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Zoo of 2D materials
Plenty of  2D materials 

starting from graphene

Semimetals (graphene), semiconductors,

metals, superconductors, broad-gap

insulators... 

Graphene

Silicene, germanene

Buckling

Phosphorene

(monolayer of  black

phosphorus)



Flat at T=0: graphene vs silicene/germanene

graphene

flat, sp2

germanene

buckled, sp2-sp3

charge density, DFT, courtesy of A. Rudenko

Graphene is extremely stiff

from Nobel prize site;

an invisible 1 m2 hammock 

could sustain a 4 Kg cat

Our quantitative theory (Los, Fasolino, MIK) gives a 

limit 2.7 Kg for a point cat and 8 Kg for a cat

uniformly distributed over the hammock



Why a 2D crystal should not exist

3D crystals:

atomic displacements  << interatomic distances up to melting (Lindemann)

harmonic approximation  valid up to high temperature

2D crystals

large  fluctuations, harmonic approximations  fails

Peierls and Landau concluded (~1930)  that  2D crystals should not exist

Graphene invites to review their arguments later revisited by Mermin and Wagner

For a review: Graphene as a prototype crystalline membrane

M. I. Katsnelson, A. Fasolino, Acc. Chem. Res., 46, 97 (2013)



Lattice dynamics of graphene

Expand V(R) to 

2nd order around

equilibrium 

Phonons eigenvalues of  

2D, 3D translational invariance

no forces for rigid shift:

2D  rotational invariance

no torques for rigid rotation

linear acoustic modes

quadratic ZA mode



Phonons of graphene (atomistic

simulations)

quadratic dispersion

‘soft’ out of  plane mode



Finite temperatures
In the harmonic approximations, the mean square displacement is 

2D : in plane deformations diverge logarithmically due to acoustic branches. 

2D in 3D    out of  plane deformations,                                       stronger divergence

Landau, Peierls: 2D crystals cannot exist

out of  plane fluctuations grow as L, flat phase unstable!

Cut at



Anharmonicities are crucial 

2D

Harmonic approximation (uncoupled modes)  never works

due to divergent contribution of  acoustic modes

Trick to remain stable: become rippled  (like crumpled paper) 

Consider coupling of  acoustic in-plane and out of  plane (ZA) modes 

(Nelson,Peliti 1987)

This stabilizes the 2D layer  

- Height fluctuations  ℎ ~𝐿 → ℎ ~ 𝐿𝜁 𝜁 < 1
- Deviations from complete flatness at any T ≠ 0, thermal ripples

- Critical, power-law behaviour of  correlation functions  



Crystalline membrane - phenomenology

Elastic energy

Strain tensor

Minimization of  elastic energy: Föppl – von Karman equations

Airy stress function (potential for in-plane stress tensor) 



Crystalline membrane - fluctuations
D. R. Nelson, T. Piran & S. Weinberg (Editors), 

Statistical Mechanics of  membranes and Surfaces

World Sci., 2004

In harmonic approximation (free fields)

and the correlation function

does not tend to constant at

Membrane cannot be flat in harmonic approximation, nonlinearities 

are crucial



Crystalline membrane – fluctuations II

Effective interacting field theory

Integrating out u-field:

Y is 2D Young modulus



Crystalline membrane – fluctuations III

Nonlinearities lead to scaling (like at critical point, but for any

finite temperature

Effective bending rigidity

strong coupling regime

Effective elastic moduli tend to zero, effective bending rigidity to

infinity



Crystalline membrane – fluctuations IV
Computer simulations for graphene (Jan Los, Annalisa Fasolino, MIK)

Snapshot from Monte

Carlo simulations @RT Strong anharmonic

coupling at small q



Ripples and corrugations: Experiment



Experiment and simulations confirm scaling

Bending rigidity κ increases with size  as 𝐿𝜂 with 𝜂 ≈ 0.85

Renormalization of  in-plane phonons and elastic moduli

The effect is very strong (many orders of

magnitude)



How to calculate η analytically?

strain tensor

Physical situation: D = 2, d = 3 but

as usual better keep as parameters

Importantly: nonlinearity in out-of-plane displacements is crucial

but nonlinearity in in-plabe displacements can be skipped

Generalization:



