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Epigraph with explanations
All science is either physics of stamp collection (E. Rutherford)

In stamp collection we
deal with history and
complexity

But the same in biology,
geology... To understand
the origin of cats and mice
we need to go billions yeats
to the past

{ Fundamental physical laws
= are local in time and space

What are the physical mechanisms of “stamp collection”?!
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Introduction

Holographic complexity

Pattern formation in physics: magnetic patterns as an example
Structural complexity from magnetic patterns to art objects
Self-induced glassiness and beyond: the role of frustration
Complexity of quantum frustrated systems

Remarks on biological complexity and evolution



Complexity

Schrodinger: life substance is “aperiodic crystal” (modern formulation — Laughlin,
Pines and others — glass)

Intuitive feeling: crystals are simple, biological structures are complex

Origin and evolution of life: origin of complexity?



Comp

lexity (““patterns”) in inorganic world

e
/ =

Stripe domains in ferromagnetic thin
films

Microstructure in steel



What is complexity?

 Something that we immediately recognize when we
see it, but very hard to define quantitatively

e S. Lloyd, “Measures of complexity: a non-exhaustive
list” — 40 different definitions

* Can be roughly divided into two categories:
- computational/descriptive complexities (“ultraviolet”)
- effective/physical complexities (“infrared” or inter-scale)



Computational and descriptive
complexities

* Prototype —the Kolmogorov complexity:

the length of the shortest description (in a given
language) of the object of interest

 Examples:

- Number of gates (in a predetermined basis) needed
to create a given state from a reference one

- Length of an instruction required by file compressing
program to restore image



Descriptive complexity

e The more random —the more complex:

White noise Vermeer “View of Delft”
970 x 485 pixels, gray scale, 253 Kb 750 x 624 pixels, colored, 234 Kb



Descriptive complexity

* The more random —the more complex:

Paris japonica - 150 Homo sapiens - 3.1
billion base pairs in billion base pairs in
DNA DNA



Complexity of genomes

An idea: to take into account only part of genomes which participate in evolution
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The meaning of biological
information

Eugene V. Koonin

National Center for Biotechnology Information, National Library of
Medicine, National Institutes of Health, Bethesda, MD, USA

Cite this article: Koonin EV. 2016 The
meaning of biological information. Phil. Trans.
R. Soc. A 374: 20150065.
http://dx.doi.org/10.1098/rsta.2015.0065

Figure 1. Biological information and information density depending on genome size: viruses, prokaryotes and eukaryotes. The
biological information and density values were calculated using equations (1.4) and (1.5), respectively, and the data on genomes
were from Genbank. The plotis on a double logarithmic scale. 1, encephalomyocarditis virus (RNA virus); 2, lambda phage; 3, T4
phage; 4, Mycoplasma genitalium (parasitic bacterium); 5, acanthamoeba polyphaga mimivirus (giant virus); 6, Archaeoglobus
fulgidus (free-living archaeon); 7, Escherichia coli (free-living bacterium); 8, Saccharomyces cerevisiae; 9, Arabidopsis thaliana;
10, Drosophila melanogaster; 11, Homo sapiens. (Online version in colour.)



Effective complexity

biological life

A

Information Complexity

Effective Complexity

crystals atmospheric gas

Complexity

-

>
Order Disorder

Can we come up with a quantitative measurer..



Not a mere philosophical question...

. r
« What happens at the major 3 \ i
evolutionary transitions? : :

 Why are simple neural
algorithms capable of solving
complex many-body problems?

 Why do many natural patterns
appear to be universal?




Attempts: Selt-Organized Criticality

Per Bak: Complexity is criticality

PER'BAK

Some complicated (marginally stable) systems

how
nature demonstrate self-similarity and “fractal” structure

works

This is intuitively more complex behavior than
just white noise but can we call it “complexity”?

