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Microworld: waves are corpuscles, corpuscles are waves

Einstein, 1905 — for light (photons)
L. de Broglie, 1924 — electrons and other microparticles

hb'g |2

lyy + wo |2

|2 + ||F2 |2

Individual Accumulated
counts,/min counts/min



Universal property ot matter

Wave-particle duality
of Cg; molecules

Markus Arndt, 0laf Nairz, Julian Vos-Andreae, Claudia Keller,
Gerbrand van der Zouw & Anton Zeilinger
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Electrons are particles (you cannot see half of electron)
but moves along all possible directions (interference)

We cannot describe individual events,
individual spots seem to be completely random,
but ensemble of the spots forms regular
interference fridges

(a) Afver 28 elecirons

Randomaness in the foundations of physics?/

(b After 1000 electrons

i

(c) After 10000 electrons

R




Giod dacs nok play dice with the universe, Anyone wha iz nat shocked by Buankum
- Albert Einztein Theaory haz nok underztaod it - Miclz Bohr

A. Einstein: Quantum mechanics is incomplete; superposition principle
does not work in the macroworld

N. Bohr: Classical measurement devices is an important part
of quantum reality; we have to describe quantum world in terms
of a language created for macroworld

The limits of my language mean the limits of my world
(Ludwig Wittgenstein)




Two ways of thinking

|.  Reductionism (“microscopic” approach)

Everything is from water/fire/earth/gauge
fields/quantum space-time foam/strings... and
the rest is your problem

Il. Phenomenology: operating with “black




Two ways of thinking Il

Knowledge begins, so to speak, in the middle, and leads into the
unknown - both when moving upward, and when there is a
downward movement. Our goal is to gradually dissipate the

darkness in both directions, and the absolute foundation - this
huge elephant carrying on his mighty back the tower of truth - it
exists only in a fairy tales (Hermann Weyl)

We never know the foundations! How can
we have a reliable knowledge without the
base?




Is fundamental physics fundamental?

Classical thermodynamics is the only physical theory

of universal content which | am convinced will never

be overthrown, within the framework of applicability
of its basic concepts (A. Einstein)

The laws describing our level of reality are essentially
Independent on the background laws. | wish our colleagues from
true theory (strings, quantum gravity, etc....) all kind of success
but either they will modify electrodynamics and quantum
mechanics at atomic scale (and then they will be wrong) or they
will not (and then I do not care). Our way is down

But how can we be sure that we are right?!



Unreasonable effectiveness

e Quantum theory describes a vast number of
different experiments very well

e WHY ?

* Niels Bohr*: L)

t is wrong to think that the task of 2
ohysics is to find out how nature is.

Physics concerns what we can say about nature.

*A. Petersen, “The philosophy of Niels Bohr,” Bulletin of the Atomic Scientists 19, 8 — 14 (1963).



Main message of this talk

e Logical inference applied to experiments for
which

1. There is uncertainty about each individual event

2. The frequencies of observed events are robust with
respect to small changes in the conditions

=» Basic equations of quantum theory

* Not an interpretation of quantum theory

 Derivation based on elementary principles of
human reasoning and perception



Stern-Gerlach experiment

e Neutral atoms (or neutrons) | | ® |dealization

pass through an a
inhomogeneous magnetic D,
field
= 30

e Source S emits particles
with magnetic moment

e Magnet M sends particle
to one of two detectors

* Detectors count every
* Inference from the data: particle
directional quantization




ldealized Stern-Gerlach experiment

e Event = click of detector D, or (exclusive) D.

-

 There is uncertainty about each event

— We do not know how to predict an event with
certainty

D D,

D D



Some reasonable assumptions (1)

e For fixed a and fixed source S, the frequencies
of + and — events are reproducible

e |f we rotate the source S and the magnhet M by
the same amount, these frequencies do not

change




Some reasonable assumptions (2)

 These frequencies are robust with respect to
small changes in a

e Based on all other events, it is impossible to
say with some certainty what the particular
event will be (logical independence)

a

D D,
948—@(
S D



Logical inference

e Shorthand for propositions

a
— x=+1 < D. clicks  Du
X=+ +C -
— x=-1 < D clicks J
— M ~the value of M is M Yy

— a <»thevalue ofais a

— Z ~everything else which is known to be relevant to
the experiment but is considered to fixed

e We assign a real number P(x|M,a,Z) between 0 and 1 to
express our expectation that detector D, or (exclusive) D.
will click and want to derive, not postulate, P(x|M,a,Z)
from general principles of rational reasoning

e What are these general principles ?




