( pr im_cel l_ f ixed . lat_vec ,
h e t e r o _ l a t t i c e )

11 return h e t e r o _ l a t t i c e

calc_twist_angle returns the twisting angle in radians, while
calc_hetero_lattice returns the Cartesian coordinates of 
lattice vectors in nm. After merging the layers, we need to add 
the interlayer hopping terms. Meanwhile, the intralayer hoppings 
terms should also be extended in the same approach. We define 
the extend_hop function to achieve these goals
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1 def extend_hop ( prim_cell , max_distance =0.75) :
2 neighbors = tb . f ind_neighbors ( prim_cell , a_max=1 , b_max

=1 ,
3 max_distance=max_distance )
4 for term in neighbors :
5 i , j = term . pair
6 prim_cell . add_hopping ( term . rn , i , j , calc_hop ( term .

r i j ) )

Here in line 2 we call the find_neighbors function to get 
the neighboring orbital pairs up to the cutoff distance max_dis-
tance. Then the hopping terms are evaluated according to the 
displacement vector rij with the calc_hop function and added 
to the primitive cell. The calc_hop function is defined according 
to the formulation in Ref. [83]

1 def calc_hop ( r i j ) :
2 a0 = 0.1418
3 a1 = 0.3349
4 r_c = 0.6140
5 l _ c = 0.0265
6 gamma0 = 2.7
7 gamma1 = 0.48
8 decay = 22.18
9 q_pi = decay ∗ a0

10 q_sigma = decay ∗ a1
11 dr = norm( r i j ) . item ( )
12 n = r i j . item (2) / dr
13 v_pp_pi = − gamma0 ∗ math . exp ( q_pi ∗ (1 − dr / a0 ) )
14 v_pp_sigma = gamma1 ∗ math . exp ( q_sigma ∗ (1 − dr / a1 ) )
15 f c = 1 / (1 + math . exp ( ( dr − r_c ) / l _ c ) )
16 hop = (n∗∗2 ∗ v_pp_sigma + (1 − n∗∗2) ∗ v_pp_pi ) ∗ f c
17 return hop

With all the functions ready, we proceed to build the hetero-
structure. In line 2-4 we evaluate the twisting angle of bilayer 
graphene for i = 5. Then we construct the primitive cells of the 
fixed and twisted layers with the make_graphene_diamond
function. The fixed primitive cell is located at z = 0 and does not 
need rotation or shifting. On the other hand, the twisted prim-
itive cell needs to be rotated counter-clockwise by the twisting 
angle and shifted towards +z by 0.3349 nm, which is done with 
the spiral_prim_cell function. After that, we reshape the 
primitive cells to the lattice vectors of hetero-structure with the
make_hetero_layer function, which is a wrapper to coordi-
nate conversion and reshape_prim_cell. Then the layers are 
merged with merge_prim_cell and the hopping terms are ex-
tended with extend_hop using a cutoff distance of 0.75 nm. 
Finally, a sample with 4 ×4 ×1 merged cells is created and plotted, 
with the hopping terms below 0.3 eV hidden for clarity. The out-
put is shown in Fig. 5 (c), where the Moiré pattern can be clearly 
observed.

1 def main ( ) :
2 # Evaluate twist ing angle
3 i = 5
4 angle = calc_twist_angle ( i )
5
6 # Prepare primit ive c e l l s of f ixed and twisted layer
7 prim_cel l_ f ixed = tb . make_graphene_diamond ( )
8 prim_cell_twisted = tb . make_graphene_diamond ( )
9

10 # S h i f t and rotate the twisted layer
11 tb . s p i r a l _ p r i m _ c e l l ( prim_cell_twisted , angle=angle , s h i f t

=0.3349)
12
13 # Reshape primit ive c e l l s to the l a t t i c e vectors of

hetero−structure
14 h e t e r o _ l a t t i c e = c a l c _ h e t e r o _ l a t t i c e ( i , pr im_cel l_ f ixed )
15 l aye r _ f ixe d = tb . make_hetero_layer ( prim_cel l_f ixed ,

h e t e r o _ l a t t i c e )
19
16 layer_twisted = tb . make_hetero_layer ( prim_cell_twisted ,
h e t e r o _ l a t t i c e )

17
18 # Merge layers
19 merged_cell = tb . merge_prim_cell ( layer_f ixed ,

layer_twisted )
20
21 # Extend hopping terms
22 extend_hop ( merged_cell , max_distance =0.75)
23
24 # Visua l ize Moire pattern
25 sample = tb . Sample ( tb . SuperCell ( merged_cell , dim=(4 , 4 ,

1) , pbc =( True , True , False ) ) )
26 sample . plot ( with_orbi ta ls = False , hop_as_arrows= False ,

hop_eng_cutoff =0 .3)
27
28
29 i f __name__ == " __main__" :
30 main ( )

4.7.2. Quasicrystal
Here we consider the construction of hetero structure-based 

quasicrystal, in which we also need to shift, twist, reshape and 
merge the cells. Taking bilayer graphene quasicrystal as an exam-
ple, a quasicrystal with 12-fold symmetry is formed by twisting 
one layer by 30◦ with respect to the center of c = 2

3 a1 + 2
3 a2, 

where a1 and a2 are the lattice vectors of the primitive cell of 
fixed layer. We begin with defining the geometric parameters

1 angle = 30 / 180 ∗ math . pi
2 center = ( 2 . / 3 , 2 . / 3 , 0)
3 radius = 3.0
4 s h i f t = 0.3349
5 dim = (33 , 33 , 1)

Here angle is the twisting angle and center is the fractional 
coordinate of twisting center. The radius of the quasicrystal is con-
trolled by radius, while shift specifies the interlayer distance. 
We need a large cell to hold the quasicrystal, whose dimension is 
given in dim. After introducing the parameters, we build the fixed 
and twisted layers by

1 prim_cell = tb . make_graphene_diamond ( )
2 l aye r _ f ixe d = tb . extend_prim_cell ( prim_cell , dim=dim)
3 layer_twisted = tb . extend_prim_cell ( prim_cell , dim=dim)

Then we shift and rotate the twisted layer with respect to the cen-
ter and reshape it to the lattice vectors of fixed layer

1 # Get the Cartesian coordinate of twist ing center
2 center = np . array ( [ dim [ 0 ] / / 2 , dim [ 1 ] / / 2 , 0 ] ) + center
3 center = np . matmul( center , prim_cell . l a t_vec )
4
5 # Twist , s h i f t and reshape top layer
6 tb . s p i r a l _ p r i m _ c e l l ( layer_twisted , angle=angle , center =center

, s h i f t = s h i f t )
7 conv_mat = np . matmul( l a y e r _ f i x e d . lat_vec , np . l i n a l g . inv (

layer_twisted . la t_vec ) )
8 layer_twisted = tb . reshape_prim_cell ( layer_twisted , conv_mat )

Since we have extended the primitive cell by 33 × 33 × 1 times, 
and we want the quasicrystal to be located in the center of the 
cell, we need to convert the coordinate of twisting center in line 
2-3. The twisting operation is done by the spiral_prim_cell
function, where the Cartesian coordinate of the center is given in 
the center argument. The fixed and twisted layers have the same 
lattice vectors after reshaping, so we can merge them safely
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Fig. 6. Plot of the quasicrystal formed from the incommensurate 30◦ twisted bilayer 
graphene with a radius of 3 nm.

1 # Merge bottom and top layers
2 f i n a l _ c e l l = tb . merge_prim_cell ( layer_twisted , l aye r _ f ixe d )

Then we remove unnecessary orbitals to produce a round qua-
sicrystal with finite radius. This is done by a loop over orbital 
positions to collect the indices of unnecessary orbitals, and func-
tion calls to remove_orbitals and trim functions

1 # Remove unnecessary o r b i t a l s
2 idx_remove = [ ]
3 orb_pos = f i n a l _ c e l l . orb_pos_nm
4 for i , pos in enumerate ( orb_pos ) :
5 i f np . l i n a l g . norm( pos [ : 2 ] − center [ : 2 ] ) > radius :
6 idx_remove . append ( i )
7 f i n a l _ c e l l . remove_orbitals ( idx_remove )
8
9 # Remove dangling o r b i t a l s

10 f i n a l _ c e l l . trim ( )

Finally, we extend the hoppings and visualize the quasicrystal

1 extend_hop ( f i n a l _ c e l l )
2 f i n a l _ c e l l . p lot ( with_cel l s = False , with_orbi ta ls = False ,

hop_as_arrows= False , hop_eng_cutoff =0 .3)

The output is shown in Fig. 6.

4.7.3. Fractal
Generally, fractals can be constructed in two approaches, 

namely bottom-up and top-down, as demonstrated in Fig. 7. The 
bottom-up approach builds the fractal by iteratively replicating the 
fractal of low iteration number following some specific pattern. On 
the contrary, the top-down approach builds a large model at first, 
then recursively removes unnecessary orbitals and hopping terms 
following the pattern. Both approaches can be implemented with
TBPLaS, while the top-down approach is faster.