I am not sure — complexity is hierarchical




Holographic principle and complexity

“Holographic principle” emerged as an
attempt to resolve the information
paradox in quantum gravity (‘t Hooft 93,
Susskind 94):

A state of spacetime within a
given subregion can be reconstructed
from the state of its boundary

The other way around:

A d-dimensional quantum field
theory can in principle be equivalent to
a (d+1)-dimensional theory of gravity




Holographic principle |

Long
distances
Picture from
Hartnoll, 1106.4324
Short
distances
2 2 2 2
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Holographic complexity

Additional coordinate: RG flow, motion along “scale” coordinate,
from UV to IR

Two main definitions of holographic complexity

Complexity as volume (Susskind 2014,
https:/ /arxiv.org/abs/1402.5674)

Complexity as action (Brown et al, PRL 116, 191301 (2016))

Importantly: Both include integration over the “scale”



Holographic complexity 11

Holographic local quench and effective complexity

Al
1AL
"0

JHEP 08 (2018) 071 Dmitry Ageev, Irina Aref’eva, Andrey Bagrov and Mikhail |. Katsnelson

Starting with 1+1 dimensional conformal field theory (that is,
scale invariant!) and creating a local quench (putting locally
energy into the system)

= 1 =

Pair of solitons is formed

/ /

Entangled Pair

> X



Holographic complexity 111

Volume complexity is a
nonmonotonous function
of entanglement entropy

- AS

005 010 015 020

Action complexity reaches “Lloyd computational bound”,
that is, the fastest production of complexity (measured
as a number elementary gates) consistent with Heisenberg
uncertainty principle



Holographic complexity IV

Local quench — maximally fast
growth of complexity??

Criticality is not complexity but may be a prerequisite of
quickly growing complexity!



Magnetic patterns

Example: strip domains in thin ferromagnetic films
PHYSICAL REVIEW B 69, 064411 (2004)

Magnetization and domain structure of bce Feg;Ni,o/ Co (001) superlattices

R. Brucas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjorvarsson
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FIG. 2. The MFM 1images of the 420 nm thick FegNijq/Co superlattice at different externally applied in-plane magnetic fields:

(a)—virgin (nomnaguetized) state; (b). (c), (d)—increasing field 8.3, 30, and 50 mT; (e), (f). (g)—decreasing field 50, 30, 8.3 mT: (h)—in
remanent state.
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Magnetic patterns 11

e
v/

———— ——

f

f”iﬁi‘ { jﬁ[fw
| | ]f)wfjii,/ jgg

il 'I [’( :
//5 J@f ':g_m

! df
f
.

-

PR
NS /4\/ . Z
5 Y M ‘?’/’\ :




Magnetic patterns 111

Europhys. Lett., 73 (1), pp. 104-109 (2006)
DOI: 10.1209/epl1/i2005-10367-8

Topological defects, pattern evolution, and hysteresis
in thin magnetic films

P. A. PrupDkovskii!, A. N. RuBtsov! and M. I. KATSNELSON?2

H= (%) + %

+Q [ [m.(r) (Ir ] \/dgﬂlr_r,)Q)mz(r’)dzrdg'r’.

2
(a_m) — 5m2 — hmy) d?r +

Competition of exchange interactions (want homogeneous
ferromagnetic state) and magnetic dipole-dipole interations
(want total magnetization equal to zero)



Magnetic patterns 1V

Classical Monte Carlo simulations

Fig. 2 — Snapshots of the stripe-domain system with the two-component order parameter at several
points of the hysteresis loop for 3 = 1. The magnetic field is h = 0, h = 0.3, and h = 0.6, from left
to right. The inset shows the color legend for the orientation of local magnetization.

We know the Hamiltonian and it is not very complicated

How to describe patterns and how to explain patterns?



Structural complexity

Multi-scale structural complexity of natural patterns arXiv:2003.04632

Andrey A. Bagrov,2:* Tlia A. Iakovlev,? ¥ Mikhail I. Katsnelson,®?'# and Vladimir V. Mazurenko?

The idea (from holographic complexity and common sense):
Complexity is dissimilarity at various scales

Let f(z) be a multidimensional pattern

fa(z) its coarse-grained version (Kadanoff decimation,
convolution with Gaussian window functions,...)