Self-consistent screening approximation

Le Doussal and Radzihovsky, 1992 Diagrammatic expansion neglecting vertex

D = 2, d = 3 for simplicity, otherwise additional tensor structure



Self-consistent screening approximation II

For D = 2, d = 3 close to our 

Parameters for graphene

Simple interpolation

works pretty well

Formally exact in the limit dc = d – D → ∞ but not too bad

for physical case (for unknown reasons)

For any d and D



Modification of the model and ε-expansion

Quantum field-theory RG based on the idea of  scaling invariance 

Instead of working with initial model we introduce a new model

(Gaussian curvature interaction, GCI model) coinciding with the

correct one for D = 2 only) 

Analogy: 

Heisenberg model is either O(n) model for n = 3 or SU(N) for N =2



GCI model

and now we will consider this model for a generic D

As usual, D = 4 is a special case where interactions are marginal



GCI model II

dc = N, the number of  components of  field h
D = 4 - ε

Parameters of  the model:



GCI model III

at N = 1 and ε = 2 

Despite ε = 2 ε-expansion works amazingly well due to small numerical

factors; 2 << 1

for N = 1 



Scaling invariance without conformal invariance

Motivation: Conformal invariance (if  it holds) is the most powerful tool

to calculate e.g. critical exponents with enormous accuracy – see recent

results by Rychkov et al on 3D Ising model

The conformal bootstrap: Theory, numerical techniques, 
and applications

David Poland, Slava Rychkov, and Alessandro Vichi
Rev. Mod. Phys. 91, 015002 (2019) - Published 11 

January 2019

In 2D this is especially poweful but this

is not our case, since embedding space is

not 2D, so, we do not have infinite set of

generators etc.

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.015002
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.015002


Scaling invariance without conformal invariance II

generators



Scaling invariance without conformal invariance III

since

Usually non-conserving currents for interacting fields acquires anomalous dimension and

thus should  vanish – therefore generally speaking scaling leads to conformal symmetry

(if there are no special reasons to protect dimension of  nonconserving vector current)



Scaling invariance without conformal invariance IV

What about our case of  anharmonic (nonlinear) elasticity? 

Important symmetries (incl. rotations of  membrane in embedding space)



Scaling invariance without conformal invariance V

Virial current does not vanish at the fixed point and does not obtain

anomalous dimension (direct RG calculation)

Related to additional symmetries of  the problem (incl. rotations in

embedding space); the same conclusion for GCI model

A. Mauri and M.I. Katsnelson, NPB 969, 115482 (2021)



Quantum membranes: Graphene at low T
Phonons are Bose-particles with Planck distribution function

This provides  third-low of  thermodynamics: entropy S → 0 

at temperature T → 0 

Heat capacity also → 0 at T → 0. Harmonic approximation: 

Thermal expansion coefficient

also should → 0 since  (Maxwell relation)



Quantum membranes II

Quasiharmonic approximation (Grüneisen law)

For flexural phonons, Grüneisen

parameters diverge at q → 0

Negative and T-independent!!!



Quantum membranes III

One needs quantum theory of  anharmonic flexural phonons!

Correct results with some heuristic arguments

Full quantum field theory RG consideration

Quantum action (kinetic energy added):
Partition function:



Quantum membranes IV

Bare Green functions for in-plane

(D) and out-of-plane (G) phonons

Dimensional analysis at

Terms and in S and in

should be neglected. Important: all together, otherwise we break

exact symmetries which lead to wrong results!!!

Effective action



Quantum membranes V

Importantly: at D = 2, D + z = 4, we are at the critical dimensionality,

all divergences are logarithmic, and the theory is renormalizable 

Renormalization of  bending rigidity and Young modulus

(dc = 1 for real membranes)

Bending rigidity increases as (logΛ)4/7

Young modulus decreases as 1/(log Λ)1/7

Violation of  Hooke’s law: effective bulk modulus

for graphene



Quantum membranes VI



Quantum membranes VII

A very strong prediction: almost constant thermal expansion coefficient 

for any realistic temperatures (for freely suspended 2D materials). Vanishes

at T → 0 but very slowly, as 



To conclude

1. We have quite good description of  scaling

properties for classical case

2. Rare example of nontrivial field theory with

scaling but without conformal invariance

3. Quantum theory is renormalizable and can be

considered quite rigorously.

4. Very unusual thermal expansion, on the border

of  violation of  third law of  thermodynamics

5. Beyond this talk: statistical physics of compressed

membranes (still unsolved)

MANY THANKS FOR YOUR ATTENTION
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