In this section, we will take the Sierpiński carpet as an example 
and built it in the top-down approach. We begin with defining the 
following auxiliary classes

1 c l a s s Box :
2 def _ _ i n i t _ _ ( s e l f , i0 , j0 , i1 , j1 , void= False ) :
3 s e l f . i0 = i0
20
4 s e l f . j0 = j0
5 s e l f . i1 = i1
6 s e l f . j1 = j1
7 s e l f . void = void
8
9 c l a s s Mask:

10 def _ _ i n i t _ _ ( s e l f , starting_box , num_grid , num_iter =0) :
11 s e l f . boxes = [ start ing_box ]
12 s e l f . num_grid = num_grid
13 for i in range ( num_iter ) :
14 new_boxes = [ ]
15 for box in s e l f . boxes :
16 new_boxes . extend ( s e l f . part i t ion_box ( box ) )
17 s e l f . boxes = new_boxes
18
19 def part i t ion_box ( s e l f , box ) :
20 i f box . void :
21 sub_boxes = [ box ]
22 else :
23 sub_boxes = [ ]
24 di = ( box . i1 − box . i0 + 1) / / s e l f . num_grid
25 dj = ( box . j1 − box . j0 + 1) / / s e l f . num_grid
26 for i i in range ( s e l f . num_grid ) :
27 i0 = box . i0 + i i ∗ di
28 i1 = i0 + di
29 for j j in range ( s e l f . num_grid ) :
30 j0 = box . j0 + j j ∗ dj
31 j1 = j0 + dj
32 i f (1 <= i i < s e l f . num_grid − 1 and
33 1 <= j j < s e l f . num_grid − 1) :
34 void = True
35 else :
36 void = False
37 sub_boxes . append ( Box ( i0 , j0 , i1 , j1 , void

) )
38 return sub_boxes
39
40 def etch_prim_cell ( s e l f , prim_cell , width ) :
41 prim_cell . sync_array ( )
42 masked_id_pc = [ ]
43 for box in s e l f . boxes :
44 i f box . void :
45 id_pc = [ ( ia , ib )
46 for i a in range ( box . i0 , box . i1 )
47 for ib in range ( box . j0 , box . j1 ) ]
48 masked_id_pc . extend ( id_pc )
49 masked_id_pc = [ i [0]∗width + i [1] for i in

masked_id_pc ]
50 prim_cell . remove_orbitals ( masked_id_pc )
51 prim_cell . sync_array ( )

Here the Box represents a rectangular area spanning from [i0, j0]
to (i1, j1). If the box is marked as void, then the orbitals inside it 
will be removed. The Mask class is a collection of boxes, which re-
cursively partitions them into smaller boxes and marks the central 
boxes as void. It offers the etch_prim_cell function to produce 
the fractal by removing orbitals falling into void boxes.

To demonstrate the usage of the auxiliary classes, we define the 
geometric parameters and create a square primitive cell

1 # Geometric parameters
2 start_width = 2
3 extension = 3
4 i t e r a t i o n = 4
5
6 # Create a square primit ive c e l l
7 l a t t i c e = np . eye ( 3 , dtype=np . f loat64 )
8 prim_cell = tb . P r i m i t i v e C e l l ( l a t t i c e )
9 prim_cell . add_orbita l ( ( 0 , 0) )

10 prim_cell . add_hopping ( ( 1 , 0) , 0 , 0 , 1 . 0 )
11 prim_cell . add_hopping ( ( 0 , 1) , 0 , 0 , 1 . 0 )

The Sierpiński carpet is characterized by 3 parameters: the start-
ing width S , the extension L which controls the pattern, and the 
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Fig. 7. Schematic plot of constructing Sierpiński carpet with S = 2, L = 3 and I = 2
in (a)-(c) bottom-up and (d)-(f) top-down approaches. The dashed squares in (a)-(c) 
and filled squares in (d)-(f) indicate the void areas in the fractal.

iteration number I , as shown in Fig. 7. We extend the square prim-
itive cell to the final width of the carpet, which is determined as 
D = S · LI

1 # Create the extended c e l l
2 f inal_width = start_width ∗ extension∗∗ i t e r a t i o n
3 extended_cell = tb . extend_prim_cell ( prim_cell , dim=(

final_width , f inal_width , 1) )
4 extended_cell . apply_pbc ( ( False , False , Fa lse ) )

Then we create a box covering the whole extended cell and a mask 
from the box. The bottom-left corner of the box is located at [0, 0], 
while the top-right corner is at (D − 1, D − 1)

1 # Create the mask
2 start_box = Box ( 0 , 0 , f inal_width −1, f inal_width −1)
3 mask = Mask( start_box , num_grid=extension , num_iter= i t e r a t i o n

)

Then we call the etch_prim_cell function to remove the or-
bitals falling into void boxes of the mask

1 # Remove o r b i t a l s
2 mask . etch_prim_cell ( extended_cell , f inal_width )

Finally, we visualize the fractal

1 # Plot the f r a c t a l
2 extended_cell . p lot ( with_orbi ta ls = False , with_cel l s = False ,

with_conj= False , hop_as_arrows= False )

The output is shown in Fig. 8.

4.8. Strain and external fields

In this section, we introduce the common procedure of apply-
ing strain and external fields on the model. It is difficult to design 
common out-of-the-box user APIs that offer such functionalities 
since they are strongly case-dependent. Generally, the user should 
implement these perturbations by modifying model attributes such 
as orbital positions, on-site energies and hopping integrals. For 
the primitive cell, it is straightforward to achieve this goal with 
the set_orbital and add_hopping functions, as mentioned 
in section 3.2. The Sample class, on the contrary, does not offer 
such functions. Instead, the user should work with the attributes 
21
Fig. 8. Sierpiński carpet with S = 2, L = 3 and I = 4.

directly. In the Sample class, orbital positions and on-site ener-
gies are stored in the orb_pos and orb_eng attributes. Hopping 
terms are represented with 3 attributes: hop_i and hop_j for 
orbital indices, and hop_v for hopping integrals. There is also an 
auxiliary attribute dr which holds the hopping vectors. All the at-
tributes are NumPy arrays. The on-site energies and hopping terms 
can be modified directly, while the orbital positions should be 
changed via a modifier function. The hopping vectors are updated 
from the orbital positions and hopping terms automatically, thus 
no need of explicit modification.

As the example, we will investigate the propagation of wave 
function in a graphene sample. We begin with defining the func-
tions for adding strain and external fields, then calculate and plot 
the time-dependent wave function to check their effects on the 
propagation. The impact of magnetic field on electronic structure 
will also be discussed.

4.8.1. Functions for strain
Strain will introduce deformation into the model, changing both 

orbital positions and hopping integrals. It is a rule that orbital po-
sitions should not be modified directly, but through a modifier 
function. We consider a Gaussian bump deformation, and define 
the following function to generate the modifier

1 def make_deform ( center , sigma =0.5 , extent = ( 1 . 0 , 1 . 0 ) , sca le
= ( 0 . 5 , 0 . 5 ) ) :

2 def _deform ( orb_pos ) :
3 x , y , z = orb_pos [ : , 0 ] , orb_pos [ : , 1 ] , orb_pos [ : , 2]
4 dx = ( x − center [ 0 ] ) ∗ extent [0 ]
5 dy = ( y − center [ 1 ] ) ∗ extent [1]
6 amp = np . exp(−(dx∗∗2 + dy∗∗2) / (2 ∗ sigma∗∗2) )
7 x += amp ∗ dx ∗ sca le [0]
8 y += amp ∗ dy ∗ sca le [0]
9 z += amp ∗ sca le [1]

10 return _deform

Here center, sigma and extent control the location, width and 
extent of the bump. For example, if extent is set to (1.0, 0.0), the 
bump will become one-dimensional which varies along x-direction 
while remains constant along y-direction. scale specifies the 
scaling factors for in-plane and out-of-plane displacements. The
make_deform function returns another function as the modifier, 
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which updates the orbital positions in place according to the fol-
lowing expression

ri → ri + �i, (100)

�
‖
i = Ai · (r‖

i − c‖
0) · s‖, (101)

�⊥
i = Ai · s⊥, (102)

Ai = exp

⎡
⎣− 1

2σ 2

2∑
j=1

(r j
i − c j

0)
2 · η j

⎤
⎦ , (103)

where ri is the position of i-th orbital, �i is the displacement, s is 
the scaling factor, ‖ and ⊥ are the in-plane and out-of-plane com-
ponents. The location, width and extent of the bump are denoted 
as c0, σ and η, respectively.