Complexity is related to distances between fa(x) and faiqa(z)

(f(z)lg(z)) = [pdzf(z)g(z)
= [(fa(z)|fa+an(z))—

((fa(@)|[fa(z)) + (faraa(z)|fatan(z))) | = /l af f7f

) dA' dA
§|(f;\+d;\(l‘-) — fa(z)|fatan(z) — fa(x))l,

b | =
|

)|dA, as dA — 0



Structural complexity 11
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FIG. 1. Schematic representation of the idea behind the pro-
posed method. A photo of L x L pixels (panel I) taken from
www.pexels.com is divided into blocks of A x A pixels (panel
IT). A renormalized photo of [ x [ pixels is plotted, where
[ = L/A (I=4 in this example). The renormalized photo is
rescaled up to initial photo size (panel III). Vectors A and
B are constructed from blocks of the initial and the renor-
malized images respectively (panel IV). The scalar product
of these vectors is used to define overlap O. For illustrative
purposes, pixelwise products of A- and B-blocks are shown
as vector O.



Structural complexity 111

Can be used as a numerical tool to find T from finite-size
simulations: 2D Ising model
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FIG. 2. Temperature dependence of the complexity obtained
from the two-dimensional Ising model simulations. Red and
blue squares correspond to the complexities calculated with
k > 0 and k > 1, respectively. The size of error bars is
smaller than the symbol size. Inset shows the first derivative
of the complexity used for accurate detection of the critical
temperature. Here we used N = 8, A = 2.



Structural complexity -

3D Ising model,
cubic lattice
(insert shows
temperature
derivative of
Complexity)
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FIG. 3. Temperature dependence of the complexity ob-
tained from the three-dimensional Ising model simulations
with A = 2. Red and blue squares correspond to the complex-
ities calculated with £ > 0 and k > 1, respectively. The size
of error bars is smaller than the symbol size. Inset shows the
first derivative of the complexity used for accurate detection
of the critical temperature. Here we used L x L x L cubic lat-
tice with L = 256, N = 6. The small but visible cusp on the
blue curve around 7" ~ 3.2 reflects the emergence of magnetic
domains within the ferromagnetic phase, which takes place
sometimes during MC simulations on large lattices.



Structural complexity V

Spin textures due to competition of exchange and
Dzialoshinskii-Moriya interactions

H= —JZS Sp =D [y x S —ZBS’

nn'’ nn'’

FIG. 5. Configurations of the DM magnetic on 1024 x 1024
square lattice obtained from independent Monte Carlo runs
with parameters B = 0.05J, |D| = J, T' = 0.02J. While
they are visually distinct, corresponding complexities (left to
right) are equal to C = 0.4992115, C = 0.4991825 and C =
0.4991805.



Structural complexity VI

0.5 :

0.4 F
®03F
g :
5§0.2F
@) - .

0.1F : %
o 0 5 - § T
£-05F P .
= -lF : W i,
B-15F : W ie

'2;—1 M PR B B lﬁrl —
0 0.2 0.4 0.6 0.8 1
Magnetic field

FIG. 4. (a) Magnetic field dependence of the complexity ob-
tained from the simulations with spin Hamiltonian containing
DM interaction with J =1, |D| =1, T'= 0.02. The error bars
are smaller than the symbol size. (b) Complexity derivative
we used for accurate detection of the phases boundaries.



Solution of an ink drop in water

Entropy should grow, but complexity is not! And indeed...
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FIG. 7. The evolution of the complexity during the process
of dissolving a food dye drop of 0.3 ml in water at 31°C.
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Art objects (and walls)

{

C = 0.4557 C = 0.4581 C = 0.4975 C = 0.5552




Competing interactions and self-induced spin
olasses

Special class of patterns: “chaotic” patterns

Hypothesis: a system wants to be
modulated but cannot decide in which

PHYSICAL REVIEW B 69, 064411 (2004) . .
direction

T AZYNSWw .‘A:m :}AJA: S B By

-

1
lr—r'| V(r—r')*+D?

