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Epigraph with explanations
All science is either physics of stamp collection (E. Rutherford)

In stamp collection we
deal with history and
complexity

But the same in biology,
geology... To understand
the origin of cats and mice
we need to go billions years
to the past

{ Fundamental physical laws
= are local in time and space

What are the physical mechanisms of “stamp collection”?!



Outline

Introduction

Pattern formation in physics: magnetic patterns as an example
Structural complexity from magnetic patterns to art objects
Self-induced glassiness and beyond: the role of frustration
Experimental realization: elemental Nd

Complexity of quantum frustrated systems



Complexity

Schrédinger: life substance is “aperiodic crystal” (modern formulation — Laughlin,
Pines and others — glass)

Intuitive feeling: crystals are simple, biological structures are complex

Origin and evolution of life: origin of complexity?



Complexity (“patterns”) in inorganic world
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Stripe domains in ferromagnetic thin

films % .
# in rail steel

W (SciRep 9,

Microstructures in metals 7454 (2019))

and alloys
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Do we understand this? No, ot, at least, not completely



Magnetic patterns

Example: strip domains in thin ferromagnetic films
PHYSICAL REVIEW B 69, 064411 (2004)

Magnetization and domain structure of bee Feg;Ni,o/ Co (001) superlattices

R. Brucas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjorvarsson
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FIG. 2. The MFM 1images of the 420 nm thick FegNijq/Co superlattice at different externally applied in-plane magnetic fields:

(a)—virgin (nomnaguetized) state; (b). (c), (d)—increasing field 8.3, 30, and 50 mT; (e), (f). (g)—decreasing field 50, 30, 8.3 mT: (h)—in
remanent state.
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Magnetic patterns 11
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Magnetic patterns 111

Europhys. Lett., 73 (1), pp. 104-109 (2006)
DOI: 10.1209/epl1/i2005-10367-8

Topological defects, pattern evolution, and hysteresis
in thin magnetic films

P. A. PrupDkovskii!, A. N. RuBtsov! and M. I. KATSNELSON?2

H= (%) + %

+Q [ [m.(r) (Ir ] \/dgﬂlr_r,)Q)mz(r’)dzrdg'r’.

2
(a_m) — 5m2 — hmy) d?r +

Competition of exchange interactions (want homogeneous
ferromagnetic state) and magnetic dipole-dipole interations
(want total magnetization equal to zero)



Magnetic patterns 1V

Classical Monte Carlo simulations

Fig. 2 — Snapshots of the stripe-domain system with the two-component order parameter at several
points of the hysteresis loop for 3 = 1. The magnetic field is h = 0, h = 0.3, and h = 0.6, from left
to right. The inset shows the color legend for the orientation of local magnetization.

We know the Hamiltonian and it is not very complicated

How to describe patterns and how to explain patterns?



What is complexity?

 Something that we immediately recognize when we
see it, but very hard to define quantitatively

e S. Lloyd, “Measures of complexity: a non-exhaustive
list” — 40 different definitions

* Can be roughly divided into two categories:
- computational/descriptive complexities (“ultraviolet”)
- effective/physical complexities (“infrared” or inter-scale)



Computational and descriptive
complexities

* Prototype — the Kolmogorov complexity:

the length of the shortest description (in a given
language) of the object of interest

 Examples:

- Number of gates (in a predetermined basis) needed
to create a given state from a reference one

- Length of an instruction required by file compressing
program to restore image



Descriptive complexity

e The more random —the more complex:

White noise Vermeer “View of Delft”
970 x 485 pixels, gray scale, 253 Kb 750 x 624 pixels, colored, 234 Kb



Descriptive complexity

* The more random — the more complex:

Paris japonica - 150 Homo sapiens - 3.1
billion base pairs in billion base pairs in

DNA DNA



Effective complexity

biological life

A

Information Complexity

Effective Complexity

crystals

Complexity

atmospheric gas
-

»
Order Disorder

Can we come up with a quantitative measurer..



Attempts: Self-Organized Criticality

Per Bak: Complexity ss criticality

PER'BAK

héw Some complicated (marginally stable) systems

natuli(e demonstrate self-similarity and “fractal” structure
WOrks

This is intuitively more complex behavior than
just white noise but can we call it “complexity”?

I am not sure — complexity is hierarchical




Structural complexity

Multi-scale structural complexity of natural
patterns PNAS 117, 30241 (2020)

aaaaa

Andrey A. Bagrov®1:2_ llia A. lakovlev®!, Askar A. lliasov®, Mikhail I. Katsnelson®:", and Vladimir V. Mazurenko®

The idea (from holographic complexity and common sense):
Complexity is dissimilarity at various scales

Let f(z) be a multidimensional pattern

fa(z) its coarse-grained version (Kadanoff decimation,
convolution with Gaussian window functions,...)

