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Pattern formation in physics: magnetic patterns as an example
Self-induced glassiness and beyond: the role of frustration
Experimental realization: elemental Nd

Frustrated magnets in the limit of infinite dimension

Complexity of quantum frustrated systems: sign structure of the
ground-state wave function



Complexity (“patterns”) in inorganic world
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Stripes on a beach in tide zone

Stripe domains in ferromagnetic thin

films g .
# 1n rail steel

# (SciRep 9,
Microstructures in metals & 7454 (2019))
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Do we understand this? No, ot, at least, not completely



Magnetic patterns

Example: strip domains in thin ferromagnetic films
PHYSICAL REVIEW B 69, 064411 (2004)

Magnetization and domain structure of bee FegNi;o/ Co (001) superlattices

R. Brucas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjorvarsson
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FIG. 2. The MFM ima of the 420 nm thick F 1N119/Co superlatt t different externally applied in-plane magnetic fields:
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Magnetic patterns 11

Europhys. Lett., 73 (1), pp. 104-109 (2006)
DOI: 10.1209/epl/i2005-10367-8

Topological defects, pattern evolution, and hysteresis
in thin magnetic films

P. A. PRUDKOVSKII!, A. N. RuBTsov! and M. I. KATSNELSON?
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Competition of exchange interactions (want homogeneous
ferromagnetic state) and magnetic dipole-dipole interations
(want total magnetization equal to zero)



Magnetic patterns 111

Classical Monte Carlo simulations

Fig. 2 — Snapshots of the stripe-domain system with the two-component order parameter at several
points of the hysteresis loop for 3 = 1. The magnetic field 1s h = 0, h = 0.3, and k = 0.6, from left
to right. The inset shows the color legend for the orientation of local magnetization.

We know the Hamiltonian and it is not very complicated

How to describe patterns and how to explain patterns?



Competing interactions and self-induced spin
olasses

Special class of patterns: “chaotic” patterns

Hypothesis: a system wants to be
modulated but cannot decide in which

PHYSICAL REVIEW B 69, 0064411 (2004) . .
direction
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where mg is a two-dimensional Fourier component of the
magnetization density. At the same time, the exchange en-
ergy can be written as

1
Eexcn=7 afE gzmqm_q._ (14)
= q

so there is a finite value of the wave vector g=¢* found
from the condition
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Self-induced spin glasses 11

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

PHYSICAL REVIEW B 93, 054410 (2016)

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject

Stripe glasses in ferromagnetic thin films to Long-Range Interactions

Alessandro Principi* and Mikhail I. Katsnelson Alessandro Principi and Mikhail 1. Katsnelson

Development of idea of stripe glass, J. Schmalian and P. G. Wolynes, PRL 2000

Glass: a system with an energy landscape characterizing by
infinitely many local minima, with a broad distribution of batriers,
relaxation at “any” time scale and aging (at thermal cycling you
never go back to exactly the same state)

a c d Picture from P. Charbonneau et al,
DOI: 10.1038/ncomms4725
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Intermediate state between
equilibrium and non-equilibrium,

/ { opportunity for history and
00 @ % memory (“stamp collection”)




Selt-induced spin glasses 111
One of the ways to describe: R. Monasson, PRL 75, 2847 (1995)
Hylm, Al = H[m Al + g f dr|m(r) — y‘lr(r}]z

The second term describes attraction of our physical field m(r)

to some external field ¥ (r)

If the system an be glued, with infinitely small interaction g, to macroscopically
large number of configurations it should be considered as a glass

Then we calculate F, = J Ijjﬁﬂiff[?[ i 51‘#] and see whether the limits

Fog=limy_lim, .o F, and F =hlm, olimy_ F; are different

No disorder is needed (contrary to

If yes, this is self-induced glass .. . .
e s traditional view on spin glasses)



Selt-induced spin glasses IV

PHYSICAL REVIEW B 93, 054410 (2016) Hlm,\] = fdr{l[ﬁ,-mj(r}]z . Kmf(r} —2h(r) - m(r))
Stripe glasses in ferromagnetic thin films

Alessandro Principi* and Mikhail 1. Katsnelson
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Self-consistent screening approximation for spin propagators




h/K

Self-induced spin glasses V
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PRL 117, 137201 (2016)

PHYSICAL REVIEW LETTERS

Selt-induced spin glasses VI

week ending
23 SEPTEMBER 2016

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject
to Long-Range Interactions

Maximal simplification
(Brazovskii model)

Alessandro Principi* and Mikhail I. Katsnelson
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FIG. 2. Panel (a) the configurational entropy of the mean-field
problem for the two-dimensional Ising model (D=2 and
N, = 1). Note that this curve has been multiplied by a factor
0.1. Inset: the transition temperature 7,4 as a function of the
anisotropy parameter £;. Panel (b) same as panel (a) but for the
two-dimensional Heisenberg model (D =2, N, =3). Inset
the temperature 74 as a function of &.