E,,= j j drdr'm(r)m(r'")

1—e" 9D

:2772 mgi _gq (13)
q

where mg is a two-dimensional Fourier component of the
magnetization density. At the same time, the exchange en-
ergy can be written as

|
Eexen=5 az qzmqm_q . (14)
“ q

so there is a finite value of the wave vector ¢g=¢* found
from the condition

d|, 1—e™® 1 . 15
El.-.’ﬂ 7 +an = (15)




Selt-induced spin glasses 11

week endin

201 (2 PHYSICAL REVIEW LETTERS ¢
PHYSICAL REVIEW B 93, 054410 (2016) PRL 117, 137201 (2016) 23 SEPTEMBER 2016

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject

Stripe glasses in ferromagnetic thin films to Long-Rense Interactions

. . ek - - A QQs it 1 a1 atenels
Alessandro Prmc1p1 and Mikhail I. Katsnelson Alessandro Principi and Mikhail 1. Katsnelson

Development of idea of stripe glass, J. Schmalian and P. G. Wolynes, PRL 2000

Glass: a system with an energy landscape characterizing by
infinitely many local minima, with a broad distribution of barriers,
relaxation at “any” time scale and aging (at thermal cycling you
never go back to exactly the same state)

‘P<‘Pg
Low High
P>Pg P>Pg

W

Picture from P. Charbonneau et al,

DOI: 10.1038/ncomms4725

Intermediate state between
equilibrium and non-equilibrium,

A opportunity for history and

& % memory (“stamp collection”)




Selt-induced spin glasses 111

One of the ways to describe: R. Monasson, PRL 75, 2847 (1995)

Hylm,Al = Hlm,A] + g ] drm(r) — ¥ ()]

The second term describes attraction of our physical field m(r)

to some external field ¥ (r)

If the system an be glued, with infinitely small interaction g, to macroscopically
large number of configurations it should be considered as a glass

Then we calculate  F, — / fl}]/;)Zx[,[gz; gw] and see whether the limits

Foq =limy_ oo limg_,0 F, and F=lim, ,olimy_, o F; are different

No disorder is needed (contrary to

If yes, this is self-induced glass . . )
traditional view on spin glasses)



Self-induced spin glasses IV

PHYSICAL REVIEW B 93, 054410 (2016) Hm,\] = /dr{J[a,-mj(r)F _ sz(r) —2h(r) - m(r))

Stripe glasses in ferromagnetic thin films

+g/drdr'm:(r)
2

Alessandro Principi”* and Mikhail I. Katsnelson

I 1 ,
) [Ir T i = ,-f|2]'":(’ :
4 / dr((r)m(r) — 11). (1)

Self-consistent screening approximation for spin propagators




h/K

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.0
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Selt-induced spin glasses VI

week ending

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

Maximal simplification

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject oo
to Long-Range Interactions (Bf azovskii model)

Alessandro Principi* and Mikhail I. Katsnelson

Gy'(9) = a5 (a°/ a5 — 1)°/4 + qp egsin® (6,)

18 T T T
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0.4 - 0.08 47 .

03 L N | anisotropy parameter &,. Panel (b) same as panel (a) but for the
gf - he 0'45006 *® 172 two-dimensional Heisenberg model (D =2, N, =3). Inset:
oo l® 1 . 1 1 the temperature T4 as a function of &.
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> FIG. 2. Panel (a) the configurational entropy of the mean-field
problem for the two-dimensional Ising model (D=2 and



“xperimental observation of self-induced spin
olass state: elemental Nd

Unconventional spin glass state in elemental neodymium in the absence of

extrinsic disorder

arxiv:1907.02295

Umut Kamber', Anders Bergman?, Andreas Eich’, Diana lusan?, Manuel Steinbrecher', Nadine
Hauptmann', Lars Nordstrom?, Mikhail |. Katsnelson', Daniel Wegner', Olle Eriksson?3, Alexander A.