Complexity is related to distances between fa(x) and faiqa(z)

(f(z)lg(z)) = [pdzf(z)g(z)
Ap = [(fa(z)|fa+an(z))—

((fa(@)|[fa(z)) + (faraa(z)|fatan(z))) | = /I af 0f

) dA' dA
§|(fA+dA(1’) — fa(x)|fa+da(z) — fa(z))l,

b | =
||

)|dA, as dA — 0



Structural complexity 11

VMoEENENuEEETEEEEE N
AR EEENEN
-ANNEENENEENSEEEEN

FIG. 1. Schematic representation of the idea behind the pro-
posed method. A photo of L x L pixels (panel I) taken from
www.pexels.com is divided into blocks of A x A pixels (panel
IT). A renormalized photo of [ x [ pixels is plotted, where
[ = L/A (I=4 in this example). The renormalized photo is
rescaled up to initial photo size (panel III). Vectors A and
B are constructed from blocks of the initial and the renor-
malized images respectively (panel IV). The scalar product
of these vectors is used to define overlap O. For illustrative
purposes, pixelwise products of A- and B-blocks are shown
as vector O.



Art objects (and walls)

C = 0.4557 C=0.4581 C=0.4975 C = 0.5552




Other objects

Photos by V. V.
Mazurenko

C = 0.167 C=0.316 C=0.209



Solution of an ink drop in water

Entropy should grow, but complexity is not! And indeed...
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FIG. 7. The evolution of the complexity during the process
of dissolving a food dye drop of 0.3 ml in water at 31°C.



Structural complexity: 2D Ising model

Can be used as a numerical tool to find 7 from finite-size

simulations
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FIG. 2. Temperature dependence of the complexity obtained
from the two-dimensional Ising model simulations. Red and
blue squares correspond to the complexities calculated with
k > 0 and k > 1, respectively. The size of error bars is
smaller than the symbol size. Inset shows the first derivative
of the complexity used for accurate detection of the critical
temperature. Here we used N = 8, A = 2.



Structural complexity: 3D Ising model

3D Ising model,
cubic lattice
(insert shows
temperature
derivative of
Complexity)
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FIG. 3. Temperature dependence of the complexity ob-
tained from the three-dimensional Ising model simulations
with A = 2. Red and blue squares correspond to the complex-
ities calculated with £ > 0 and k > 1, respectively. The size
of error bars is smaller than the symbol size. Inset shows the
first derivative of the complexity used for accurate detection
of the critical temperature. Here we used L x L x L cubic lat-
tice with L = 256, N = 6. The small but visible cusp on the
blue curve around 7" ~ 3.2 reflects the emergence of magnetic
domains within the ferromagnetic phase, which takes place
sometimes during MC simulations on large lattices.



Structural complexity: Static patterns

Spin textures due to competition of exchange and
Dzialoshinskii-Moriya interactions

H= —JZS Sp =D [y x S —ZBsz

nn'’ nn'’

FIG. 5. Configurations of the DM magnetic on 1024 x 1024
square lattice obtained from independent Monte Carlo runs
with parameters B = 0.05J, |D| = J, T' = 0.02J. While
they are visually distinct, corresponding complexities (left to
right) are equal to C = 0.4992115, C = 0.4991825 and C =
0.4991805.



Structural complexity: Static patterns 11
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FIG. 4. (a) Magnetic field dependence of the complexity ob-
tained from the simulations with spin Hamiltonian containing
DM interaction with J =1, |D| =1, T'= 0.02. The error bars
are smaller than the symbol size. (b) Complexity derivative
we used for accurate detection of the phases boundaries.



Complexity in magnets under laser pulses

H=-J)» S8y —D) [SyxSuy]—K>» (S8)°

ds,, OH
=TS x[pg o]

¥ Q OH
o |Sn| 1+ o2 Sn X (Sn X [_ 8Sn n(t)])3

Nonthermal effect of laser pulses: effective magnetic field (inverse Faraday effect)

B,(t) = Boexp (— U tp)2> eRn

22,




Complexity in magnets under laser pulses 11
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g Fig. 12. The evolution of the complexity of the paramagnetic spin configuration at

@) . T = 9 K under the influence of ¢,, = 36 ps magnetic pulse along z axis. Red
and blue squares correspond to the complexities calculated with k > 0 and k£ > 1,
respectively. The amplitude of the magnetic pulse is Bop = 10 T.

