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Infrared optics of molecules and crystals
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Thousands of times smaller

than wavelength of visual light
Electromagnetic radiation (Wiki)

For infrared and visual light: wavelength 1s much larger than interatomic
distance, electric field can be considered as homogeneous

E(t) = Ecoswt

Interaction with electric dipole moment is the main effect

V = —dE(t)



Infrared optics of molecules and crystals Il
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dipolar moments which can oscillate modes,

Kellman & Ting, Acc. Chem.
Res. 2007/, 40, 243

Symmetry analysis (E. Wigner): for some modes average dipole moment
is nonzero, leads to IR adsorption/emission. For some modes it is
zero but they are active in the second-order (Raman effect, a.k.a.
combination scattering)



Raman effect

'"°‘de””req”e"%§ Quantum theory of scattering
olecules (Kramers-Heisenberg formula)
Scattering frequency 3 T oIxkN\N/ ] = T N/ ok 2
o ¢§ ZZN do ool Z (d@*)(d,y@) N (da)(d,i@™*)
do' R Wpi — @ — 10 @, + o — i -
Virtualstate - - - - ——— - ——— — — = — — - ot
Rasrt;lan scattering  Rayleigh Raman scattering En - El' For Scattered llght
(anti-Stokes) scattering (Stokes) Cz)m' = h
/ Ei — K
Lin et al, J. Appl. Phys. 129, 191101 (2021) W =+ T

The frequency of scattered light o' =0+ o,

w, frequencies of Raman active vibration modes



Raman effect: Classical interpretation

From Maxwell electrodynamics: refraction index

n*(w) = e(w)

Suppose that dielectric function is modulated by atomic vibrations:
e(t) = eg(l + acoswit)(a <€ 1)

Then, we will have combined frequencies of light since

cos{w + wy )t + cos(w — wy )t
2

Coswt cosw;t =

Combination scattering, Mandelstam and Landsberg, simultaneously
with Raman and Krishnan



Fermi resonance

‘. 0 —8 CO, molecule: symmetry analysis predicts
. Oxygen Oxygen . . .
one Raman-active mode, v, without average dipole
h moment, others are IR active
2 ¢-. ¥ : :¢
Oxygen Oxygen . .
Experimentally: four Raman lines, two strong
3 0 &——D and two weak

Oxygen Carbon Oxygen

Fermi explanation: accidental (almost) degeneracy  ®w; = 2w,

IR active modes at 670 and 2350 cm™? —
Main Raman lines at 1285 and 1300 cm’! ~—
Close to 670 x 2 = 1340 Ry 2hw,

ﬁwg

By = hwy, By = 2hw: Coupling V' = Aryx;

almost degenerate mixes the states, results in splitting



Phase locking (synchronization)

If you have two coupled
oscillators with slightly
different frequencies they
can be synchronized

—

E.g, string pendulum, frequency
ratio close to 1:2

Bifurcation of torus (with
two Incommensurate
frequencies) into limit circle

(with one common period)

ey [ SRS
Oliveira & Melo, Sci Rep 2015



Phase synchronization Il

Superposition of two periodic motions: Lissajous figures

3
1 2 1

It frequencies are commensurate

N
N
O
C
/

(their ratio is rational, there 1s a common
Period) the motion 1s periodic

b

B0V

—
-

b
o

SISOV
KIER BN /N

—

Usually represented in phase space as tori

) [
AR

\

Y,
X
o
==
o 7
VY e
JE B

. B 2
.\ (X 0\’
Vy

% RN
% 5}?{

&

I3

Representing in perpendicular directions

If the ratio 1s incommensurate
the motion 1d quasiperiodic and
trajectory fills the torus




Phase synchronization IlI

Periodic motion in dissipative systems: limit cycles describing self-oscillation

Everywhere: from electrical engineering to
biology
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Closed trajectory,
. Figure 3. Sustained oscillations in a model for circadian oscillations of the PER protein in Drosophila. The oscillations ()
asymp to tlcaﬂy Stable correspond to the evolution to a limit cycle (b), which is reached regardless of initial conditions. Two different initial conditions

lead to the same closed trajectory (from Goldbeter [159]). (Online version in colour.)