In addition to the orbital position modifier, we also need to 
update hopping integrals

1 def update_hop ( sample ) :
2 sample . init_hop ( )
3 sample . i n i t _ d r ( )
4 for i , r i j in enumerate ( sample . dr ) :
5 sample . hop_v [ i ] = calc_hop ( r i j )

As we will make use of the hopping terms and vectors, we should 
call the init_hop and init_dr functions to initialize the at-
tributes. Similar rule holds for the on-site energies and orbital po-
sitions, as discussed in section 3.5. Then we loop over the hopping 
terms to update the integrals in hop_v according to the vectors in
dr with the calc_hop function, which is defined in section 4.7.1.

4.8.2. Functions for external fields
The effects of external electric field can be modeled by adding 

position-dependent potential to the on-site energies. We consider 
a Gaussian-type scattering potential described by

V i = V 0 · Ai (104)

and define the following function to add the potential to the sam-
ple

1 def add_ef ield ( sample , center , sigma =0.5 , extent = ( 1 . 0 , 1 . 0 ) ,
v_pot =1.0) :

2 sample . init_orb_pos ( )
3 sample . init_orb_eng ( )
4 orb_pos = sample . orb_pos
5 orb_eng = sample . orb_eng
6 for i , pos in enumerate ( orb_pos ) :
7 dx = ( pos . item (0) − center [ 0 ] ) ∗ extent [0 ]
8 dy = ( pos . item (1) − center [ 1 ] ) ∗ extent [1]
9 orb_eng [ i ] += v_pot ∗ math . exp(−(dx∗∗2 + dy∗∗2) / (2

∗ sigma∗∗2) )

The arguments center, sigma and extent are similar to 
that of the make_deform function, while v_pot specifies V 0. 
Similar to update_hop, we need to call init_orb_pos and
init_orb_eng to initialize orbital positions and on-site energies 
before accessing them. Then the position-dependent scattering po-
tential is added to the on-site energies.

The effects of magnetic field can be modeled with Peierls sub-
stitution, as discussed in section 2. For homogeneous magnetic 
field perpendicular to the xO y-plane along −z direction, the Sam-
ple class offers an API set_magnetic_field, which follows 
the Landau gauge of vector potential A = (B y, 0, 0) and updates 
the hopping terms as
22
ti j → ti j · exp

[
i

eB

2h̄c
· (rx

j − rx
i ) · (ry

j + ry
i )

]
(105)

where B is the intensity of magnetic field, ri and r j are the posi-
tions of i-th and j-th orbitals, respectively.

4.8.3. Initial wave functions
The initial wave function we consider here as an example for 

the propagation is a Gaussian wave-packet, which is defined by

1 def init_wfc_gaussian ( sample , center , sigma =0.5 , extent = ( 1 . 0 ,
1 . 0 ) ) :

2 sample . init_orb_pos ( )
3 orb_pos = sample . orb_pos
4 wfc = np . zeros ( orb_pos . shape [ 0 ] , dtype=np . complex128 )
5 for i , pos in enumerate ( orb_pos ) :
6 dx = ( pos . item (0) − center [ 0 ] ) ∗ extent [0 ]
7 dy = ( pos . item (1) − center [ 1 ] ) ∗ extent [1]
8 wfc [ i ] = math . exp(−(dx∗∗2 + dy∗∗2) / (2 ∗ sigma∗∗2) )
9 wfc /= np . l i n a l g . norm( wfc )

10 return wfc

Note that the wave function should be a complex vector whose 
length must be equal to the number of orbitals. Also, it should be 
normalized before being returned.

4.8.4. Propagation of wave function
We consider a rectangular graphene sample with 50 × 20 × 1

primitive cells, as shown in Fig. 9(a). We begin with importing the 
necessary packages and defining some geometric parameters

1 import math
2 import numpy as np
3 from numpy . l i n a l g import norm
4 import tbplas as tb
5
6 prim_cell = tb . make_graphene_rect ( )
7 dim = (50 , 20 , 1)
8 pbc = ( True , True , False )
9 x_max = prim_cell . l a t_vec [0 , 0] ∗ dim[0 ]

10 y_max = prim_cell . l a t_vec [1 , 1] ∗ dim[1]
11 wfc_center = (x_max ∗ 0 . 5 , y_max ∗ 0 . 5 )
12 deform_center = (x_max ∗ 0.75 , y_max ∗ 0 . 5 )

Here dim and pbc define the dimension and boundary condition.
x_max and y_max are the lengths of the sample along x and y di-
rections. The initial wave function will be a Gaussian wave-packet 
located at the center of the sample given by wfc_center. The 
deformation and scattering potential will be located at the center 
of right half of the sample, as specified by deform_center and 
shown in Fig. 9 (b)-(c).

We firstly investigate the propagation of a one-dimensional 
Gaussian wave-packet in pristine sample, which is given by

1 # Prepare the sample and i n i t a l wave function
2 sample = tb . Sample ( tb . SuperCell ( prim_cell , dim , pbc ) )
3 psi0 = init_wfc_gaussian ( sample , center =wfc_center , extent

= ( 1 . 0 , 0 . 0 ) )
4
5 # Propagate the wave function
6 config = tb . Config ( )
7 config . generic [ " nr_time_steps " ] = 128
8 time_log = np . array ( [ 0 , 16 , 32 , 64 , 128])
9 sample . rescale_ham ( )

10 solver = tb . Solver ( sample , conf ig )
11 p s i _ t = solver . c a l c _ p s i _ t ( psi0 , time_log )
12
13 # Visua l ize the time−dependent wave function
14 v i s = tb . V i s u a l i z e r ( )
15 for i in range ( len ( time_log ) ) :
16 v i s . plot_wfc ( sample , np . abs ( p s i _ t [ i ] ) ∗∗2 , cmap=" hot " ,

s c a t t e r = False )
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Fig. 9. Top and side views of (a) pristine graphene sample and (b) sample with deformation. (c) Plot of on-site energies of graphene sample with scattering potential.
As the propagation is performed with the calc_psi_t function 
of Solver class, it follows the common procedure of TBPM cal-
culation. We propagate the wave function by 128 steps, and save 
the snapshots in psi_t at the time steps specified in time_log. 
The snapshots are then visualized by the plot_wfc function of
Visualizer class, as shown in Fig. 10(a)-(e), where the wave-
packet diffuses freely, hits the boundary and forms interference 
pattern.

We then add the bump deformation to the sample, by assigning 
the modifier function to the supercell and calling update_hop to 
update the hopping terms

1 deform = make_deform ( center =deform_center )
2 sample = tb . Sample ( tb . SuperCell ( prim_cell , dim , pbc ,

orb_pos_modifier=deform ) )
3 update_hop ( sample )

The propagation of wave-packet in deformed graphene sample is 
shown in Fig. 10(f)-(j). Obviously, the wave function gets scattered 
by the bump. Although similar interference pattern is formed, the 
propagation in the right part of the sample is significantly hin-
dered, due to the increased inter-atomic distances and reduced 
hopping integrals at the bump.

Similar phenomena are observed when the scattering potential 
is added to the sample by

1 add_ef ield ( sample , center=deform_center )

The time-dependent wave function is shown in Fig. 10(k)-(o). Due 
to the higher on-site energies, the probability of emergence of 
electron is suppressed near the scattering center.

As for the effects of magnetic field, it is well known that Lan-
dau levels will emerge in the DOS, as shown in Fig. 4(d). The 
analytical solution to Schrödinger’s equation for free electron in 
homogeneous magnetic field with A = (B y, 0, 0) shows that the 
wave function will propagate freely along x and z-directions while 
oscillates along y-direction. To simulate this process, we apply the 
magnetic field to the sample by

1 sample . set_magnetic_f ie ld (50)

The snapshots of time-dependent wave function are shown in 
Fig. 10(p)-(t). The interference pattern is similar to the case with-
out magnetic field, as the wave function propagates freely along 
x direction. However, due to the oscillation along y-direction, the 
interference pattern gets distorted during the propagation. These 
phenomena agree well with the analytical results.
23
4.9. Miscellaneous

4.9.1. Wannier90 interface, Slater-Koster formula and parameter fitting
In this section, we demonstrate the usage of Wannier90 inter-

face wan2pc, Slater-Koster table SK and parameter fitting tool
ParamFit, by reducing an 8-band graphene primitive cell im-
ported from the output of Wannier90. We achieve this by truncat-
ing the hopping terms to the second nearest neighbor, and refitting 
the on-site energies and Slater-Koster parameters to minimize the 
residual between the reference and fitted band data, i.e.,

min
x

∑
i,k

ωi
∣∣Ē i,k − Ei,k(x)

∣∣2
(106)

where x are the fitting parameters, ω are the fitting weights, Ē
and E are the reference and fitted band data from the original and 
reduced cells, i and k are band and k-point indices, respectively.