80 100 120

Fig. 11. The evolution of the complexity during the (top panel) breathing and (bottom
panel) switching processes generated with ¢t,, = 8 ps and t,, = 28 ps, respectively.
Red and blue squares correspond to the complexities calculated for 2048 x 2048

images and 128 x 128 square lattice of Heisenberg spins, respectively.



Competing interactions and self-induced spin
olasses

Special class of patterns: “chaotic” patterns

Hypothesis: a system wants to be
modulated but cannot decide in which

PHYSICAL REVIEW B 69, 064411 (2004) . .
direction

I’T:‘\‘\"’“A'"::..Jl: !-l:’

i
1
lr—r'| V(r—r')*+D?

TN
1—e P
§ :2772 mgi _gq , (13)
q q

E,= J J drdr'm(r)m(r'")

" : : : :
0 .3 where mg is a two-dimensional Fourier component of the
Y magnetization density. At the same time, the exchange en-
h ergy can be written as
' 1 R |
) Ee_xch—gan g mgn _g., (14)
1
1m so there is a finite value of the wave vector ¢g=¢* found

from the condition

d|, 1—e™® 1 . 15
Elbﬂ 7 +5(lq = (15)




Selt-induced spin glasses 11

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

PHYSICAL REVIEW B 93, 054410 (2016)

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject

Stripe glasses in ferromagnetic thin films to Long-Rense Interactions

. . ek - - A QQs et 1 a1 atenels
Alessandro Prmc1p1 and Mikhail I. Katsnelson Alessandro Principi and Mikhail I. Katsnelson

Development of idea of stripe glass, J. Schmalian and P. G. Wolynes, PRL 2000

Glass: a system with an energy landscape characterizing by
infinitely many local minima, with a broad distribution of batriets,
relaxation at “any” time scale and aging (at thermal cycling you
never go back to exactly the same state)

c d
<@g )
: . Low High
P>Pg P>9g
Wik

1)

8 &

Picture from P. Charbonneau et al,

DOI: 10.1038/ncomms4725

Intermediate state between
equilibrium and non-equilibrium,

opportunity for history and
memory (“stamp collection”)




Self-induced spin glasses 111

One of the ways to describe: R. Monasson, PRL 75, 2847 (1995)

Hylm,Al = Hlm,A] + g ] dr[m(r) — ¥ ()]

The second term describes attraction of our physical field m(r)

to some external field ¥ (r)

If the system an be glued, with infinitely small interaction g, to macroscopically
large number of configurations it should be considered as a glass

Then we calculate F, = f ,I?z)ng[gz:; g‘” and see whether the limits

Fog =limy_ oo lim, 0 F, and F=lm, olimy_, F, are different

No disorder is needed (contrary to

If yes, this is self-induced glass .. ) )
traditional view on spin glasses)



Self-induced spin glasses IV

PHYSICAL REVIEW B 93, 054410 (2016) Hm,\] = /dr{J[a,-mj(r)F _ sz(r) —2h(r) - m(r))

Stripe glasses in ferromagnetic thin films

+g/drdr'm:(r)
2

Alessandro Principi”* and Mikhail I. Katsnelson

I 1 ,
) [Ir T i = ,-f|2]'":(’ :
4 / dr((r)m(r) — 11). (1)

Self-consistent screening approximation for spin propagators
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q-dependence of normal
and anomalous (“glassy”, non-
ergodic spin-spin correlators



Self-induced spin glasses VI

week ending

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

Maximal simplification

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject .o
to Long-Range Interactions (Bl’ azovskii mOdel)

Alessandro Principi* and Mikhail I. Katsnelson

Gy'(9) = a5 (a°/ a5 — 1)°/4 + qp egsin® (6,)
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> FIG. 2. Panel (a) the configurational entropy of the mean-field
problem for the two-dimensional Ising model (D=2 and



Experimental observation of self-induced spin
olass state: elemental Nd

Self-induced spin glass state in elemental
and crystalline neodymium

Umut Kamber, Anders Bergman, Andreas Eich, Diana lusan, Manuel Steinbrecher,
Nadine Hauptmann, Lars Nordstrom, Mikhail I. Katsnelson, Daniel Wegner*,
Olle Eriksson, Alexander A. Khajetoorians*

Science 368, 966 (2020)

Spin-polarized STM experiment, Radboud University
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Magnetic structure: local correlations
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The most important observation: aging. At thermocycling (or

cyling magnetic field) the magnetic state i1s not exactly reproduced

36
10/21/23




Ab initio: magnetic interactions in bulk Nd

Method: magnetic force theorem (Lichtenstein, Katsnelson, Antropov, Gubanov
JMMM 1987)
Calculations: Uppsala team (Olle Eriksson group)

a hcp
06 m] dth cubic
% dhcp hexagonal
047
>
£ 0.2
= %X
Z ota o g o 8 %F gy
a o
0.2},
1 3

r.la
]