Plausible, rational reasoning =»

inductive logic, logical inference

e G. Padlya, R.T. Cox, E.T. Jaynes, ...

— From general considerations about rational reasoning it follows
that the plausibility that a proposition A (B) is true given that
proposition Zis true may be encoded in real numbers which
satisfy

0 <P(A|Z)<1
P(A|Z)+ P(A|Z)=1 ; A=NOTA
P(AB|Z)=P(A|BZ)P(B|Z) ; AB=AANDB

— Extension of Boolean logic, applicable to situations in which
there is uncertainty about some but not all aspects

* Kolmogorov’s probability theory is an example which complies with
the rules of rational reasoning

* |s quantum theory another example?




Plausible, rational reasoning =»
logical inference

e Plausibility

— Is an intermediate mental construct to carry out
inductive logic, rational reasoning, logical
inference

— May express a degree of believe (subjective)

— May be used to describe phenomena independent
of individual subjective judgment
plausibility =2 i-prob (inference-probability)



Application to the

Stern-Gerlach experiment

We repeat the experiment N times. The number
of times that D, (D) clicks is n, (n_)

i-prob for the individual event is

P(x]a-M.Z) = P(x]0,2) = 1-XEO)

E(@)=E(a-M.Z)= ) xP(x|0,2)

e

Dependent on cos® =a-M Rotational invariance

x==1

Different events are logically independent: .

P(xy,....xy[a-M,Z) = []P(x0,2)
The i-prob to observe n,_and n_events is =
x|0,Z)™

My

F
P(nyq1,m_1|0,N,Z) = N! H I:

x—+1



How to express robustness?

Hypothesis H,: given 6 we observe n,and n_
Hypothesis H,: given 6 +& we observe n,_and n.
The evidence Ev(H,/H,) is given by

Ev(H, | H,) = PVer 104N 2) =Y m? P(x|6+6.Z)
L P(n_.n_|6.N, Z) = P(x|6,Z) B
[ P(xj6.2) £[P(x]6.2)T & P(xl6.2)] &
_Z” fp 16,Z) 2 {P(.TW._ZJ i P{x|a.z)f+o{g -]

Frequencies should be robust with respect to
small changes in & =» we should minimize, in
absolute value, the coefficients of ¢, &,...



Remove dependence on € (1)

Ev(H, |H,)= Zn_‘_
r==*1

B 2 P(x]6.2)

[gpf[ﬂa.z) g | P(x]6,2) z+€2 P"(x|6.Z) L ols)
1 P(x16.z) 2| P(x|6.2) |

* Choose P(x|«9,Z)=%

» Removes the 15t and 3™ term

» Recover the intuitive procedure of assigning to the
i-prob of the individual event, the frequency which
maximizes the i-prob to observe the whole data set



Remove dependence on € (2)
Z” [ 1c'|t5' Z) SE{P'(M&Z)T—FEE PH{I&ZW%—O[‘E‘?]

1 (x6.2) P(x16.2)| 2 P(x|6.2)

* Minimizing the 2" term (Fisher information) for
all possible (small) e and 6

- 1 (8P(X|Q,Z)T
" & Px|e,z)\ a6

lt+txa-M

P(x|a-M,Z) =P(x]0.,2) =

s

* |n agreement with quantum theory of the
idealized Stern-Gerlach experiment



Bernoulli trial

Two outcomes (head and tails in coin flypping )

Results are dependent on a single parameter 8 which
runs a circle (periodicity); what is special in quantum
trials?

The results of SG experiment are the most robust, that is,
correspond to minimum Fisher information

No assumptions on wave functions, Born rules and other machinery
Of quantum physics, just looking for the most robust description of
the results of repeating “black box” experiments



Separation procedure

Dataset in SG experiment. 2 ={xq,...,xy|x;==%1,i=1,...,N},
N is the total number of recorded events.