We begin with importing the necessary packages

1 import numpy as np
2 import matplotl ib . pyplot as p l t
3 import tbplas as tb

and define the following function to build the primitive cell from 
the Slater-Koster parameters

1 def make_cell ( sk_params ) :
2 # L a t t i c e constants and o r b i t a l info .
3 lat_vec = np . array ( [
4 [2.458075766398899 , 0.000000000000000,

0.000000000000000] ,
5 [−1.229037883199450, 2.128755065595607,

0.000000000000000] ,
6 [0.000000000000000 , 0.000000000000000,

15.000014072326660] ,
7 ] )
8 orb_pos = np . array ( [
9 [0.000000000 , 0.000000000 , 0.000000000] ,

10 [0.666666667 , 0.333333333 , 0.000000000] ,
11 ] )
12 orb_label = ( " s " , "px" , "py" , "pz" )
13
14 # Create the c e l l and add o r b i t a l s
15 e_s , e_p = sk_params [ 0 ] , sk_params [1]
16 c e l l = tb . P r i m i t i v e C e l l ( lat_vec , unit =tb .ANG)
17 for pos in orb_pos :
18 for l a b e l in orb_label :
19 i f l a b e l == " s " :
20 c e l l . add_orbita l ( pos , energy=e_s , l a b e l = l a b e l

)
21 else :
22 c e l l . add_orbita l ( pos , energy=e_p , l a b e l = l a b e l

)
23
24 # Add Hopping terms
25 neighbors = tb . f ind_neighbors ( c e l l , a_max=5 , b_max=5 ,
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Fig. 10. (a)-(e) Propagation of one-dimensional Gaussian wave-packet in pristine graphene sample. (f)-(j) Propagation in graphene sample with deformation, (k)-(o) with 
scattering potential and (p)-(t) with magnetic field of 50 Tesla.
26 max_distance =0.25)
27 sk = tb . SK ( )
28 for term in neighbors :
29 i , j = term . pair
30 l a b e l _ i = c e l l . g e t _ o r b i t a l ( i ) . l a b e l
31 l a b e l _ j = c e l l . g e t _ o r b i t a l ( j ) . l a b e l
32 hop = calc_hop ( sk , term . r i j , term . distance , l a b e l _ i ,

l a b e l _ j ,
33 sk_params )
34 c e l l . add_hopping ( term . rn , i , j , hop)
35 return c e l l

In line 3-12 we define the lattice vectors, orbital positions and la-
bels. The SK class will utilize the orbital labels to evaluate the 
hopping integrals, so they must be chosen from a set of prede-
fined strings, namely s for s orbitals, px/py/pz for p orbitals, 
and dxy/dx2-y2/dyz/dzx/dz2 for d orbitals, respectively. Then 
in line 15-22 we add the orbitals with on-site energies taken 
from the first 2 elements of sk_params and the predefined la-
bels. In line 25 we call find_neighbors to find all the orbital 
pairs within the cutoff distance of 0.25 nm, where the arguments
a_max and b_max specify the searching range. After that, we 
create a Slater-Koster table from the SK class, and loop over the 
orbital pairs to add the hopping terms, which are evaluated by the
calc_hop function depending on the displacement vector rij, 
the distance distance, orbital labels label_i and label_j, 
and Slater-Koster parameters sk_params. The calc_hop func-
tion is defined as

1 def calc_hop ( sk , r i j , distance , l a b e l _ i , l a b e l _ j , sk_params ) :
2 # 1 s t and 2nd hopping distances in nm
3 d1 = 0.1419170044439990
4 d2 = 0.2458074906840380
5 i f abs ( distance − d1) < 1.0 e−5:
6 v_sss , v_sps , v_pps , v_ppp = sk_params [ 2 : 6 ]
7 e l i f abs ( distance − d2) < 1.0 e−5:
8 v_sss , v_sps , v_pps , v_ppp = sk_params [6:10]
9 e lse :

10 r a i s e ValueError ( f "Too large distance { distance } " )
11 return sk . eval ( r= r i j , l a b e l _ i = l a b e l _ i , l a b e l _ j = l a b e l _ j ,
12 v_sss =v_sss , v_sps=v_sps ,
13 v_pps=v_pps , v_ppp=v_ppp )
24
where we extract the first and second-nearest Slater-Koster param-
eters from sk_params, and call the eval function of SK class to 
evaluate the hopping integral, taking the displacement vector, or-
bital labels and SK parameters as input.

The fitting tool ParamFit is an abstract class. The users 
should derive their own fitting class from it, and implement the
calc_bands_ref and calc_bands_fit functions, which re-
turn the reference and fitted band data, respectively. We define a
MyFit class as

1 c l a s s MyFit ( tb . ParamFit ) :
2 def calc_bands_ref ( s e l f ) :
3 c e l l = tb . wan2pc( " graphene " )
4 k_len , bands = c e l l . calc_bands ( s e l f . k_points )
5 return bands
6
7 def ca lc_bands_f i t ( s e l f , sk_params ) :
8 c e l l = make_cell ( sk_params )
9 k_len , bands = c e l l . calc_bands ( s e l f . k_points ,

echo_detai ls = False )
10 return bands

In calc_bands_ref, we import the primitive cell with the Wan-
nier90 interface wan2pc, then calculate and return the band data. 
The calc_bands_fit function does a similar job, with the only 
difference that the primitive cell is constructed from Slater-Koster 
parameters with the make_cell function we have just created.

The application of MyFit class is as follows

1 def main ( ) :
2 # F i t the sk parameters
3 k_points = tb . gen_kmesh((120 , 120 , 1) )
4 weights = np . array ( [ 0 . 1 , 0 . 1 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 1 ,

0 . 1 ] )
5 f i t = MyFit ( k_points , weights )
6 sk0 = np . array ([ −8.370 , 0 . 0 ,
7 −5.729, 5.618 , 6.050 , −3.070,
8 0.102 , −0.171, −0.377, 0 .070])
9 sk1 = f i t . f i t ( sk0 )

10 pr int ( "SK parameters a f t e r f i t t i n g : " )
11 pr int ( sk1 [ : 2 ] )
12 pr int ( sk1 [ 2 : 6 ] )
13 pr int ( sk1 [ 6 : 1 0 ] )
14
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15 # Plot f i t t e d band structure
16 c e l l _ r e f = tb . wan2pc( " graphene " )
17 c e l l _ f i t = make_cell ( sk1 )
18 k_points = np . array ( [
19 [ 0 . 0 , 0 . 0 , 0 . 0 ] ,
20 [ 1 . / 3 , 1 . / 3 , 0 . 0 ] ,
21 [ 1 . / 2 , 0 . 0 , 0 . 0 ] ,
22 [ 0 . 0 , 0 . 0 , 0 . 0 ] ,
23 ] )
24 k_path , k_idx = tb . gen_kpath ( k_points , [40 , 40 , 40])
25 k_len , bands_ref = c e l l _ r e f . calc_bands ( k_path )
26 k_len , bands_f i t = c e l l _ f i t . calc_bands ( k_path )
27 num_bands = bands_ref . shape [1]
28 for i in range (num_bands) :
29 p l t . plot ( k_len , bands_ref [ : , i ] , color =" red " ,

linewidth =1.0)
30 p l t . plot ( k_len , bands_f i t [ : , i ] , color =" blue " ,

linewidth =1.0)
31 p l t . show ( )
32
33
34 i f __name__ == " __main__" :
35 main ( )

To create a ParamFit instance, we need to specify the k-points 
and fitting weights, as shown in line 3-4. For the k-points, we are 
going to use a k-grid of 120 × 120 × 1. The length of weights 
should be equal to the number of orbitals of the primitive cell, 
which is 8 in our case. We assume all the bands to have the same 
weights, and set them to 1. Then we create the ParamFit in-
stance, define the initial guess of parameters from Ref. [84], and 
get the fitted results with the fit function. The output should 
look like

1 SK parameters a f t e r f i t t i n g :
2 [−3.63102899 −1.08477167]
3 [−5.27742318 5.87219052 4.61650991 −2.75652966]
4 [−0.24734558 0.17599166 0.14798703 0.16545428]

The first two numbers are the on-site energies for s and p or-
bitals, while the following numbers are the Slater-Koster parame-
ters V ssσ , V spσ , V ppσ and V ppπ at first and second nearest hop-
ping distances, respectively. We can also plot and compare the 
band structures from the reference and fitted primitive cells, as 
shown in Fig. 11(a). It is clear that the fitted band structure agrees 
well with the reference data near the Fermi level (-1.7 eV) and 
at deep (-20 eV) or high energies (10 eV). However, the deriva-
tion from reference data of intermediate bands (-5 eV and 5 eV) is 
non-negligible. To improve this, we lower the weights of band 1-2 
and 7-8 by

1 weights = np . array ( [ 0 . 1 , 0 . 1 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 1 , 0 . 1 ] )

and refitting the parameters. The results are shown in Fig. 11(b), 
where the fitted and reference band structures agree well from -5 
to 5 eV.