* Dhcp structure drives competing AFM interactions

* Frustrated magnetism o



ADb initio bulk Nd: energy landscape

 E£(Q) landscape features flat valleys along high
symmetry directions

See A. Principi, M.I. Katsnelson, PRB/PRL 38
(2016)/(2017) 10/21/23
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Spin-glass state in Nd: spin dynamics

1.0
0 Atomistic spin dynamics
. simulations
+ 0.6 I e £,=0.01 ps
3 —tw=020 pS
= 04T e t,=0.82ps
| 1,=3.28 ps . .
021\ iatne Typically sp.1n glass
0.0~ b=524ps behavior

103 102

10°
t (ps)

100

10"
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Autocorrelation function C(t,,,t) = (m;(t + ¢t,,) -m;(¢t,,)) fordhcpNdat T=1K
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> I ‘\ "
« 0.8 =
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To compare: the same for prototype
disordered spin-glass Cu-Mn

B. Skubic et al, PRB 79, 024411 (2009)



Order from disorder

Thermally induced magnetic order from

glassiness in elemental neodymium NATURE PHYSICS | VOL 18 | AUGUST 2022 | 905-911

Benjamin Verlhac!, Lorena Niggli©®", Anders Bergman?, Umut Kamber®’, Andrey Bagrov'?,
Diana lusan? Lars Nordstrém ©2, Mikhail I. Katsnelson®', Daniel Wegner®?, Olle Eriksson*?
and Alexander A. Khajetoorians ©®'X

Glassy state at low T
and long-range order
at T increase

Diamond
g »

Q
3

Figure 2: Emergence of long-range multi-Q order from the spin-Q glass state at elevated

temperature. a,b. Magnetization images of the same region at 7= 5.1 Kand 11 K, respectively (k=
100 pA, a-b, scale bar: 50 nm). ¢,d. Corresponding Q-space images (scale bars: 3 nm™), illustrating

the changes from strong local (i.e. lack of long-range) Q order toward multiple large-scale domains

with well-defined long-range multi-Q order. e,f. Zoom-in images of the diamond-like (e) and stripe-like T _ 51< (a)c) * Spln glas S
(f) patterns (scale bar: 5 nm). The locations of these images is shown by the white squares in b. g,h. JE— d . :
T=11K(b,d): (noncollinear) AFM

Display of multi-Q state maps of the two apparent domains in the multi-Q ordered phase, where (g)



Order from disorder Il
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Phase transition at approx. 8K (seen via “complexity”
measures)
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Does self-induced glassiness solve the problem?

No! There is no real memory in spin glasses: too many local minima,
too small basin of attraction of each minimum

A hypothesis (MIK, Y. Wolf, E. Koonin, Phys. Scr. 93 (2018) 043001):

States that an “glue” not to maroscopically large number of
configurations (like in glasses) and not just to a few (like for
conventional broken symmnetry) but something in between:

Hlp(x)] — Hylo(x)] = H[p(x)]
g [ | - 2
+ 5. ] dx[op(x) — o(x)]

F,

= limy_Jimg_ 0%

< [0

for many, but not too many configurations o (x)

(in the context of “physical mechanisms of biological evolution”)



Multi-well “memory” state in Ising spin systems

Atom-by-atom construction of attractors in a tunable finite size spin
array
New J. Phys. 22 (2020) 023038

A Kolmus', M1 Katsnelson® ), A A Khajetoorians”© and H ] Kappen'

2D Ising model, square lattice, no disorder but frustrations due to
oscillating character of exchange interactions (2D RKKY)

H= =) Jjsisy

i>j
( 0 y1=]
Ji=4q1 . (2« .
—281n r,, ,ls—]

i A

theratio @ = Mabetween the RKKY wavelength () and the lattice constant (a)

is the only relevant parameter in the model



Multi-well “memory” state in spin systems II

A SQG

Figure 1. (a) The spatial distribution of the RKKY exchange interaction (/) for the centralatomin the Ising spin array(n = 25) for
different  for the labeled magnetic regime: spin-Qglass (SQG), multi-well (MW), double well (DW). The color bar representsthe
amplitude and sign of the interaction. (b) Schematic of the energylandscape forthe three-labeled regimes, dlustrating qualitatively the
distribution and depth of states for each regime where grayillustrates the effective temperature. (c) Illustration of the distinguishing
features inthe Q-space histogram identifying each regime, where white to red intensity corresponds to alow to high number of states.