Khajetoorians'”

Spin-polarized STM experiment, Radboud University




The historical conundrum

Unfortunately, the understanding of the magnetic ) ,,
properties of Nd has been an unsolved puzzle for ¢ an
almost 50 years. Neutron diffraction investigations of the a‘ ‘:
magnetic structure of Nd starting by Moon, Cable and Koehler "
and others are numerous. In addition there has been a recent #
x-ray investigation. These revealed that Nd has the most ﬁ
complicated magnetic structure known for any pure |
element—including a sinusoidal ordering. The reason for the

found complexity has previously not been understood, iV R
basically because the magnetic interactions were not

determined.

P. A. Lindgard, T. Chatterji, K. Prokes, V. Sikolenko and J. U. Hoffmann, | 40
Phys-Condens Mat 19 (28) (2007). 5/20/20



Nd(0001): electronic properties

T=30mK

di/dV (a.u.)

* Exchange split surface state
— Spin contrast at each voltage with contrast
inversion

e Use Cr bulk tip — out of plane contrast

41
D. Wegner ez al., Phys. Rev. B 73, 165415 (2006) 5,/20,/20
D. Wegner et al., [pn. J. Appl. Phys. 45, 1941 (20006) :



no long-range

Magnetic structure
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Magnetic structure: local correlations
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The most important observation: aging. At thermocycling (or

cyling magnetic field) the magnetic state is not exactly reproduced

43
5/20/20




Ab initio: magnetic interactions in bulk Nd

Method: magnetic force theorem (Lichtenstein, Katsnelson, Antropov, Gubanov
JMMM 1987)
Calculations: Uppsala team (Olle Eriksson group)

a hcp
06 m] dth cubic
% dhcp hexagonal
047
S
£ 0.2
= X
20 & a D’g‘ﬁ o s"uf'm
o o
0.2},
1 2 3

r.la
]

* Dhcp structure drives competing AFM interactions
* Frustrated magnetism 44



Ab initio bulk Nd: energy landscape

Energy (meV

* £(Q) landscape features flat valleys along high
symmetry directions

See A. Principi, M.I. Katsnelson, PRB/PRL 45
(2016)/(2017) 5/20/20
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Spin-glass state in Nd: spin dynamics

1.0
0 Atomistic spin dynamics
. simulations
+ 0.6 I e £,=0.01 ps
3 —tw=020 pS
= 04T e t,=0.82ps
| t,=3.28ps : .
02F /i3 re Typically sp.1n glass
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To compare: the same for prototype
disordered spin-glass Cu-Mn

B. Skubic et al, PRB 79, 024411 (2009)



Does self-induced glassiness solve the problem?

No! There is no real memory in spin glasses: too many local minima,
too small basin of attraction of each minimum

A hypothesis (MIK, Y. Wolf, E. Koonin, Phys. Sct. 93 (2018) 043001):

States that an “glue” not to maroscopically large number of
configurations (like in glasses) and not just to a few (like for
conventional broken symmnetry) but something in between:

Hlp(x)] — Hylo(x)] = H[p(x)]
g [ | - 2
+ 5. ] dx[op(x) — o(x)]

F,

= limy_Jimg_ 0%

< [0

for many, but not too many configurations o (x)

(in the context of “physical mechanisms of biological evolution”)



Multi-well “memory” state in Ising spin systems

Atom-by-atom construction of attractors in a tunable finite size spin
array
New J. Phys. 22 (2020) 023038

A Kolmus', M1 Katsnelson® ), A A Khajetoorians”© and H ] Kappen'

2D Ising model, square lattice, no disorder but frustrations due to
oscillating character of exchange interactions (2D RKKY)

H= =) Jjsisy

i>j
( 0 y1=]
Ji=4q1 . (2« .
—281n r,, ,ls—]

i A

theratio @ = Mabetween the RKKY wavelength () and the lattice constant (a)

is the only relevant parameter in the model



Multi-well “memory” state in spin systems II

A SQG

Figure 1. (a) The spatial distribution of the RKKY exchange interaction (/) for the centralatomin the Ising spin array(n = 25) for
different  for the labeled magnetic regime: spin-Qglass (SQG), multi-well (MW), double well (DW). The color bar representsthe
amplitude and sign of the interaction. (b) Schematic of the energylandscape forthe three-labeled regimes, dlustrating qualitatively the
distribution and depth of states for each regime where grayillustrates the effective temperature. (c) Illustration of the distinguishing
features inthe Q-space histogram identifying each regime, where white to red intensity corresponds to alow to high number of states.