Experimental observation of self-induced spin
olass state: elemental Nd

Self-induced spin glass state in elemental
and crystalline neodymium

Umut Kamber, Anders Bergman, Andreas Eich, Diana lusan, Manuel Steinbrecher,
Nadine Hauptmann, Lars Nordstrom, Mikhail I. Katsnelson, Daniel Wegner*,
Olle Eriksson, Alexander A. Khajetoorians®

Science 368, 966 (2020)

Spin-polarized STM experiment, Radboud University




no long-range

Magnetic structure
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VI

The most important observation: aging. At thermocycling (or

cyling magnetic field) the magnetic state 1s not exactly reproduced

15

05-03-2024




Order from disorder

Thermally induced magnetic order from

glassiness in elemental neodymium NATURE PHYSICS | VOL 18 | AUGUST 2022 | 905-911

Benjamin Verlhac!, Lorena Niggli®’, Anders Bergman?, Umut Kamber®', Andrey Bagrov'?,
Diana lusan? Lars Nordstrém ©2, Mikhail I. Katsnelson®’, Daniel Wegner®", Olle Eriksson??
and Alexander A. Khajetoorians ®'~

Glassy state at low T
and long-range order
at T increase

Figure 2: Emergence of long-range multi-Q order from the spin-Q glass state at elevated

temperature. a,b. Magnetization images of the same region at T=5.1 Kand 11 K| respectively (k=
100 pA, a-b, scale bar: 50 nm). ¢,d. Corresponding Q-space images (scale bars: 3 nm), illustrating

the changes from strong local (i.e. lack of long-range) Q order toward multiple large-scale domains

T=5K (a,c): spin glass
() patterns (scale bar: 5 nm). The locations of these images is shown by the white squares in b. g,h. T: 1 1 I< (b) d) . ( n O n C O]_h n e a r) AFM

Display of multi-Q state maps of the two apparent domains in the multi-Q ordered phase, where (g)

with well-defined long-range multi-Q order. e,f. Zoom-in images of the diamond-like (e) and stripe-like



Glassiness without disorder?

Giorgio Parisi, Nobel Prize in physics 2021
"for the discovery of the interplay of disorder
and fluctuations in physical systems from atomic
to planetary scales."

Actually, disorder may be not needed, frustrations are enough
(self-induced spin glass state in Nd)

Can we have something more or less exactly solvabler! — Yes!

arXiv:2311.09124
Frustrated magnets in the limit of infinite dimensions: dynamics and disorder-free

glass transition
Authors: Achille Mauri, Mikhail 1. Katsnelson

The prototype theory: dynamical mean-field theory (DMFT) for strongly
correlated systems (Metzner, Vollhardt, Georges, Kotliar and others)


https://arxiv.org/abs/2311.09124
https://arxiv.org/search/?searchtype=author&query=Mauri%2C+A
https://arxiv.org/search/?searchtype=author&query=Katsnelson%2C+M+I

(Glassiness in infinite dimensions

Frustrations are necessary H = —— Z J. QJS ‘:“S + Z V(S
§2 = Se5t =1 .

The limit of large dimensionality 4 J f'ﬁ — [ f af (1’? / \/ Qd)} e.g.

fa:d( ) J‘—’EQ Jﬂ3 JQ3 2+JQL3 4 means
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The simplest frustrated model: fo"-ﬁ (6) = 5&"5]0(6) f(E) = J(<€2 — 1)

Mean-field ordering temperature tends to zero at d — o0 in this model



Glassiness in infinite dimensions 11

Cavity construction and mapping on etfective single impurity

Purely dissipative Langevin dynamics S; = -8, x (Si x (N; +vy))
OH

B - . af of o o

(W () () = 2kpT675,;6(t —t')

J
Exactly mapped to a single-impurity dynamics with nonlocal in time “memory function”

Edwards-Anderson criterion of glassiness (local spin-spin correlation function tends
to nonzero value in the limit of infinite time difference)

3qea(T) = limjs—|00 (57() S (1))



nonzero below the glass transition temperature

Glassiness in infinite dimensions 111

Isotropic model f(f:?) = J(E?‘ — 1)

T, =~ 0.0103|J|/kg

First-order transition  EA (Tg ) ~ (.2575H
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Glassiness without disorder is
theoretically possible!



Frustrations and complexity: Quantum case

Generalization properties of neural network | (2020)11:1593
approximations to frustrated magnet ground states

Tom Westerhouﬂm, Nikita Astrakhantsev2'3'4m, Konstantin S. Tikhonov 5'6'7M, Mikhail I. Katsnelson'® &

Andrey A. Bagroy'%°®

How to find true ground state of the quantum system?

In general, a very complicated problem (difficult to solve even for
quantum computetr!)

Idea: use of variational approach and train neural network to find
“the best” trial function (G. Carleo and M. Troyer, Science 355, 602 (2017))

K K
Yos) = D_wilS) = D _slwillS)
i=1 i=1
Generalization problem: to train NN for relatively small basis (K
much smaller than total dim. of quantum space) and find good
approximation to the true ground state



Frustrations and complexity: Quantum case 11

Quantum S=1/2 Hamiltonian H=J, Z‘}a ®6,+ ], Z G, 26,
NN and NNN interactions (ab) {{a,b))
a b c

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J, —J/> model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; ¢ spatially anisotropic Kagome lattice. In all cases J; = O corresponds to the absence of
frustration.