Multi-well “memory” state in spin systems III
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Figure 4. (a) A regime diagram with the lattice width n on the vertical axis and  on the horizontal axis. The white dashed-dotlines
indicate the different regimes, as labeled and as defined by the corresponding Q-histograms. The color scale indicates the entropy as
defined in the main text. (b) The scaling behavior near the boundary between each regime, corresponding to the white dashed lines in
(a) and labeled by the letters A-D. Each plot corresponds to the number of available states as a function of the lattice width n versus the
normalized number of metastable states N/N,,... N, N, are the number of stable states and the largest number of stable states per
graph, respectively, and we divide the former by the latter in order to normalize each plot for comparison. These simulations were
repeated three times, no large differences were found.




Frustrations and complexity: Quantum case

Generalization properties of neural network - | (20200111593
approximations to frustrated magnet ground states

Tom Westerhout'™, Nikita Astrakhantsev234* Konstantin S. Tikhonov® >67% Mikhail |. Katsnelson"8 &

Andrey A. Bagrov'8°™

How to find true ground state of the quantum system?

In general, a very complicated problem (difficult to solve even for
quantum computer!)

Idea: use of variational approach and train neural network to find
“the best” trial function (G. Carleo and M. Troyer, Science 355, 602 (2017))

K K
Yos) = D_wilS) = D _slwillS)
i=1 i=1
Generalization problem: to train NN for relatively small basis (K

much smaller than total dim. of quantum space) and find good
approximation to the true ground state



Frustrations and complexity: Quantum case 11

Quantum $=1/2 Hamiltonian H=], Z&a ®6,+/, Z G, ® 6,
NN and NNN interactions (ab) ({a,b))

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J;—J> model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; ¢ spatially anisotropic Kagome lattice. In all cases J> = 0 corresponds to the absence of
frustration.

. . . . 4 6
24 spins, dimensionality of Hilbert space d = C{; >~ 2.7 - 10

Still possible to calculate ground state exactly
Training for K =0.01 d (small trial set)



Frustrations and complexity: Quantum case 111

Square lattice Triangular lattice Kagome lattice
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a-c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J,/J; for square a,
triangular b, and Kagome c lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Note 1. Subfigures d-f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.



Frustrations and complexity: Quantum case IV
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Fig. 4 Generalization of signs and amplitudes. We compare generalization
quality as measured by overlap for learning the sign structure (red circles)
and amplitude structure (green squares) for 24-site Kagome lattice for
two-layer dense architecture. Note that both curves decrease in the
frustrated region, but the sign structure is much harder to learn.

"Somehow it seems to fill my head with ideas —only I don't exactly know
what they are!” (Through the Looking-Glass, and What Alice Found There)



Further development

Many-body quantum sign structures as non-glassy Ising models
Tom Westerhout, Mikhail I. Katsnelson, Andrey A. Bagrov

Communications Physics volume 6, Article number: 275 (2023)

The idea: use machine learning to find amplitudes and then

map onto efficient Ising model
K

K
Was) = Z‘l’i|5i> = ZSiIWi”Si)
i—1

i=1

When amplitudes are known the trial ground state energy < W|H|¥ >

is a bilinear function of signs s;, and

- = -~

we have Ising optimization problem in

K-dimensional space; K is very big but ) p DT T
it turns out f'ﬁ% e &
that the model is not glassy and can be o, -
optimized without too LB
Real lattice ~ Hilbert space Ising model

serious problems


https://www.nature.com/commsphys

Further development 11
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It turns out that even for initially
frustrated quantum spin models
the effective Ising model 1s not

frustrated, both couplings are small
and optimization is quite
efficient



Sign overlap

Further development I11
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The quality of optimization is quite
robust with respect to uncertainties
in amplitudes (overlap with the exact
ground state)



To summarize: How 1t was 1n 1960th-1980th
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People were very enthusiastic on applications of theory of dynamical
systems: attractors, bifurcations, catastrophes — useful for sure but...
' e |

The distance from Benard convection cells to
origin of life seems to be too far...




To summarize: Now

Now we try statistical physics approached, our new key words are:
emergence, renormalization group flow, universality classes,
spin glasses, broken replica symmetry, frustrations. ..

Giorgio Parisi, Nobel Prize in physics 2021
"for the discovery of the interplay of disorder
and fluctuations in physical systems from atomic
to planetary scales."

Actually, disorder is not needed, frustrations are enough

(self-induced spin glass state in Nd)

Whether you can observe a thing or not
depends on the theory which you use.

It is theory which decides what can be observed
(A. Einstein)