Multi-well “memory” state in spin systems III

SQG
a=2.5

MW-a
a=7.5

MW-b
a=27.0

DW
a=46.0

Figure 3. Examples of the real space site dependent magnetization for alattice size of 25 x 25, for various metastable states for each of
thelabeled regimes (red/blue correspond to an average spin value of —/+- 1). Each of the pattems corresponds to a low-energy state,
taken from the histogram in figure 2(b), for the labeled regime and value of v. The states increase in energy from left to right.




Multi-well “memory” state in spin systems IV
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Figure 4. (a) A regime diagram with the lattice width n on the vertical axis and  on the horizontal axis. The white dashed-dotlines
indicate the different regimes, as labeled and as defined by the corresponding Q-histograms. The color scale indicates the entropy as
defined in the main text. (b) The scaling behavior near the boundary between each regime, corresponding to the white dashed lines in
(a) and labeled by the letters A-D. Each plot corresponds to the number of available states as a function of the lattice width n versus the
normalized number of metastable states N/N,,... N, N, are the number of stable states and the largest number of stable states per
graph, respectively, and we divide the former by the latter in order to normalize each plot for comparison. These simulations were
repeated three times, no large differences were found.




Multi-well “memory” state in spin systems V

— ty=2°

— tyw=27 tw=2° tw=2" tw=2"° tw=2"" — ty=2"

F08
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+
- 0.4
&,
o 22| a=2.50 a=7.50 a=27.00 a=46.00

0.0, SQG = MW-A MW-B DW °

100 102 10° 10° 109 102 10% 105 10° 102 10° 10° 10° 102 10° 10°

Time steps

Figure 5. Theautocorrelation function C(t,, + t, t,,), as defined in the text, for different o and labeled regimes, where t,,is the
waiting time before measuring the autocorrelation and t,, is the time step duringthe measurementas indicated by the colors/values
labeled above the graphs. Each line is the average over 100 runs. For each a the temperature was set below the critical temperature
(determined using the Binder cumulant), but high enough to showagingbehaviorin 10” time steps.

1
Cty + t, ty) = NZ si(tw)*si(ty + 1),

Plateau in multi-well regime means memory

(3)



Frustrations and complexity: Quantum case

Generalization properties of neural network - | (20200111593
approximations to frustrated magnet ground states

Tom Westerhout'™, Nikita Astrakhantsev234* Konstantin S. Tikhonov® >67% Mikhail |. Katsnelson"8 &

Andrey A. Bagrov'8°™

How to find true ground state of the quantum system?

In general, a very complicated problem (difficult to solve even for
quantum computer!)

Idea: use of variational approach and train neural network to find
“the best” trial function (G. Carleo and M. Troyer, Science 355, 602 (2017))

K K
[Yos) = D_wilS) = D _slwillS)
i=1 i=1
Generalization problem: to train NN for relatively small basis (K

much smaller than total dim. of quantum space) and find good
approximation to the true ground state
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Quantum S=1/2 Hamiltonian H=], Z&a ®6,+ ]/, Z G, ® 6,
NN and NNN interactions (ab) ({a,b))
a b c

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J;—J> model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; ¢ spatially anisotropic Kagome lattice. In all cases J> = 0 corresponds to the absence of
frustration.

24 spins, dimensionality of Hilbert space d = C%‘zl ~ 2.7 -10°

Still possible to calculate ground state exactly
Training for K =0.01 d (small trial set)
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Square lattice Triangular lattice Kagome lattice
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a-c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J,/J; for square a,
triangular b, and Kagome c lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Note 1. Subfigures d-f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.
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Fig. 4 Generalization of signs and amplitudes. We compare generalization
quality as measured by overlap for learning the sign structure (red circles)
and amplitude structure (green squares) for 24-site Kagome lattice for
two-layer dense architecture. Note that both curves decrease in the
frustrated region, but the sign structure is much harder to learn.