Goldbeter A. 2018 Phil. Trans. R. Soc. A 376: 20170376

Phase synchronization is a bifurcation of

tori to limit cycle




String pendulum

=3 B Classical model of Fermi resonance
il (much more difficult and rich than quantum)

Stochastic resonance between limit cycles. Spring
pendulum in a thermostat

Yu. N. Gornostyrev, D. |I. Zhdakhin, and M. |. Katsnel'son
Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences,
620219 Ekaterinburg, Russia

A. V. Trefilov
Russian Science Center *‘Kurchatov Institute,”” 123182 Moscow, Russia

(Submitted 18 March 1999)
Pis’ma Zh. Eksp. Teor. Fiz. 69, No. 8, 585-589 (25 April 1999)

String pendulum, frequency
ratio close to 1:2

L=1/2(x*+y%) = V(x,y), (1)
i
V= E(r—l)z-l-gr( 1 —cos ¢)

(Qf— ;)

= 112§ wg[x*+(y+ 1) ]+2(Q3— wy) Vx*+(y+ 1) —2Q5(y+ 1) +

wq

wo= vk and Qo= g/l w,=20,+A, A<Q,



String pendulum II

| E 2yt A, )]ty =4Tys(=1"),
Thermal noise ; D1 =4TT 81 —1").
o dV ) ]
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FIG. 1. Typical dependence x>(1)y () in the stationary state with A=0, 7=0.025, y=0.005, and I'=0.005.

There is an energy transfer from one mode to the other



String pendulum |
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FIG. 2. 5(¢) (see the expression (4)) for the same parameters as in Fig. 1. The sections corresponding to phase
synchronization (limit cycles) are designated by I, and the sections corresponding to fast transitions between
limit cycles are designated by IL

Long-term periodicity: what does it mean?



String pendulum IV

MHypnanr skcnepumenTasbHOL U TEOPETUYECKOT PUIUKL

T - ey Coupled tields with cubic
nonlinearity U
S i+ (—iV)ut2y(—iV) at+rv*=0,
M. H. Kayneavcon, A. B. Tpeuaos
CHHXPOHM3AINS GOHOHHBIX YACTOT 7+Q*(—iV)v+2I'(—iV) o4-2huv=0,

N KBASUCTATHYECKHWE CMEIIEHUSI ATOMOB
B RPUCTAJIJIAX

u(r, t)=A(r, t)exp{ilqr—o (q,)t]} +B(r, t)exp {i[q,rto (qo) ]} T & c.,
(2)
v(r, t)=C(r, t)exp{i[qorto (qo)¢/2] } +D (r, ) exp{i[gor—w (q,) t/2]} +&. c..

Separating resonance terms:

d ' 0% m* 2A
—Ai-.+(aﬁ) F R ( - ) T4 AHAC)=0,  (3)
ot aq ’ o 4w 0qy Ags ! 0z Oxp
A ; 20)2 2 :
e _( d"’) v ( i ) i} +(I‘0+ Zf"’\) C—4iAA*C*=0.
at aq’ 200 \ 0qa0qs 7 0%q dxp

(4)
o=2Q+v (|v|<w), A=\ 20,



String pendulum V

Analysis of these equations show existence of #wo limit cycles with
different total phases. Thermal noise induces an (almost) periodic
transitions between two these limit cycles

Coming back to the Fermi resonance in string pendulum model
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FIG. 4. Spectral densities P, (w)=|x,|* and P_“(w)=|ym|2 normalized to 1 for A=0, y=0.005, and T’
=0.005. The curves /-3 are presented for 7=0.001, 0.0025, and 0.005, respectively. For convenience the
coordinate origin of the curves 2 and 3 is shifted.

Splitting of main frequencies!



Kovalev!, Roman V. Pisarev?, Mikhail I. Katsnelson', Boris
A. Tvanov!, Paul H. M. van Loosdrecht?, Alexey V. Kimel®
and Evgeny A. Mashkovich?