N(xl|a,M, Z) of outcomes with x==41 (N=N(+1|a,M,Z)+ N(-1|a,M, 7))

(x) :%T Z xN(x|a, M, Z)= Z xf(x|a,M,Z)
x==1 y==1

Rotational invarience: a crucial physical requirement

f(x|a,M,Z)=f(x]a-M,Z)

Depends only on the angle 4



Separation procedure |l

Presentation of measurement results in vector/matrix form
x=(+1,-1)T f=(f(+1]a,M,Z),f(—1|a,M,Z))!

(x) =x! - f=Trx f=Trx!

When we rotate measurement device we want to separate the
data on particle and the data on device for any angle 6

It cannot be done with vectors but can be done with matrices
| dependent on pairs of outcomes

Heisenberg argument: we cannot probe atomic states
but only transitions between two atomic states
— therefore two-index objects!




Separation procedure |l

]]-_I_P{T A

(x) =TrFX=TrpX  jp= . and X=upl+u-o

The first object (density matrix) depends on orientation of particles, the
second — on the measurement device

Logical inference results can be represented in this way

ﬁ:{ﬂJr;d.Jj and X=a-o

Projection operator property: /% = p

. Existence of “wave function”
p=[¥)¥], |W¥)=ar[1)+alll) s derived (also, for EPRB

experiment)



Derivation of basic results of quantum
theory by logical inference

 Generic approach

1. List the features of the experiment that are deemed
to be relevant

2. Introduce the i-prob of individual events
Impose condition of robustness

4. Minimize functional = equation of quantum theory
when applied to experiments in which
i.  There is uncertainty about each event
ii. The conditions are uncertain

iii. Frequencies with which events are observed are
reproducible and robust against small changes in the
conditions

w

We need to add some “dynamical” information on the system



Logical inference =»
Schrodinger equation

Generic procedure: @
. Pulsed light soutce
Experiment =» ¥

The “true” position 6 of // \

the partide IS uncertain ‘Particle moving on this line’
and remains unknown 0

i-prob that the particle Photon emilted by particle
at unknown position °

6 activates the detector —|—|—|—|—|—|—|—|-*ét|—|—|—|—|—|—>
X

at pOSition X . P(X | Q,Z) Detector j




Robustness

e Assume that it does not matter if we repeat
the experiment somewhere else =

P(x|6,Z)=P(x+{|0+&,2) @ ¢ arbitrary

e Condition for robust frequency distribution <
minimize the functional (Fisher information)
)= ox 1 (6P(x|9,2)j

- P(x]6,2) OX
with respect to P(x|0, Z)




Impose classical mechanics
(a la Schrodinger)

e If there is no uncertainty at all =»classical
mechanics = Hamilton-Jacobi equation

L)

2m

06

=0 (X)

e If there is “known” uncertainty

Jidx

(8S(x)
0

j +2m[V (x) - E]
X ]

P(x|0,Z2)=0

— Reduces to (X) if P(x|0,Z) - 6(x —0)

(XX)



Robusthess + classical mechanics

 P(x|6,Z) can be found by minimizing Iz (6)
with the constraint that (XX) should hold

=» We should minimize the functional

e 1 oP(x|6,2)Y’ 8S(x)\’ B
F(Q)jwdx{P(Xw,Z)( ~ )M{Kax )+2m[\/(x) E]}P(xw,Z)}

— A = Lagrange multiplier
— Nonlinear equations for P(x|8,Z) and S(x)



Robusthess + classical mechanics

* Nonlinear equations for P(x|0,Z) and S(x) can
be turned into linear equations by substituting™®

W(X|¢9,Z):\/P(x|9,z)ei8(x)ﬁ/2 9

g F(e)=fidx{4a‘”*(x"9’z)a‘/’(x'g’z)+2mzw(x)—Elw*(X|9'Z)‘”(X'Q’Z)}

OX OX

 Minimizing with respect to v (x|6,2) yields

82w(x|¢9 Z) mA
OX°

=>» Schrodinger equatlon A =4K % = 4h~?2

o[V -E]y(x]6.2)=0

+E. Madelung, “Quantentheorie in hydrodynamischer Form,” Z. Phys. 40, 322 — 326 (1927)