It is sign structure

which is difficult to

learn in frustrated
case!!!

Relation to sign
problem in QMC>?!

"Somehow it seems to fill my head with ideas —only I don't exactly know
what they are!” (Through the Looking-Glass, and What Alice Found There)



Frustrations and biological complexity

Physical foundations of biological complexity
E8678-E8687 | PNAS | wvol. 115

Yuri I. Wolf?, Mikhail I. Katsnelson®, and Eugene V. Koonin®'

Competing interactions as universal mechanism of complexity?!

A

evolutionary
transitions

level of organization
] [[,,

. b self-organized criticality,
: " ,g&a @D—)—MD non-ergodic dynamics

stripe glass-like
structures

frustrated molecular
interactions

Y

complexity of interactions
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Table 1. Competing interactions and frustrated states in biological evolution

Frustration-producing factors (competing

System interactions) Emergent functional and evolutionary features
RNA Short-range (within stem local hydrogen bonding, Complex 3D structures induding ribozymes
stacking) vs. long-range (long-distance hydrogen
bonding, salt bridges) interactions between
nudeotides
Proteins Short-range (Van der Waalg) vs. long-range Stable conformations and semiregular patterns in

Macromolecular complexes
Cells

Autonomous (hosts) and
semiautonomous (parasites)
replicators

Autonomous (hosts) and
semiautonomous (parasites)
reprod ucers/replicators

Autonomous (hosts) and
semiautonomous (parasites)
reprod ucersireplicators

Autonomous (hosts) and
semiautonomous (parasites)
reprod ucersireplicators

Emerging eukaryotic celks

Communities of unicellular
organisms

Multicellular organisms

Multicellular organisms

Populations
Populations
Ecosystems

Sodeties*

(hydrogen bonds, salt bridges) interactions
between amino acid side chains

Within-subunit vs. between-subunit interactions
Membranes (confinement of chemicals) vs.

channeks/pores (transport of chemicals)
Replicator vs. parasite genomes

Host cells and viruses

Host cells vs. transposons

Host cells vs. plasmids

Host (archaeal) celks vs. endosymbiont
(c-proteobacteria, protomitochondria)
Individual cells vs. cellular ensembles

Soma vs. germline

Dividing vs. quiescent cells
Individual members vs. groups

Males vs. females (partners with unequal
parental investment)
Spedies in different niches

protein structures; allostery enabled by
transitions between energetically quasi-
degenerate conformations

Elaborate complex organization, in particular
nucleoproteins (ribosomes, chromatin)

Compartments and cellular machinery dependent
on electrochemical gradients

Self- vs. non-self-disarimination and defense;
complex genomes of increasing size;
primitive cells

Infection mechanisms, defense and counterdefense
systems, evolutionary arms race; contribution to
the origin of multicellular life forms

Intragenomic DNA replication control; evolutionary
innovation through recruitment of transposon
sequences

Beneficial cargo genes plasmid addiction systems,
efficient gene exchange and transfer mechansms

Eukaryotic cells with complex intracellular
organization

Information exchange and quorum sensing
mechanisms; replication control, programmed
cell death, multicellularity

Complex bodies, tissues and organ differentiation,
sexual reproduction

Aging, cancer, death

Populationevel cooperation; kin selection;
eusocilaity

Sexual selection, sexual dimorphism

Interspecies competition, host-parasite and
predator-prey relationships, mutualism, symbiosis

Those competing interactions and frustrated states that are deemed to directly contribute to MTE are shown in bold.

*We refrain from specifying the conflicts that drive the origin and evolution of human societies.



To summarize: How 1t was in 1960th-1980th
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People were very enthusiastic on applications of theory of dynamical

systems: attractors, bifurcations, catastrophes — useful for sure but...
: e |

The distance from Benard convection cells to
origin of life seems to be too far...




To summarize: Now

Now we try statistical physics approached, our new key words are:

emergence, trenormalization group flow, universality classes,
spin glasses, broken replica symmetry, frustrations...

Will it help us?! Who knows...

N Xt
PV