Frequency (THz)

Recent development: magnon-phonon
resonance in antiferromagnet CoF,

Fermi spin-lattice resonance

Impulsive Fermi spin-lattice resonance in
antiferromagnetic CoFs

Thomas W.J. Metzger!”, Kirill A. Grishunin', Chris
Reinhoffer?, Roman M. Dubrovin®, Atiqa Arshad?, Igor

NN
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Fig. 1 Sketch of nonlinear spin-lattice dynamics. (a) For 2f,, = fi, the Fermi spin-
lattice resonance condition is fulfilled and the the nonlinear energy transfer channel between
a magnon and a phonon opens. (b) The Frequency tuning by an external magnetic field
applied along the antiferromagnetic easy axis. The frequency matching condition is marked
by a grey star. The Feynman diagram illustrates the two magnon - one phonon conversion

process.



Spectral amplitude (arb. units)

Recent development: magnon-phonon
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Second part: Synchronization in space
Misfit dislocations

Interface of different semiconductors (e.g. PbTe/PbSe)

One-dimensional dislocations.
I. Static theor -

4 HHH

By F. C. FrRANK AND J. H. vAN DER MERWE B REEERE

H. H. Wills Physical Laboratory, University of Bristol = ]
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(Communicated by N. F. Mott, F.R.S.—Received 22 December 1948—
Revised 25 March 1949—Read 19 May 1949)
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Energy of interlayer interaction (second term) wants
that interatomic distances are equal but then one pays Tang & Fu, Nature Phys. 10, 964 (2014)
for the energy of elastic deformation (the first term)

Very roughly: When W > u(b — a)? then two layers will be mostly commensurate, and the whole
misfit will be concentrated via narrow ‘solitons’, and in the opposite limit the system will not even try
To reach synchronization of periods, that 1s, commensurability

Commensurate — incommensurate transition is expected!



Van der Waals Heterostructures

Decemt 020
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“Van der Waals heterostructures’
Geim & Grigorieva, Nature 2013

Combination of 2D materials
create new physical systems and
open ways for new application
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Twisted bilayer graphene:
Flat bands and all that

Correlated insulator behaviour at half-filling in
magic-angle graphene superlattices

Yuan Cao', Valla Fatemi', Ahmet Demir', Shiang Fang”, Spencer L. Tomarken', Jason Y. Luo', Javier D. Sanchez- Yamagishi’,

Unconventional superconductivity in
magic-angle graphene superlattices

Kenji Watanabe?, Takashi Taniguchi", Efthimios Kaxiras®#, Ray C. Ashoori! & Pablo Jarillo- Herrero! Yuan Cao', Valla Fatemi', Shiang F&mg—z. Kenji Watanabe?, Takashi Temigus.‘hi“. Efthimios Kaxiras”! & Pablo Jarillo-Herrero'
5 APRIL 2018 | VOL 556 | NATURE | 43
10
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Chen & Qin, JPCC 8, 12085 (2020)

Graphene

Dean et al, Nature 497, 598 (2013)

Example: Graphene on hBN

Graphene and hexagonal boron nitride (hBN)
have the same crystal structure but slightly
different interatomic distances (roughly, 0.142 nm
vs 0.145 nm). In hBN they are 1.8% larger
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Figure 1| Schematic representation of the moiré pattern of graphene (red)
on hBN (blue). a Relative rotation angle between the crystals ¢ =0°.

b Relative rotation angle between the crystals ¢ =3°~ 0.052rad. The
mismatch between the lattices is exaggerated (~10%). Black hexagons
mark the moiré plaquette.

Woods et al, Nature Phys. 10, 451 (2014)



Graphene on hBN: Motivation

Graphene at hBN has much higher electron mobility than graphene
at any other substrates or freely suspended graphene — why?

Ripples and puddles

Freely suspended graphene has strong thermal fluctuations (intrinsic ripples)

Gibertini, Tomadin, Polini, Fasolino & MIK, PR B81, 125437 (2010)

The PhyS|CS Atomic displacements at room temperature

FIG. 2. (Color online) Average displacements u(r) calculated as
discussed in Sec. I A. The color scale represents the Z component
of the average displacements, varying from —3.0 A (blue) to
+3.0 A (red). The arrows, whose length has been multiplied by a
factor ten for better visibility, represent the in-plane components of
the average displacements.




Graphene on hBN: Motivation Il

Scalar potential

Vl — gl(uxx + uyy
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FIG. 3. (Color online) Left panel: color plot of the scalar potential V(r) (in units of meV) calculated using Eq. (2) with g;=3 eV.