4.9.2. Z2 topological invariant and spin-orbital coupling
In this section, we demonstrate the usage of Z2 and SOC

classes by calculating the topological invariant of bilayer bismuth 
[85] and check the effects of SOC. We consider the intra-atom SOC 
term

Hsoc = λL · S (107)

and evaluate its matrix elements in the direct product basis of |l〉 ⊗
|s〉, where |l〉 are the s/p/d orbitals and |s〉 are the eigenstates of 
25
Pauli matrix σz . We prefer this basis set because it does not require 
the evaluation of Clebsch-Gordan coefficients, thus much easier to 
implement. In this basis, the matrix element of SOC becomes

Hsoc
i j = λ〈L · S〉i j = λ〈li, si |L · S| l j, s j〉 (108)

The eval function of SOC class calculates 〈L ·S〉i j taking the orbital 
and spin labels as input. The orbital labels should follow the nota-
tions in 4.9.1, while the spin labels should be either up or down. 
In actual calculations, we firstly double the orbitals and hopping 
terms in the primitive cell to yield the product basis, then add 
SOC as hopping terms between basis functions following Eq. (108).

We begin with importing the necessary packages

1 from math import sqrt , pi
2 import numpy as np
3 from numpy . l i n a l g import norm
4 import tbplas as tb
5 import tbplas . bui lder . exceptions as exc

Then we define the function to build the primitive cell without 
SOC

1 def make_cell ( ) :
2 # L a t t i c e constants
3 a = 4.5332
4 c = 11.7967
5 mu = 0.2341
6
7 # L a t t i c e vectors of bulk
8 a1 = np . array ([−0.5∗a , −sqrt (3) /6∗a , c / 3 ] )
9 a2 = np . array ( [ 0 . 5∗ a , −sqrt (3) /6∗a , c / 3 ] )

10 a3 = np . array ( [ 0 , sqrt (3) /3∗a , c / 3 ] )
11
12 # L a t t i c e vectors and atomic posi t ions of b i l a y e r
13 a1_2d = a2 − a1
14 a2_2d = a3 − a1
15 a3_2d = np . array ( [ 0 , 0 , c ] )
16 lat_vec = np . array ( [ a1_2d , a2_2d , a3_2d ] )
17 atom_position = np . array ( [ [ 0 , 0 , 0 ] , [ 1 / 3 , 1/3 , 2∗mu

−1/3]])
18
19 # Create c e l l and add o r b i t a l s
20 c e l l = tb . P r i m i t i v e C e l l ( lat_vec , unit =tb .ANG)
21 atom_label = ( " Bi1 " , " Bi2 " )
22 e_s , e_p = −10.906, −0.486
23 orbita l_energy = { " s " : e_s , "px" : e_p , "py" : e_p , "pz" :

e_p }
24 for i , pos in enumerate ( atom_position ) :
25 for o r b i t a l , energy in orbita l_energy . items ( ) :
26 l a b e l = f " { atom_label [ i ] } : { o r b i t a l } "
27 c e l l . add_orbital ( pos , l a b e l = label , energy=energy )
28
29 # Add hopping terms
30 neighbors = tb . f ind_neighbors ( c e l l , a_max=5 , b_max=5 ,

max_distance =0.454)
31 sk = tb . SK ( )
32 for term in neighbors :
33 i , j = term . pair
34 l a b e l _ i = c e l l . g e t _ o r b i t a l ( i ) . l a b e l
35 l a b e l _ j = c e l l . g e t _ o r b i t a l ( j ) . l a b e l
36 hop = calc_hop ( sk , term . r i j , l a b e l _ i , l a b e l _ j )
37 c e l l . add_hopping ( term . rn , i , j , hop)
38 return c e l l

The make_cell function is much similar to that of section 4.9.1, 
where we firstly define the lattice vectors and orbital positions ac-
cording to Ref. [85,86], then add the orbitals and hopping terms 
using Slater-Koster formulation. Note that we have included atom 
labels in the orbital labels, namely Bi1 and Bi2, in order to dis-
tinguish the intra-atom terms when adding SOC afterwards. The 
hopping terms are evaluated by the calc_hop function, which is 
also similar to that of section 4.9.1
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Fig. 11. Band structures from reference (solid red lines) and fitted (dashed blue lines) primitive cells with (a) equal weights for all bands and (b) lower weights for bands 1-2 
and 7-8. The horizontal dashed black lines indicate the Fermi level.
1 def calc_hop ( sk , r i j , l a b e l _ i , l a b e l _ j ) :
2 dict1 = { " v_sss " : −0.608, " v_sps " : 1.320 , " v_pps " : 1.854 ,

"v_ppp" : −0.600}
3 dict2 = { " v_sss " : −0.384, " v_sps " : 0.433 , " v_pps " : 1.396 ,

"v_ppp" : −0.344}
4 dict3 = { " v_sss " : 0 . 0 , " v_sps " : 0 . 0 , " v_pps " : 0.156 , "

v_ppp" : 0 .0}
5 r_norm = norm( r i j )
6 i f abs ( r_norm − 0.30628728) < 1.0 e−5:
7 data = dict1
8 e l i f abs ( r_norm − 0.35116131) < 1.0 e−5:
9 data = dict2

10 else :
11 data = dict3
12 lm_i = l a b e l _ i . s p l i t ( " : " ) [1]
13 lm_j = l a b e l _ j . s p l i t ( " : " ) [1]
14 return sk . eval ( r= r i j , l a b e l _ i =lm_i , l a b e l _ j =lm_j ,
15 v_sss =data [ " v_sss " ] , v_sps=data [ " v_sps " ] ,
16 v_pps=data [ " v_pps " ] , v_ppp=data [ "v_ppp" ] )

The intra-atom SOC is implemented in the add_soc function, 
which is defined as

1 def add_soc ( c e l l ) :
2 # Double the o r b i t a l s and hopping terms
3 c e l l = tb . merge_prim_cell ( c e l l , c e l l )
4
5 # Add spin notations to the o r b i t a l s
6 num_orb_half = c e l l . num_orb / / 2
7 num_orb_total = c e l l . num_orb
8 for i in range ( num_orb_half ) :
9 l a b e l = c e l l . g e t _ o r b i t a l ( i ) . l a b e l

10 c e l l . s e t _ o r b i t a l ( i , l a b e l = f " { l a b e l } : up" )
11 for i in range ( num_orb_half , num_orb_total ) :
12 l a b e l = c e l l . g e t _ o r b i t a l ( i ) . l a b e l
13 c e l l . s e t _ o r b i t a l ( i , l a b e l = f " { l a b e l } :down" )
14
15 # Add SOC terms
16 soc_lambda = 1.5
17 soc = tb . SOC ( )
18 for i in range ( num_orb_total ) :
19 l a b e l _ i = c e l l . g e t _ o r b i t a l ( i ) . l a b e l . s p l i t ( " : " )
20 atom_i , lm_i , sp in_ i = l a b e l _ i
21
22 for j in range ( i +1 , num_orb_total ) :
23 l a b e l _ j = c e l l . g e t _ o r b i t a l ( j ) . l a b e l . s p l i t ( " : " )
24 atom_j , lm_j , sp in_ j = l a b e l _ j
25
26 i f atom_j == atom_i :
27 soc_ intens i ty = soc . eval ( l a b e l _ i =lm_i , sp in_ i

= spin_i ,
28 l a b e l _ j =lm_j , sp in_ j

= spin_ j )
29 soc_ intens i ty ∗= soc_lambda
30 i f abs ( soc_ intens i ty ) >= 1.0 e−15:
31 try :
32 energy = c e l l . get_hopping ( ( 0 , 0 , 0) ,

i , j )
26
33 except exc . PCHopNotFoundError :
34 energy = 0.0
35 energy += soc_ intens i ty
36 c e l l . add_hopping ( ( 0 , 0 , 0) , i , j ,

soc_ intens i ty )
37 return c e l l

In line 3-13, we double the orbitals and hopping terms and add 
spin labels to the orbitals. Then we define the spin-orbital coupling 
intensity λ and create an SOC instance in 16-17. Afterwards, we 
loop over the upper-triangular orbital pairs to add the SOC terms, 
while the conjugate terms are handled automatically. In line 26 
we check if the two orbitals reside on the same atom, while in 
line 27 we call the eval function to calcualte the matrix element 
〈L · S〉i j . If the corresponding hopping term already exists, the SOC 
term will be added to it. Otherwise, a new hopping term will be 
created.