24 spins, dimensionality of Hilbert space d = C24 ~ 2.7 - 10°

Still possible to calculate ground state exactly
Training for K =0.01 d (small trial set)



Frustrations and complexity: Quantum case 111

Kagome lattice

Square lattice Triangular lattice
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a-c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J;/J; for square a,
triangular b, and Kagome c lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Mote 1. Subfigures d-f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.



Frustrations and complexity: Quantum case IV
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Fig. 4 Generalization of signs and amplitudes. \We compare generalization
quality as measured by overlap for learning the sign structure (red circles)
and amplitude structure (green squares) for 24-site Kagome lattice for
two-layer dense architecture. Note that both curves decrease in the
frustrated region, but the sign structure is much harder to learn.

It is sign structure

which is difficult to

learn in frustrated
case!!!

Relation to sign
problem in QMC?!

"Somehow it seems to fill my head with ideas —only I don't exactly know
what they are!” (Through the Looking-Glass, and What Alice Found There)



Mapping onto Ising model

Many-body quantum sign structures as non-glassy Ising models
Tom Westerhout, Mikhail I. Katsnelson, Andrey A. Bagrov

Communications Physics volume 6, Article number: 275 (2023)

The idea: use machine learning to find amplitudes and then
map onto etficient Ising model

D D
‘U/> = 2 y; i) = 2 Sily;l i) y; are real-valued, §; = sign(y,)
i=1 i=1
- D-w T
Energy esttmate E = (y|H|y) = .LI(HHUH%H‘W SiS;
L=
Suppose, that the amplitudes {|y;|}, are known

Mapping onto the Ising model with very large spatial dimensionality D

D ~
H = Z jffj‘sf‘sj: where «.73'?}' — W/;ijHI‘H‘])

ij=1


https://www.nature.com/commsphys

Mapping onto Ising model 11
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Real lattice Hilbert space Ising model

For the ground state of a quantum lattice model (a), the Hilbert space basis

vectors with non-zero amplitudes (b) become sites of the classical Ising model (¢).

Dimensionality 1s huge but if the energy landscape 1s not glassy, optimization is
possible (polynomial growth with D, for specific algorithm used in the paper DlogD)



Mapping onto Ising model III

Fortunately, quantum frustrated model is mapped onto non-frustrated Ising modell!!l
Relatively small fraction of large effective Ising couplings

a
b ;-
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Fig. 3 Distribution of the Ising model couplings. a Sorted distribution of
couplings of the Ising models corresponding to ground states of the studied
quantum systems. In the logarithmic scale, it is evident that large couplings
comprise only a small fraction within the whole graph and, hence, could be
sparsely distributed. b Histogram of the probability that a coupling of a
given magnitude is not frustrated (in other words, the locally optimal state
of the corresponding two spins is compatible with the global solution).
Larger couplings are likely not frustrated, which underlies the success of
simple optimization algorithms.



Mapping onto Ising model IV

Table 1 Results of the greedy optimization for small

quantum systems.

System Accuracy Overlap
16-site J;-J> model 1.0 1.0
16-site Kagome lattice 1.0 1.0
18-site Kagome lattice 0.998 1.0
16-site random, No 1 1.0 1.0
16-site random, No 2 1.0 1.0
16-site random, Ne 3 0.945 0.885

The simulations are fully deterministic. Accuracy and overlap are computed on the full Hilbert

space.
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What happens if
amplitudes are known not very
accurately? It turns out that the

method is quite robust!

Robustness of the calculated spin
structure with inaccurate amplitudes



To summarize

Frustrated systems without disorder can demonstrate glass-like behavior
Elemental Nd seems to be ideal playground to study these states
Theoretically confirmed in the limit of large spatial dimensionality
Quantum frustrated systems are more complicated than nonfrustrated
Complexity is in the sign structure of the ground-state wave function
Nevertheless, frustrated quantum systems can be mapped onto

nonfrustrated Ising model for optimization of sign structure

Beyond the talk:

- Fermionic sign problem in quantum Monte Carlo?
- Biological implementations?!



Analogies with biological evolution

Can the change of environment switches fitness landscape
from a few well-defined peaks to a glassy-like with many directions of
possible evolution?

Australian Journal of Zoology
http://dx.doi.org/10.1071/2013052

Explaining the Cambrian

“EXplOSiOH” of Animals The evoluti.op of morphogenetic fitness landscapes:
conceptualising the interplay between the developmental

Charles R. Marshall and ecological drivers of morphological innovation

Annu. Rev. Earth Planet. Sci.

2006. 34:355-84 Charles R. Marshall

Cambrian Explosion as an analog of magnetic phase transitions
in neodymium?!

Well... for me (as a physicist) it 1s a good place to stop

THANK YOU
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