Time-dependent, multidimensional case

The space is filled by detectors which are fired (or not fired) at some
discrete (integer)time t = 1,.... M

At the very end we have a set of data presented as 0 (no
particle in a given box at a given instant or 1

T: U”.TU”..T = [_Ld..Ld]: n= 11N: T = ‘1-...—..M}

or, denoting the total counts of voxels j at time 7 by 0 < k; ; < N, the experiment produces the data
set

i}:{fg.rr:1,....m;w: 3 kj_r}. (55)

je[—L14,19]

Logical independence of events:

1 k
P(jlO,.T.Z)r"
P(Dl6. ..., 9M~N-Z]_NI| I | [ (Jl6- l
T—_IJE[—LdHLd]

kj.r !



Time-dependent case |l

Homogeneity of the space: P(j|0.Z) =P(j+ ¢|0 +.Z)

Evidence: EU:ZZ“’: eic€ic  OP(jl0r.7.Z) IP(j|B..T.2Z)

bt L= P(jl0,.T.2) 06 90y

2
By — Z‘*: €, T apumr, 7.7) o
~\ & VPlo:. 7. 2) 30;

i=1

1 OP(jl0,.7.2)\°
< de2 ‘
<)) P(j|0:.7.2) ( 26, )

d d ‘ o 2
1 WP(jlO., 7.2
Ev < Z ZE?I E , " ({ Ul i )) o 7




Time-dependent case |l

F}PUIﬂT,r,Z))E

d
1
Minimizing Fisher information: Ir = , ( ,
jz; P(j|6,.7.2) 36;

Taking into account homogeneity of space; continuum limit:
IP(x|0(t).t.Z)\"
fp—fdxfdr <{XI'() )
P x|ﬁ{r} t.7) 0X;

Hamilton — Jacobi equations:

dS(6. t 1 2
{ ( i -+ (VS{ﬁ.r)—EA(B‘r}) + V@, t) =0
Jdt 2m C




Time-dependent case |V

Minimizing functional:

P fdxfdr Xd: 1 IP(x|0(1).1.2) >
N — | P(x|6(1).1.2) ox;

IS(x. t 1 [0S(x.t 2
+A|:f &0 (‘ (x )—qu.r)) +qu.r)}mx|9(r).r.z;}

Jt 2m OX; C

Substitution Y(x|0(t),t.Z) = JP(x|6(F), . Z}EIS{&HJI;’E

Equivalent functional for minimization:
A _
Q= 2fd:«rfdr {n-:iﬁ[v’f(xlmr). (,7) ihd (X“_?m £, 2)

dt

—*(x|0(6), 1,2)

I (x]6(t). . 2Z)
at

d : .
ot (x|0(t).t.2) rqﬁ
2 Ai(x, D)™ (x]0(0), 1, Z
4 EH:( o + = AR DYI60). 1. 2)

IV (x|0(1).t.2)  ig/h
— Aj(x, t 0(r).t.Z
* ( 0Xj 2C i(% DY (*16() )

+miV (x, r}yﬁréixlﬁ[r). t,Z)r(x|0(c). t, Z]}.

= 4/h°



Time-dependent case V

Time-dependent Schrdodinger equation

ol Ot).t.7Z
ih U (x|6(t) )

. K i( d iqu r})2+v[x t) | Ur(x|0(t).t,2)
N I _ . r L
ot 2m par dxj  Nic lr

It is linear (superposition principle) which follows from classical
Hamiltonian (kinetic energy is mv?/2) and, inportantly, from building
one complex function from two real (S and S +2mth are equivalent).

A very nontrivial operation dictated just by desire to simplify the
problem as much as possible (to pass from nonlinear to linear

equation).

Requires further careful thinking!



Next steps

1. Pauli equation for nonrelativistic particle with spin — done
2. Klein-Gordon equation for relativistic particle, no spin — done
3. Dirac equation for relativistc particle with spin — in progress

A lot of thing to do but, at least, one can replace (some)
(quasi)philosophical declarations by calculations — as we like

Thank you
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