With all the auxiliary functions ready, we now proceed to cal-
culate the Z2 invariant number of bilayer bismuth

1 def main ( ) :
2 # Create c e l l and add soc
3 c e l l = make_cell ( )
4 c e l l = add_soc ( c e l l )
5
6 # Evaluate Z2
7 ka_array = np . l inspace ( −0.5 , 0 . 5 , 200)
8 kb_array = np . l inspace ( 0 . 0 , 0 . 5 , 200)
9 kc = 0.0

10 z2 = tb . Z2 ( c e l l , num_occ=10)
11 kb_array , phases = z2 . calc_phases ( ka_array , kb_array , kc )
12
13 # Plot phases
14 v i s = tb . V i s u a l i z e r ( )
15 v i s . plot_phases ( kb_array , phases / pi )
16
17
18 i f __name__ == " __main__" :
19 main ( )

To calculate Z2 we need to sample the ka from − 1
2 Ga to 1

2 Ga , 
and kb from 0 to 1

2 Gb . Then we create a Z2 instance and its
calc_phases function to get the topological phases θ D

m de-
fined in Eq. (92). After that, we plot θ D

m as the function of kb in 
Fig. 12(a). It is clear that the crossing number of phases against 
the reference line is 1, indicating that bilayer bismuth is a topolog-
ical insulator. We then decrease the SOC intensity λ to 0.15 eV and 
re-calculate the phases. The results are shown in Fig. 12(b), where 
the crossing number is 0, indicating that bilayer bismuth becomes 
a normal insulator under weak SOC, similar to the case of bilayer 
Sb [76].
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Fig. 12. Topological phases θ D
m of bilayer bismuth under SOC intensity of (a) λ = 1.5 eV and (b) λ = 0.15 eV. The horizontal dashed lines indicate the reference lines with 

which the crossing number is determined.

1
2
3

4.10. Parallelization

In this section, we give the general guidelines to set up the 
parallelization environment and show how to run calculations in 
parallel mode within TBPLaS. It should be noted that the de-
termination of optimal parallelization configuration is a non-trivial 
task and strongly case-dependent. So, the guidelines provided here 
serve only as a starting point, whereas intensive tests and bench-
marks are required before production runs.

4.10.1. General guidelines
The technical details of parallelism of TBPLaS have been dis-

cussed in section 3.7. Up to now, hybrid MPI+OpenMP paral-
lelization has been implemented for the evaluation of band struc-
ture and DOS from exact-diagonalization, response properties from 
Lindhard function, topological invariant Z2 and TBPM calculations. 
Both MPI and OpenMP can be switched on/off separately on de-
mand, while pure OpenMP mode is enabled by default.

The number of OpenMP threads is controlled by the OMP_NUM_
THREADS environment variable. If TBPLaS has been compiled 
with MKL support, then the MKL_NUM_THREADS environment 
variable will also take effect. If none of the environment vari-
ables has been set, OpenMP will make use of all the CPU cores 
on the computing node. To switch off OpenMP, set the environ-
ment variables to 1. On the contrary, MPI-based parallelization is 
disabled by default, but can be easily enabled with a single option. 
The calc_bands and calc_dos functions of PrimitiveCell
and Sample classes, the initialization functions of Lindhard, Z2,
Solver and Analyzer classes all accept an argument named
enable_mpi whose default value is taken to be False. If set to 
True, MPI-based parallelization is turned on, provided that the 
MPI4PY package has been installed. Hybrid MPI+OpenMP paral-
lelization is achieved by enabling MPI and OpenMP simultaneously. 
The number of processes is controlled by the MPI launcher, which 
receives arguments from the command line, environment vari-
ables or configuration file. The user is recommended to check the 
manual of job queuing system on the computer for properly set-
ting the environment variables and invoking the MPI launcher. For 
computers without a queuing system, e.g., laptops, desktops and 
standalone workstations, the MPI launcher should be mpirun or
mpiexec, while the number of processes is controlled by the -np
command line option.

The optimal parallelization configuration, i.e., the numbers of 
MPI processes and OpenMP threads, depend on the hardware, the 
model size and the type of calculation. Generally speaking, ma-
trix diagonalization for a single k-point is poorly parallelized over 
threads. But the diagonalization for multiple k-points can be ef-
ficiently parallelized over processes. Therefore, for band structure 
and DOS calculations, as well as response properties from Lindhard 
27
function and topological invariant from Z2, it is recommended 
to run in pure MPI-mode by setting the number of MPI pro-
cesses to the total number of allocated CPU cores and the number 
of OpenMP threads to 1. However, MPI-based parallelization uses 
more RAM since every process has to keep a copy of the wave 
functions and energies. So, if the available RAM imposes a limit, 
try to use less processes and more threads. Anyway, the product 
of the numbers of processes and threads should be equal to the 
number of allocated CPU cores. For example, if you have allocated 
16 cores, then you can try 16 processes × 1 thread, 8 processes ×
2 threads, 4 processes × 4 threads, etc. For TBPM calculations, the 
number of random initial wave functions should be divisible by 
the number of processes. For example, if you are going to consider 
16 initial wave functions, then the number of processes should be 
1, 2, 4, 8, or 16. The number of threads should be set according to 
the number of processes. Again, if the RAM size is a problem, try 
to decrease the number of processes and increase the number of 
threads.

If MPI-based parallelization is enabled, either in pure MPI or 
hybrid MPI+OpenMP mode, special care should be taken to out-
put and plotting part of the job script. These operations should 
be performed on the master process only, otherwise the output 
will mess up or files get corrupted, since all the processes will try 
to modify the same file or plotting the same data. This situation 
is avoided by checking the rank of the process before action. The
Lindhard, Z2, Solver, Analyzer and Visualizer classes 
all offer an is_master attribute to detect the master process, 
whose usage will be demonstrated in the following sections.

Last but not least, we have to mention that all the calculations 
in previous sections can be run in either interactive or batch mode. 
You can input the script line-by-line in the terminal, or save it to 
a file and pass the file to the Python interpreter. However, MPI-
based parallelization supports only the batch mode, since there is 
no possibility to input anything in the terminal for multiple pro-
cesses in one time. In the following sections, we assume the script 
file to be test_mpi.py. A common head block of the script is 
given in 4.10.2 and will not be explicitly repeated in subsequent 
sections.

4.10.2. Band structure and DOS
We demonstrate the usage of calc_bands and calc_dos in 

parallel mode by calculating the band structure and DOS of a 12 ×
12 ×1 graphene sample. Procedure shown here is also valid for the 
primitive cell. To enable MPI-based parallelization, we need to save 
the script to a file, for instance, test_mpi.py. The head block of 
this file should be

#! / usr / bin / env python

import numpy as np
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4
5
6
7
8

import tbplas as tb

timer = tb . Timer ( )
v i s = tb . V i s u a l i z e r ( enable_mpi=True )

where the first line is a magic line declaring that the script should 
be interpreted by the Python program. In the following lines we 
import the necessary packages. To record and report the time us-
age, we need to create a timer from the Timer class. We also need 
a visualizer for plotting the results, where the enable_mpi argu-
ment is set to True during initialization. This head block also is 
essential for other examples in subsequent sections.

For convenience, we will not build the primitive cell from 
scratch, but import it from the material repository with the
make_graphene_diamond function

1 c e l l = tb . make_graphene_diamond ( )

Then we build the sample by

1 sample = tb . Sample ( tb . SuperCell ( c e l l , dim=(12 , 12 , 1) , pbc =(
True , True , False ) ) )

The evaluation of band structure in parallel mode is similar to the 
serial mode, which also involves generating the k-path and call-
ing calc_bands. The only difference is that we need to set the
enable_mpi argument to True when calling calc_bands

1 k_points = np . array ( [
2 [ 0 . 0 , 0 . 0 , 0 . 0 ] ,
3 [ 2 . / 3 , 1 . / 3 , 0 . 0 ] ,
4 [ 1 . / 2 , 0 . 0 , 0 . 0 ] ,
5 [ 0 . 0 , 0 . 0 , 0 . 0 ] ,
6 ] )
7 k_path , k_idx = tb . gen_kpath ( k_points , [40 , 40 , 40])
8 timer . t i c ( "band" )
9 k_len , bands = sample . calc_bands ( k_path , enable_mpi=True )

10 timer . toc ( "band" )
11 v i s . plot_bands ( k_len , bands , k_idx , k_ label )
12 i f v i s . is_master :
13 timer . report_total_t ime ( )

The tic and toc functions begin and end the recording of time 
usage, which receive a string as the argument for tagging the 
record. The visualizer is aware of the parallel environment, so no 
special treatment is needed when plotting the results. Finally, the 
time usage is reported with the report_total_time function 
on the master process only, by checking the is_master attribute 
of the visualizer.

We run test_mpi.py by

1 $ export OMP_NUM_THREADS=1
2 $ mpirun −np 1 . / test_mpi . py

With the environment variable OMP_NUM_THREADS set to 1, the 
script will run in pure MPI-mode. We invoke 1 MPI process by the
-np option of the MPI launcher (mpirun). The output should look 
like

1 band : 11.03 s

So, the evaluation of bands takes 11.03 seconds on 1 process. We 
try with more processes
28
1 $ mpirun −np 2 . / test_mpi . py
2 band : 5.71 s
3 $ mpirun −np 4 . / test_mpi . py
4 band : 2.93 s

Obviously, the time usage scales reversely with the number of pro-
cesses. Detailed discussion on the time usage and speedup under 
different parallelization configurations will be discussed in sec-
tion 4.10.6.