Central panel: the real part of the potential V,(r) (in units of meV) calculated using Eq. (3). Right panel: the imaginary part of the potential
V,(r) (in units of meV).
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FIG. 4. (Color online) Top panel: fully self-consistent electronic
density profile én(r) (in units of 1012 cm’z) in a corrugated
graphene sheet. The data reported in this figure have been obtained
by setting g;=3 eV, a..=0.9 (this value of a,. is the commonly
used value for a graphene sheet on a Si0, substrate), and an average
carrier density i7,=0.8 X 10" c¢m™. Bottom panel: same as in the
top panel but for e..=2.2 (this value of a.. corresponds to sus-

pended graphene).
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FIG. 9. (Color online) One-dimensional plots of the
self-consistent  density profiles (as functions of x in nm
for  vy=21.1 nm) for different  values of  doping:

T,=0.8x 10" cm™ (circles), ,=3.96x10"> cm™ (triangles),
and ,==3.17 X 10" em™? (squares). The data reported in this fig-
ure have been obtained by setting g, =3 eV and a,.=2.2. The inset
shows &n(r) (in units of 10" ¢cm™2) at a given point r in space as a
function of the average carrier density 7, (in units of 10'% cm™2).



Graphene on hBN: Motivation Il

Gibertini, Tomadin, Guinea, MIK & Polini PR B 85, 201405 (2012)

Graphene on S10, , ,
Experimental STM data: V.Geringer et al (M.Morgenstern group)

0.24
0.16
0.08
0.00
—0.08
—0.16
—0.24

2 (nm)

FIG. 3: (Color online) Fully self-consistent induced carrier-
density profile 6n(r) (in units of 10'* cm™?) in the corrugated
graphene sheet shown in Fig. 1. The data reported in this
figure have been obtained by setting g1 = 3 eV, aee = 0.9,
and an average carrier density fic &~ 2.5x 10" em™2. The thin
solid lines are contour plots of the curvature Vih(r). Note
that there is no simple correspondence between topographic
out-of-plane corrugations and carrier-density inhomogeneity.

hBN is atomically flat: suppresses thermal ripples and
no ripples due to roughness of substrate



Commensurate-incommensurate
transition

C
Commensurate-incommensurate transition in
graphene on hexagonal boron nitride

C.R. Woods, L. Britnell', A. Eckmann?, R. S. Ma®, J. C. Lu?, H. M. Guc®, X. Lin® G. L. Yu',
Y. Cao?, R. V. Gorbachev?, A. V. Kretinin', J. Park®, L. A. Ponomarenka', M. I. Katsnelson®,
Yu. N. Gornostyrev’, K. Watanabe®, T. Taniguchi®, C. Casiraghi?, H-). Gao®, A. K. Geim*

and K. S. Novoselov™
NATURE PHYSICS po1:10.1038/NPHYS2954

When misorientation angle (in radians) is
smaller with misfit, synchronization happens

Moire patterns with periodicity 8 nm (left) and

Atomistic simulations

PRL 113, 135504 (2014) PHYSICAL REVIEW LETTERS e g

26 SEPTEMBER 2014 200
Moiré Patterns as a Probe of Interplanar Interactions for Graphene on h-BN =
M. M. van Wijk, A. Schuring. M. I. Katsnelson, and A. Fasolino™ > 100
. . . . Y
Distribution of bond length in
commensurate (left) and

incommensurate (right) regimes
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Optimization of structure

PHYSICAL REVIEW B 84, 195414 (2011) O : e a ! x o ® &
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Adhesion and electronic structure of graphene on hexagonal boron nitride substrates (a) K 8 .‘ “ . : ) “h
| 1 I ne e Mo O v ve' & |[viveve

B. Sachs,'”” T. O. Wehling,'" M. I. Katsnelson,” and A. L. Lichtenstein'
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Sublattices are no more equivalent — locally

energy gap 1s open (mass term in Dirac eq.)