Evaluation of DOS can be parallelized in the same approach, by 
setting the enable_mpi argument to True

1 k_mesh = tb . gen_kmesh ( ( 20 , 20 , 1) )
2 timer . t i c ( " dos " )
3 energies , dos = sample . calc_dos (k_mesh , enable_mpi=True )
4 timer . toc ( " dos " )
5 v i s . plot_dos ( energies , dos )
6 i f v i s . is_master :
7 timer . report_total_t ime ( )

The script can be run in the same approach as evaluating the band 
structure.

4.10.3. Response properties from Lindhard function
To evaluate response properties in parallel mode, simply set the

enable_mpi argument to True when creating the Lindhard cal-
culator

1 l ind = tb . Lindhard ( c e l l = c e l l , energy_max =10.0 , energy_step
=2048 , kmesh_size =(600 , 600 , 1) , mu=0.0 , temperature
=300.0 , g_s =2 , back_epsilon =1.0 , dimension =2 , enable_mpi
=True )

Subsequent calls to the functions of Lindhard class do not need 
further special treatment. For example, the optical conductivity can 
be evaluated in the same approach as in serial mode

1 timer . t i c ( " ac_cond " )
2 omegas , ac_cond = l ind . calc_ac_cond ( component="xx" )
3 timer . toc ( " ac_cond " )
4 v i s . plot_xy ( omegas , ac_cond )
5 i f v i s . is_master :
6 timer . report_total_t ime ( )

4.10.4. Topological invariant from Z2
The evaluation of phases θ D

m can be paralleled in the same ap-
proach as response functions

1 z2 = tb . Z2 ( c e l l , num_occ=10 , enable_mpi=True )
2 timer . t i c ( "z2 " )
3 kb_array , phases = z2 . calc_phases ( ka_array , kb_array , kc )
4 timer . toc ( "z2 " )
5 v i s . plot_phases ( kb_array , phases / pi )
6 i f v i s . is_master :
7 timer . report_total_t ime ( )

where we only need to set enable_mpi argument to True when 
creating the Z2 instance.

4.10.5. Properties from TBPM
TBPM calculations in parallel mode are similar to the evalua-

tion of response functions. The user only needs to set the en-
able_mpi argument to True. To make the time usage noticeable, 
we build a larger sample first
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1 sample = tb . Sample ( tb . SuperCell ( c e l l , dim=(240 , 240 , 1) , pbc
=( True , True , False ) ) )

Then we create the configuration, solver and analyzer, with the 
argument enable_mpi=True

1 sample . rescale_ham ( 9 . 0 )
2 config = tb . Config ( )
3 config . generic [ " nr_random_samples" ] = 4
4 config . generic [ " nr_time_steps " ] = 256
5 solver = tb . Solver ( sample , config , enable_mpi=True )
6 analyzer = tb . Analyzer ( sample , config , enable_mpi=True )

Correlation function can be obtained and analyzed in the same 
way as in serial mode

1 timer . t i c ( " corr_dos " )
2 corr_dos = solver . calc_corr_dos ( )
3 timer . toc ( " corr_dos " )
4 energies , dos = analyzer . calc_dos ( corr_dos )
5 v i s . plot_dos ( energies , dos )
6 i f v i s . is_master :
7 timer . report_total_t ime ( )

4.10.6. Benchmarks
The time usages and speedups of different types of calculations 

are summarized in Table 5. The benchmarks have been performed 
on an Intel� Xeon� Gold 6248 CPU, with 16 cores allocated at 
most. It is obvious that for the evaluation of band structure and 
DOS, increasing the number of MPI processes significantly boosts 
the calculation. However, the efficiency enhancement of increas-
ing OpenMP threads is much lower. The average speedup drops 
significantly when OpenMP is enbaled, indicating a poor scaling 
versus the number of CPU cores. This is due to the fact that matrix 
diagonalization cannot be efficiently parallelized over threads. On 
the contrary, pure MPI-based parallelization has the best efficiency, 
with an almost linear scaling (average speedup ≈ 1).

The evaluation of optical conductivity has an additional post-
processing step after diagonalization, which is suitable for both 
MPI and OpenMP-based parallelization. So, the speedup and scal-
ing versus the number of threads improve slightly. Z2 topological 
invariant shows a similar scaling behavior as band structure and 
DOS, i.e., pure MPI parallelization has the best efficiency. For TBPM 
calculations, the speedups and efficiencies of multi-threading and 
multi-processing are almost equal, since sparse matrix-vector mul-
tiplication can be efficiently parallelized over threads. Although 
pure MPI-mode still has the best efficiency, the number of pro-
cesses is limited by the number of random initial wave functions 
and available RAM size, as discussed in section 4.10.1. So, pure 
OpenMP or hybrid MPI+OpenMP paralelization is recommended 
for TBPM calculations, with the optimal numbers of processes and
threads determined from benchmarks.

5. Examples

As mentioned in previous sections, TBPLaS is capable of tack-
ling complex systems with tens of billions of atoms. In this section, 
we present an example utilizing TBPLaS to calculate the proper-
ties of TBG with magic angle θ = 1.05◦ . For TBG with the magic 
angle, flat bands appear near the Fermi level, which provide a 
platform to explore strongly correlated phases and superconduc-
tivity [9,12,87]. The moiré supercell of twisted bilayer graphene 
is constructed by identifying a common periodicity between the 
29
Table 5
Time usages and speedups of benchmarks for various calculation types with respect 
to the numbers of MPI processes (np ) and OpenMP threads (nt ) per process. The 
standard (t0) of each type is defined as the time usage on 1 process × 1 thread, 
while the speedup is defined as t0/tnp nt . Numbers in the brackets are the average 
speedups to each CPU core defined as t0/(tnp nt × np × nt ).

Type t0/s np
nt

1 2 4

Band structure 2.56
1 1.00 (1.00) 1.19 (0.60) 1.45 (0.36)
2 1.92 (0.96) 1.61 (0.40) 2.03 (0.25)
4 4.00 (1.00) 3.05 (0.38) 4.06 (0.25)

DOS 10.62
1 1.00 (1.00) 1.17 (0.58) 1.33 (0.33)
2 1.84 (0.92) 1.74 (0.44) 2.00 (0.25)
4 3.74 (0.93) 3.23 (0.40) 3.88 (0.24)

Optical conductivity 24.45
1 1.00 (1.00) 1.58 (0.79) 2.25 (0.56)
2 1.76 (0.88) 2.61 (0.65) 3.49 (0.44)
4 3.30 (0.83) 4.57 (0.57) 5.93 (0.37)

Z2 invariant 34.37
1 1.00 (1.00) 0.99 (0.50) 1.00 (0.25)
2 1.67 (0.84) 1.72 (0.43) 1.71 (0.21)
4 3.32 (0.83) 3.34 (0.42) 3.38 (0.21)

TBPM 24.71
1 1.00 (1.00) 1.91 (0.96) 3.48 (0.87)
2 1.96 (0.98) 3.80 (0.95) 6.84 (0.86)
4 3.55 (0.89) 6.68 (0.83) 12.80 (0.80)

Fig. 13. Atomic structure of TBG with twist angle θ = 1.05◦ . Highly-symmetric 
stacking regions of AA, AB and BA are marked by red, blue and magenta circles, 
respectively. Carbon atoms in the top and bottom layers are depicted in blue and 
red, respectively.

two layers. We start with a AA stacking bilayer graphene (θ = 0◦), 
and choose the rotation origin (O) at an atom site. Then, we ro-
tate one layer relatively to the other one by the angle θ . Fig. 13
shows the atomic structure of the magic angle TBG. The moiré su-
perlattice contains three types of high-symmetry staking patterns, 
namely AA, AB and BA stacking. For TBG with twist angles smaller 
that 1.2◦ , the system suffers significant lattice reconstruction due 
to the interplay between the interlayer van der Waals interaction 
and the in-plane strain field [88]. The lattice relaxation (both the 
out-of-plane and in-plane) of TBG is performed with the LAMMPS 
package [89]. The intralyer and interlayer interactions of TBG are 
simulated with the long-range carbon bond-order potential [90]
and Kolmogorov-Crespi potential [91], respectively.

The properties of both rigid (without lattice relaxation) and 
relaxed (with lattice relaxation) TBG with magic angle are calcu-
lated with a full tight-binding model based on pz orbitals [83]. 
The on-site energies εi are set to zero, and the hopping parame-
ters between sites i and j are described by a distance-dependent 
function as

ti j = n2 V ppσ (ri j) + (1 − n2)V ppπ (ri j) (109)
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Fig. 14. Band structures of (a) rigid and (b) relaxed TBG with θ = 1.05◦ .