Optical second-harmonic generation

In commensurate phase inversion symmetry in broken due to nonequivalence of sublattices —
second-harmonic generation (SHG) 1s allowed by symmetry

PHYSICAL REVIEW B 99, 165432 (2019)

Electron-hole symmetry should be also

Resonant optical second harmonic generation in graphene-based heterostructures bekCﬂ N either ﬁnal dOplﬂg ot NNN
M. Vandelli,"* M. I. Katsnelson,"* and E. A. Stepanov'+* h : )
opping ?
10 [ . X X e (R
:x H,-j[A]zH;jexp —l—f A(r,t)-dr
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I I . . . . . .
sl , Contributions to nonlinear optical conductivity
% (1| band e 0-02
E : : width VAR ~0.02 / gap
L1 ~0.06 .
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FIG. 1. Dispersion relation of graphene with (solid line) and
without (dashed line) account for the next-nearest-neighbor hopping
process 1’. Red arrows show optical resonances at the bandwidth
(I" point), van Hove singularity (M point), and band gap (K point).

t=-28¢eV.t'=—0.1tr m=30meV




Optical SHG Il

a

Direct Observation of Incommensurate—Commensurate Transition
in Graphene-hBN Heterostructures via Optical Second Harmonic
Generation

E. A. Stepanov,‘*":' S. V. Semin,” C. R. Woods, M. Vandelli, A. V. Kimel, K. S. Novoselov,
and M. 1. Katsnelson

Cite This: ACS Appl. Mater. Interfaces 2020, 12, 27758-27764 I:I Read Online

Figure 1. Sketch of the experiment. Green and yellow hexagonal tiles

represent hBN and graphene, respectively. Red arrows depict the
< . incident 800 nm light. Blue arrows indicate the SHG response
<C b — incommensurate collected at 400 nm from different parts of the sample. (a) In the

= : incommensurate phase, the inversion symmetry of graphene is not
M hase, Oﬂly hBN s1gnal broken, and the uniform signal of the SHG comes only from the hBN.

is visible; (b) After the structural phase transition to the commensurate state,

strong modification of the SHG response is observed from the
d-— commensurate, one graphene area, where the inversion symmetry breaking is induced by
the aligned hBN substrate.
=
=

can see graphene

Commensurate — incommensurate transition was induced by
heating and clearly detected via SHG




Graphene on graphite

Relaxation of moiré patterns for slightly misaligned identical lattices:
graphene on graphite 2D Mater. 2 (2015) 034010

M M van Wijk, A Schuring, M I Katsnelson and A Fasolino

Atomistic simulations: graphene
on graphite

lattice
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Figure 2. The effects of relaxation are shown for a sample with (n, m) = (82,1),0=1.2°and a,,= 115.3 A. (a) The sample prior to
relaxation, (b) the sample after relaxation. Notice the shrinking of the AA stacked area. (c¢) The displacements of the atoms as the result

of relaxation for asample (n,m) =(17,1),0=5.7°and a,, = 24.5 A. The colour indicates size and the arrow the direction of the
displacements.
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Figure 4. Bond lengths of relaxed configurations for samples where the graphene layer is relaxed in all directions. The supercell is
shown in black. The bottom panels show the bond length along the dashed diagonal line. (a) =2.1°, (n,m) = (47,1), a,, = 66.4 A. (b)
0=1.2° (n,m)=(82,1), a,, = 115.3 A. (c) =0.46°, (n, m) = (216,1), a,, =302.6 A.
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Figure 6. Out-of-plane distance for samples where the graphene layer is relaxed in all dimensions. The bottom panels show the out-of-
plane distance along the dashed diagonalline. (a) 0 =2.1° (n,m) = (47,1), a,, = 66.4 A.(b)O=1.2°(n,m)=(82,1), a,, = 1153 A.
(c) 0=0.46° (n,m) = (216,1), a,, = 302.6 A.




Twisted bilayer graphene
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Figure 8. Out-of-plane distance for double layer graphene. The bottom four panels show zalong the dashed line in the top figure. The
dashed lines show the z for graphene on graphite as in figure 6.

There is a modulation at small angles and some analog of “incommensurability”
(small modulations) at larger angles



Messages to take home

- Sometimes it is not enough to consider generic case, (accidental)
degeneracy can dramatically change the physics, and it happens

Fermi resonance plays a role in properties of water and many organic
substances (containing C-H bond like in benzene molecule)

- Close to the resonance there 1s phase synchronization and energy
transfer between modes in the resonance

- Synchronization in space (commensurate-incommensurate transition)
is a very hot subject now, e.g. for Van der Waals heterostructures

THANK YOU
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