Fig. 15. (a) Density of states of relaxed magic angle TBG with (blue line) and without (black line) magnetic field. (b) Local density of states of the highly-symmetric stacking 
regions of AA (black line) and AB (red line) in relaxed magic angle TBG.
where ri j = |ri j| is the distance between two sites located at ri

and r j , n is the direction cosine of ri j along the direction that is 
perpendicular to the graphene layer. The Slater-Koster parameters 
V ppσ and V ppπ are

V ppπ (ri j) = −t0eqπ (1−ri j/d) Fc(ri j) (110)

V ppσ (ri j) = t1eqσ (1−ri j/h) Fc(ri j) (111)

where d = 1.42 Å and h = 3.349 Å are the nearest in-plane and 
out-of-plane carbon-carbon distances, respectively. t0 = 2.8 eV and 
t1 = 0.44 eV are re-optimized to obtain the magic angle at rotation 
angle θ = 1.05◦ [53]. The parameters qσ and qπ satisfy qσ /h =
qπ/d = 2.218 Å−1, and the smooth function is defined as Fc(r) =
(1 + e(r−rc)/lc )−1 with lc = 0.265 Åand rc = 5.0 Å.

Fig. 14 shows the band structure of rigid and relaxed TBG with 
twist angle θ = 1.05◦ , which are obtained by exact diagonalization. 
In TBG without lattice relaxation (rigid sample), ultraflat bands ap-
pear in the charge neutrality. The bandwidth (energy difference 
between the K and � points of the Brillouin zone) of the flat 
band is 7 meV, and the bandgap (energy difference between the 
flat band and the remote bands at the � point) is zero. In relaxed 
sample (with lattice relaxation), the bandwidth and bandgap are 4 
meV and 43 meV, respectively. Obviously, the lattice relaxation has 
a significant effect on the electronic structure of magic angle TBG. 
The black line in Fig. 15(a) is the density of states of relaxed TBG 
with magic angle, which is calculated via the TBPM in Eq. (42). In 
the calculations, the accuracy of the DOS can be guaranteed by uti-
lizing a large enough model with more than ten million atoms. The 
number of time integration steps is 4096, which gives an energy 
resolution of 3.7 meV. In DOS a sharp peak appears in the charge 
30
neutrality, which corresponds to the flat bands. When a perpen-
dicular magnetic field is applied, Landau levels appear in the DOS. 
The splitting of the peak around the energy E = 68 meV is the lift-
ing of the twofold degeneracy due to the Dirac point splitting in 
twisted bilayer graphene [92].

The LDOS is an important quantity to describe the local prop-
erties of a system, which can be utilized to simulate the dI/dV
spectra obtained with the STM in experiments. TBPLaS provides 
three approaches to evaluate the LDOS, i.e. exact-diagonalization, 
TBPM and the recursion method. Both TBPM and the recursion 
method are capable of dealing with very large models. The LDOS of 
different stacking regions in magic angle TBG obtained with TBPM 
are shown in Fig. 15. It is clear that the LDOS of the AA and AB 
regions have obvious different features. Only the LDOS of the AA 
region has a sharp peak at energy E = 0, which means that the 
states of the flat bands are mainly localized in the AA region. The 
LDOS of the AB region has some peaks located at high energies. 
Such strong LDOS modulation shows spatially localized electronic 
states with specific energies, which can be justified by calculat-
ing the LDOS mapping (quasieigenstates) via Eq. (51). The LDOS 
mappings at different energies are shown in Fig. 16. At energy 
E = 0, states are mainly localized in the AA regions. At the en-
ergy E = −0.17 eV, states are mainly localized in the AB and BA 
regions. Such periodic variation of the local electronic structure is 
a consequence of different interlayer couplings in TBG. The LDOS 
mapping is equivalent to the dI/dV mapping observed experimen-
tally with STM.

In TBPLaS, we can also investigate the optical conductivity via 
the Kubo formula or the Lindhard function. The Lindhard function 
is more suitable for small models since it requires a diagonaliza-
tion process. On the contrary, by combining the Kubo formula and 
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Fig. 16. Local density of states mappings of magic angle TBG (with lattice relaxation) at energies E = −0.17 eV, −0.10 eV, −0.04 eV and 0 eV.
Fig. 17. Optical conductivity of relaxed TBG with twist angle θ = 1.05◦ and mono-
layer graphene. The temperature is T = 300 K and the chemical potential is μ = 0
eV.

TBPM, we can tackle large models that contain tens of millions of 
orbitals. In Fig. 17, the optical conductivity of the magic angle TBG 
and monolayer graphene is calculated with TBPM. Note that we 
omit the Drude weight part in the calculation. For TBG the peak 
with energy around E = 0.1 eV is due to the transition between 
the flat bands and their adjacent bands. A dip-peak feature around 
E = 0.1 eV is due to the electron-hole asymmetry [93].

In addition to the optical conductivity, many other response 
properties can also be obtained with TBPLaS. Fig. 18 shows the 
electron energy loss function of the magic angle TBG. Firstly, we 
calculate the dynamical polarization by using the Kubo formula in 
Eq. (76). Then the dielectric function and energy loss function are 
obtained within the random phase approximation with Eqs. (82)
and (83), respectively. The plasmon mode can be detected by many 
experimental techniques, e.g. the scattering-type scanning near-
field optical microscope (s-SNOM) and electron energy loss spec-
troscopy. In experiments, when a plasmon mode with frequency 
ωp exists with low damping, the energy loss spectra possess a 
sharp peak at ω = ωp . For the magic angle TBG, interband plas-
mon modes close to 100 meV appear at both temperature T = 300
K and 1 K, which are attributed to the interband transitions from 
the flat bands to bands located at energy of 100 meV. These modes 
originate from the collective oscillations of electrons in the AA re-
gion [94]. The ωp = 100 meV plasmon mode disperses within the 
particle-hole continuum in Figs. 18(c) and 18(d) with fast damping 
into electron-hole pairs. It becomes clear with a fine and flat shape 
with momentum larger than 0.2 nm−1. Single-particle transitions 
are almost forbidden in flat bands below 40 meV, corresponding 
to the value of band gap between the flat bands and the excited 
bands at � point, from which the continuum spectrum rises to 
non-zero zone in Fig. 18 (c). When the temperature declines to 
the critical temperature 1 K at which the superconductivity can be 
detected in the magic-angle system [9], a thin plasmon mode with 
energy 9 meV emerges and stretches to large q in Fig. 18(b), which 
is contributed to the collective excitations among flat bands, i.e. 
flat-band plasmon. Meanwhile, underneath the collective flat-band 
plasmon mode, the particle-hole transitions arise with occupying 
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a tiny energy region ranging from 0 meV to 8 meV in Fig. 18(d). 
As a result, this plasmon mode extends above the edge of this tiny 
energy zone and is free from the Laudau damping.

6. Summary

In summary, we have introduced the TBPLaS package, an 
open-source software suite for accurate electronic structure, op-
tical properties, plasmon and transport calculations in real-space 
based on the tight-binding theory. It has an intuitive Python API 
for convenient simulation set-up, and Cython/Fortran cores for ef-
ficient performance. The main advantage of TBPLaS is that the 
numerical calculations are based on the TBPM without diagonal-
ization. Both the memory and CPU costs have a linear scaling with 
the system size. So we can tackle models contain tens of mil-
lions of atoms or even billions of atoms if necessary. In addition to 
TBPM, exact diagonalization-based methods are also implemented. 
Moreover, crystalline defects, vacancies, adsorbates, charge impu-
rity centers, strains and external perturbations can be easily and 
intuitively set up in TPLaS, which allows us to simulate large and 
complex models. With a wide range of pre-defined functions, the 
numerical calculations can be performed only with a few lines of 
code.

In the first release, TBPLaS already features a large variety of 
functionalities, e.g. the band structure, DOS, LDOS, wave functions, 
plasmon, optical conductivity, electric conductivity, Hall conductiv-
ity, quasi-eigenstate, real-space electron density and wave packet 
propagation. Moreover, thanks to its extensible and modular na-
ture, it is easy to implemented other algorithms involving the 
tight-binding Hamiltonian. Further developments and extensions 
of TBPLaS, for instance, the real-space self-consistent Hartree and 
Hubbard methods for large systems [95,96] and support for GPU 
acceleration, will be implemented in the future.
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Fig. 18. Plot of the loss function −Im [1/ε(q,ω)] as function of frequency ω and wave vector q for relaxed TBG with twist angel θ = 1.05◦ at temperatures (a) T = 300 K 
and (b) T = 1 K [53]. Plot of the particle-hole continuum −Im �(q, ω) with respect to the frequency ω and wave vector q at (c) T = 300 K and (d) T = 1 K. The chemical 
potential is μ = 0 and the background dielectric constant κ = 3.03 of hBN substrate.
Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2022 .108632.
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[25] D. Moldovan, M. And̄elković, F. Peeters, pybinding v0.9.5: a Python package for 
tight- binding calculations, This work was supported by the Flemish Science 
Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government, 
https://doi .org /10 .5281 /zenodo .4010216, Aug. 2020.

[26] A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78 (2006) 
275–306.

[27] K. Björnson, SoftwareX 9 (2019) 205–210.
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